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1
Introduction

1.1 A new synthesis
1.1.1 Two (irreconcilable?) approaches
to understanding the atmosphere
In the last 20 years there has been a quiet revolution
in atmospheric modelling. It’s not just that computers
and numerical algorithms have continued their rapid
development, but rather that the very goal of the
modelling has profoundly changed. Whereas 20 years
ago, the goal was to determine the (supposedly)
unique state of the atmosphere, today with the advent
in Ensemble Forecasting Systems (EFS), the aim is to
determine the possible future atmospheric states
including their relative probabilities of occurrence:
this new goal is stochastic. A stochastic process is a
set of random variables indexed by time (Kolmo-
gorov, 1933), and this definition includes that of
deterministic processes as a special case.

At present, the EFS are really hybrids in the sense
that they operate by first generating an initial ensem-
ble of atmospheric states compatible with the obser-
vations and then use conventional deterministic
forecasting techniques to advance each member in
time to produce a distribution of future states. Once
the leap was taken to go beyond the forecasting of a
unique state to forecasting an ensemble, the next step
was to make the subgrid parametrizations themselves
stochastic (e.g. Buizza et al., 1999; Palmer, 2001;
Palmer and Williams, 2010). This is an attempt to
take into account the variability of different possible
subgrid circulations. The artificial deterministic/
stochastic nature of these hybrids suggests that the
development or pure stochastic forecasts would be
advantageous, a possibility we explore in Chapter 9.

Interestingly, the tension between determinism and
stochasticity has been around pretty much since the
beginning, although for most of the (still brief) history
of atmospheric science the deterministic approaches
have been in the ascendancy and the stochastic ones

left in the wings. To see this, let us recall the important
developments. Drawing on the classical (deterministic)
laws of fluid mechanics, Bjerknes (1904) and
Richardson (1922) extended these to the atmosphere
in the now familiar form of a closed set of nonlinear
partial differential governing equations. From a mathe-
matical point of view, their deterministic character is
evident from the absence of probability spaces; from a
conceptual point of view, it is associated with classical
Newtonian thinking. In physics, Newtonian determi-
nism began to disappear with the advent of statistical
mechanics (starting with the “Maxwellian” distribution
of molecular velocities: Maxwell, 1890), which showed
that physical theories could indeed be stochastic. The
break with determinism was consecrated with the
development of quantum mechanics, which is a funda-
mental yet stochastic theory where the key physical
variable – the wavefunction – determines probabilities.

At roughly the same time as the basis of modern
deterministic numerical weather prediction was being
laid, an alternative stochastic “turbulent” approach
was being developed by G. I. Taylor, L. F. Richardson,
A. N.Kolmogorov and others. Just as in statisticalmech-
anics, where huge numbers of degrees of freedom exist
butwhere only certain “emergent”macroscopic qualities
(temperature, pressure etc.) are of interest, in the corres-
ponding turbulent systems the new theories sought to
discover new emergent statistical turbulence laws.

The first of these emergent turbulent laws was
the Richardson “4/3 law” of atmospheric diffusion:
n(L) � KL4/3, where n(L) is the effective viscosity at
scale L and K is a constant to which we return
(Richardson, 1926): see Fig. 1.1. This law is famous
not only as the precursor of the Kolmogorov (1941)
law of 3D isotropic homogeneous turbulence (the
“5/3” law for the spectrum – or, if expressed for the
fluctuation Dv(L), the “1/3” law: Dv(L) ¼ e1/3L1/3

where Dv is the velocity fluctuation and e is the
energy flux), but it is also celebrated thanks to the
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ingenious way that Richardson experimentally con-
firmed his theory with the help of balloons and
later even with parsnips and thistledown (Richardson
and Stommel, 1948)! While this attention is all well
deserved, the law was perhaps even more remarkable
for something else: that Richardson had the audacity to
conceive that a unique scaling (power) law – i.e. a law
without characteristic length scales – could operate over
the range from millimetres to thousands of kilometres,
i.e. over essentially the entire meteorologically signifi-
cant range. In accordwith this, Richardson believed that
the corresponding diffusing particles had “Weierstrass
function-like” (i.e. fractal) trajectories. Nor was the 4/3
law an isolated result. In the very same pioneering book,
Weather Prediction by Numerical Process (Richardson,
1922), in which he wrote down essentially the modern
equations of the atmosphere (Lynch, 2006) and even
attempted a manual integration, he slyly inserted:

Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to
viscosity – in the molecular sense.

Thanks to this now iconic poem, Richardson is often
considered the grandfather of the modern cascade
theories that we discuss at length in this book.

Had Richardson been encumbered by later notions
of the meso-scale – or of isotropic turbulence in either
two or three dimensions – he might never have dis-
covered his law. Already, 15 years after he proposed it,

Kolmogorov (1941) humbly claimed only a relatively
small range of validity of the stringent “inertial range”
assumptions of statistical isotropy and homogeneity
which he believed were required for the operation
of his eponymous law (which was also discovered,
apparently independently, by Obukhov, 1941b, 1941a;
Onsager 1945; Heisenberg, 1948; and von Weizacker,
1948) – and this even though it has strong common
roots with Richardson’s law. Indeed, it implies that
Richardson’s proportionality constant depends on the
energy flux e: n(L) ¼ LDv(L) ¼ e1/3L4/3; in this sense
Kolmogorov’s contribution was to find K ¼ e1/3.
Echoing Kolmogorov’s reservations, Batchelor (1953)
speculated that the Kolmogorov law should only hold
in the atmosphere over the range 100 m to 0.2 cm!
Even in Monin’s influential book Weather Forecasting
as a Problem in Physics (1972), the contradiction
between the small and wide ranges of validity of
the Kolmogorov and Richardson 4/3 laws is pushed
surprisingly far, since on the one hand Monin confines
the range of validity of the Dv(L) ¼ e1/3L1/3 law to
“micrometerological oscillations . . . up to � 600 m in
extent,” while on the other hand publishing (on the
opposite page!) a reworked copy of Richardson’s
figure demonstrating the validity of the n(L) � L4/3

up to thousands of kilometres (Fig. 1.1). For the latter,
he comments that it “is valid for nearly the entire
spectrum of scales of atmospheric motion from milli-
meters to thousands of kilometres,” in accord with
Richardson. In Monin and Yaglom (1975), the con-
tradiction is noted with the following mysterious
explanation: “in the high frequency region one finds
unexpectedly, that relationships similar to those valid
in the inertial subrange of the microturbulence spec-
trum are again valid.” In Chapter 6 we argue on the
basis of modern reanalyses and other data that the law
Dv(L) ¼ e1/3L1/3 does indeed hold up to near planetary
scales in the horizontal, but paradoxically that, even at
scales as small as 5 m, it does not hold in the vertical
(and hence 3D isotropic turbulence does not seem to
hold anywhere in the atmosphere)! By proposing a
theory of anisotropic but scaling turbulence, we
attempt to explain how it is possible that Kolmogorov
was simultaneously both so much more accurate (the
horizontal) and yet so much less accurate (the vertical)
than anyone expected. This was achieved with the help
of a generalized notion of scaling (Schertzer and Love-
joy, 1985a, 1985b) which ironically led to an effective
“in between” dimension of atmospheric turbulence
D ¼ 23/9 ¼ 2.55. . . and enables the Fractal Geometry

Fig. 1.1 Effective viscosity as a function of scale, reproduced from
Monin (1972), adapted from (Richardson, 1926). The text (inserted
by Monin) should read “region of free turbulence”(!)
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to at last (!) escape from the Euclideanmetric (Schertzer
and Lovejoy, 2006).

Facing colossal mathematical difficulties, turbu-
lence theorists, starting with Taylor (1935), concen-
trated their attentions on the simplest turbulence
paradigm: turbulence that is statistically isotropic,
first in 3D, and then – following Fjortoft (1953) and
Kraichnan (1967) – on the special isotropic 2D case.
While Charney did extend Kraichnan’s 2D theory to
the atmosphere in his seminal paper “Geostrophic
turbulence” (1971), meteorologists had already begun
focusing on numerical modelling. By the end of the
1970s, there had thus developed a wide divergence
between, on the one hand, the turbulence community
with its focus on statistical closures and statistical
models of intermittency (especially cascades) and,
on the other hand, the meteorology community with
its focus on practical forecasting and which treated
turbulence primarily as a subgrid parametrization
problem.

1.1.2 Which chaos for geophysics, for
atmospheric science: deterministic or
stochastic?
The divergence between statistical and deterministic
approaches was brought into sharp relief thanks to
advances in the study of nonlinear systems with few
degrees of freedom. The new science of “deterministic
chaos” can be traced back to the pioneering paper
“Deterministic nonperiodic flow” (Lorenz, 1963)
(and has antecedents in Poincaré, 1892). Lorenz’s
1963 paper caused excitement by showing that three
degrees of freedom were sufficient to generate chaotic
(random-like) behaviour in a purely deterministic
system. At the time, it was widely believed (following
Landau, 1944) that on the contrary, random-like
behaviour was a consequence of a very large number
of degrees of freedom, so that as the nonlinearity
increased (e.g. the Reynolds number) a fluid became
fully turbulent only after successively going through a
very large (even infinite) number of instabilities. By
showing that as few as three degrees of freedom were
necessary for chaotic behaviour, Lorenz’s paper
opened the door to the possibility that turbulence
could have a relatively low-dimensional “strange
attractor” so that effectively only a few degrees of
freedom might matter. However, Lorenz’s observa-
tion did not immediately lead to practical applications

because theorists can readily invent nonlinear models,
and at the same time it appeared that each model
would require its own in-depth study in order to
understand its behaviour. The problem of apparent
lack of commonality in different nonlinear systems
is the now familiar problem of “universality” which
Fischer, Kadanoff and Wilson were only then success-
fully understanding and exploiting in the physics of
critical phenomena; we shall revisit universality later
in this book (Chapter 3). It is therefore not surprising
that the turning point for deterministic chaos was
precisely the discovery of “metric” (i.e. quantitative)
“universality” by Grossman and Thomae (1977) and
Feigenbaum (1978): the famous Feigenbaum constant
in period doubling maps. Soon, with the help of
theorems such as the extension of the Whitney
embedding theorem (Whitney, 1936) and the prac-
tical “Grassberger–Procaccia algorithm” (Grassberger
and Procaccia, 1983a, 1983b), all manner of time series
were subjected to nonlinear analysis in the hope of
“reconstructing the attractor” and of determining its
dimension, which was interpreted as an upper bound
on the number of degrees of freedom needed to
reproduce the system’s behaviour. In fact – as argued
by Schertzer et al. (2002), Schertzer and Lovejoy
(2003) – the mathematics do not support such a
statement: they showed that indeed a stochastic cascade
process may yield a finite correlation dimension,
whereas the process itself has an infinite dimension!
They therefore raised the question “which chaos?” For
climate models essentially the same question was
asked by Lorenz (1975), and more recently Palmer
(2012) has strongly defended stochastic approaches.

Other developments in the 1980s helped to trans-
form the “deterministic chaos revolution” into a more
general “nonlinear revolution.” Of particular import-
ance for this book was the idea that many geosystems
were fractal (scale invariant) (Mandelbrot, 1977,
1983) and later, that they commonly displayed “self-
organized criticality” (SOC) (Bak et al., 1987; Bak,
1996), implying that many real-world systems could
be “avalanche-like.” Indeed, SOC is so extreme that
even “typical” structures are determined by extreme
events (see Chapter 5 for the connection between
SOC and turbulent cascades).

The success of the apparently opposed paradigms
of deterministic chaos and (stochastic) fractal systems
thus sharply posed the question “which chaos for
atmospheric science: deterministic or stochastic?”
The question was not the philosophical one of
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whether or not the world is deterministic or stochas-
tic, but rather whether deterministic or stochastic
models are the most fruitful: which is the closest to
reality (Lovejoy and Schertzer, 1998)? The answer
to this question essentially depends on the number
of degrees of freedom that are important: since
stochastic systems are usually defined on infinite
dimensional probability spaces they are good approx-
imations to systems with large numbers of degrees of
freedom. As applied to the atmosphere, the classical
estimate of that number is essentially the number of
dissipation scale fluid elements in the atmosphere,
roughly 1027–1030 (see Chapter 2 for this estimate).
However, at any given moment clearly many of these
degrees of freedom are inactive, and indeed we shall
see that multifractals (via the codimension function
c(g), Chapter 5) provide a precise estimate of the
fraction of those at any given level of activity and at
any space-time scale.

1.2 The Golden Age, revolution
resolution and paradox: an up-to-date
empirical tour of atmospheric variability
1.2.1 The basic form of the emergent
laws and spectral analysis
Without further mathematical or physical restrictions,
the high number of degrees of freedom paradigm of
stochastic chaos is too general to be practical. But with
the help of a scale-invariant symmetry such that in some
generalized sense the dynamics repeat scale after scale, it
becomes tractable and even seductive. It turns out that
the equations of the atmosphere are indeed formally
scale-invariant (Chapter 2), and even fields for which no
theoretically “clean” equations exist (such as for precipi-
tation) still apparently respect such scale symmetries.
However, even if the equations respect a scaling sym-
metry, the solutions (i.e. the real atmospheric motions)
would not be scaling were it not for the scale invariance
of the relevant boundary conditions.

We have briefly mentioned the Kolmogorov law as
being an example of an emergent law. Indeed, all the
emergent laws discussed in this book are of the form:

Fluctuations � ðturbulent fluxÞa � ðscaleÞH ð1:1Þ

The Kolmogorov law mentioned in the previous
section is recovered as a special case if the velocity

difference Dv across a fluid structure of a given scale
(L) is used for the fluctuations and we take the scaling
exponent H ¼ 1/3 and the turbulent flux is e and
a ¼ 1/3. The book is structured around a series of
generalizations of this basic equation. For example,
rather than considering smooth or weakly varying
(for example quasi-Gaussian) fluxes, we show in
Chapters 3 and 5 how to treat wildly variable fluxes
that are the results of multiplicative (and multifractal)
cascades (this involves interpreting the equality in
Eqn. (1.1) in the sense of random variables). Then
in Chapters 6 and 7 we generalize the notion of
“scale” to include strong anisotropy – needed in
particular for handling atmospheric stratification
(“generalized scale invariance”). In Chapters 8 and 9
this is further generalized from anisotropic space to
anisotropic space-time (including causality). Finally
in Chapter 10 we show how the long-time behav-
iours of space-time cascades involve “dimensional
transitions” and low-frequency weather fluctuations
with H < 0. According to Eqn. (1.1), since the mean
of the turbulent flux is independent of scale this
“macroweather” regime is characterized by mean
fluctuations that decrease with scale. This contrasts
with the higher-frequency “weather” regime in which
typically H> 0 so that, on the contrary, mean weather
fluctuations increasewith scale. Box 1.1 (below) discusses
the typical types of variability associated with different
H values.

We now proceed to give an empirical tour of some
of the fields relevant either directly or indirectly to
atmospheric dynamics. This overview is not exhaust-
ive, and it partly reflects the availability of relevant
analyses and partly the significance of the fields in
question. Our aim is to exploit the current “golden
age” of geophysical observations so as to demonstrate
as simply as possible the ubiquity ofwide-range scaling –
even up to planetary scales – and hence the fundamental
relevance of scaling symmetries for understanding the
atmosphere. However, before setting out to empirically
test Eqn. (1.1) on atmospheric fields, a word about
fluctuations. Often, the definition of a fluctuation as
simply a difference is adequate (strictly speaking when
0<H< 1), but sometimes other definitions are needed.
Indeed, there has arisen an entire field – wavelets –
centred essentially around systematic ways of defining
and handling fluctuations. For most of the following,
thinking of fluctuations as differences is adequate,
but some mathematical formalism is developed in
Section 5.5, and as a practical matter, differences are
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not adequate in Chapter 10, where we treat
macroweather which has H < 0 and requires other
definitions of fluctuations (we recommend the simple
Haar fluctuation, but others are possible).

In the following scaling overview, it will therefore
be convenient to use the Fourier (spectral) domain
version of Eqn. (1.1), which avoids these technical
issues. In Fourier space, Eqn. (1.1) reads:

Varianceobservables
wavenumber

� �
¼ Variancefluxa

wavenumber

� �
ðwavenumberÞ�2H

ð1:2Þ

Consider a random field f(r) where r is a position vector.
Its “variance/wavenumber” or “spectral density” E(k) is
the total contribution to the variance of the process due
to structures with wavenumber between k and k þ dk,
i.e. due to structures of size l ¼ 2p/k where l is the
corresponding spatial scale and k ¼ jkj (the modulus
of the wavevector); we postpone a more formal defin-
ition to Chapter 2. The spectral density thus satisfies:

h f ð�rÞ2i ¼
ð1

0

EðkÞdk ð1:3Þ

where h f ð�rÞ2i is the total variance (assumed to be
independent of position; the angular brackets “<·>”
indicate statistical averaging).

In the following examples we demonstrate the
ubiquity of power law spectra:

EðkÞ � k�b ð1:4Þ

If we now consider the real space (isotropic) reduction
in scale by factor l we obtain:�r ! l�1

�r corresponding
to a “blow up” in wavenumbers: k ! lk; power law
spectra E(k) (Eqn. (1.4)) maintain their form under this
transformation: E ! l�bE so that E is “scaling” and
the (absolute) “spectral slope” β is “scale-invariant.” If
empirically we find E of the form Eqn. (1.4), we take this
as evidence for the scaling of the field f. For themoment,
we consider only scaling and scale invariance under
such conventional isotropic scale changes; in Chapter
6 we extend this to anisotropic scale changes.

1.2.2 Atmospheric data in a Golden Age
As little as 25 years ago, few atmospheric datasets
spanned more than two orders of magnitude in scale;

yet they were challenging even to visualize. Global
models had even lower resolutions, yet required
heroic computer efforts. The atmosphere was seen
through a low-resolution lens. Today, in-situ and
remote data routinely span scale ratios of 103–104

in space and/or time scales, and operational models
are not far behind. We are now beginning to per-
ceive the true complexity of atmospheric fields
which span ratios of over 1010 in spatial scales (the
planet scale to the dissipation scale). One of the
difficulties in establishing the statistical properties
of atmospheric fields is that it is impossible to esti-
mate spatial fields without making important
assumptions about their statistical properties. We
now survey the main data types, indicating some of
their limitations, and briefly discuss the various rele-
vant data sources.

In-situ networks
In-situ measurements have the advantage of directly
measuring the quantities of greatest interest, the vari-
ables of state: pressure, temperature, wind, humidity
etc. However, at the outset, these fields are rarely
sampled on uniform grids; more typically they are
sampled on sparse fractal networks (see Fig. 3.6a for
an example). In addition, standard geostatistical tech-
niques such as Kriging require various regularity and
uniformity assumptions which are unlikely to be sat-
isfied by the data (as we shall see, the latter are more
accurately densities of measures which are singular
with respect to the usual Lebesgue measures). This
means that the results will depend in power law ways
on their resolutions.

At first sight, an in-situ measurement might appear
to be a “point” measurement, but this is misleading
since while their spatial extents may be tiny compared
to the analysis grids, what is relevant is rather their
space-time resolutions, and in practice this is never
point-like – nontrivial amounts of either spatial or
temporal averaging are required. The main exceptions
would be measurements simultaneously near 10 kHz
in time and at 0.1–1 mm in space, which would allow
one to approach the typical viscous dissipation (and
hence true homogeneity) space and time scales.

In-situ measurements: aircraft, sondes
In-situ measurement techniques such as aircraft
(horizontal) or sondes (vertical) have other prob-
lems, some of which we detail in later chapters.
Aircraft data are particularly important. In many
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cases they provide our only direct measurements of
the horizontal statistics. Unfortunately aircraft don’t
fly in perfectly flat straight trajectories; due to the
very turbulence that they attempt to measure, the
trajectories turn out to be more nearly fractal and –
this turns out to be even more important – their
average slopes with respect to the vertical are typic-
ally nonnegligible. If one assumes that the turbulence
is isotropic (or at least has the same statistical expo-
nents in the horizontal as in the vertical), then this
issue is of little importance: if one measures a scaling
exponent, then by the isotropy assumption it is unique
so that the exponent estimate is assumed to be correct.
However, it turns out that if the turbulence is strongly
anisotropic, with different exponents in the horizontal
and vertical directions, then (as we show in Chapter 6)
the interpretation of the measurements is fraught with
difficulties and one will generally observe a break in the
spectrum/scaling. For the smaller scales the statistics
are dominated by the horizontal fluctuations, while at
the larger scales they are dominated by the vertical
fluctuations. In Chapter 2 we see that naive use of
isotropy assumptions has commonly led researchers
to misinterpret this spurious transition from horizon-
tal to vertical scaling as a signature of a real physical
transition from an isotropic 3D turbulence regime at
small scales to an isotropic 2D turbulence regime at
large scales.

Remote sensing
One way of overcoming the problems of in-situ sam-
pling is to use remotely sensed radiances. There is a
long history of using radiances in “inversion
algorithms” in an attempt to directly estimate atmos-
pheric parameters (Rodgers, 1976). However, to be
useful in numerical weather models, the data extracted
from the inversions must generally be of high accur-
acy. This is because models typically require gradients
of wind, temperature, humidity etc., and taking the
gradients greatly amplifies errors. The fundamental
problem is that classical inversion techniques aim to
estimate the traditional numerical model inputs (vari-
ables of state) and they rely on unrealistic subsensor
resolution homogeneity assumptions to relate these
parameters to the measured radiances. Since the
heterogeneity is generally very strong (scaling, multi-
fractal) there are systematic power law dependencies
on the resolution of the measurements (a consequence
of the cascades structure, Section 5.3). Therefore,

new resolution-independent algorithms are needed
(Lovejoy et al., 2001).

Reanalyses
Having recognized that in-situ measurements
have frequent “holes,” and that the inversion of remote
measurements is error-prone, one can attempt to com-
bine all the available data as well as the theoretical
constraints implied by the governing atmospheric
equations to obtain an “optimum estimate” of the state
of the atmosphere; these are the meteorological “reana-
lyses.” Reanalyses are effectively attempts to provide the
most accurate set of fields consistent with the data and
with the numerical dynamical models, themselves
believed to embody the relevant physical laws. The data
are integrated in space with the help of a variational
algorithm either at regular intervals (“3D var”); or – in
the more sophisticated “4D var” – both in space and
time (see e.g. Kalnay, 2003). In these frameworks,
remotely sensed data can also be used, but in a forward
rather than an inverse model: one simply calculates
theoretically the radiances from the guess fields of the
traditional atmospheric variables. Once all the guess
fields are calculated at the observation times and places,
then the two are combined by weighting each guess and
measurement pair according to pre-established uncer-
tainties. While these sophisticated data assimilation
techniques are elegant, one should not forget that they
are predicated on various smoothness and regularity
assumptions which are in fact not satisfied because of
the very singular scaling effects discussed in this book.
These resolution effects introduce nonnegligible uncer-
tainties and possible biases on the reanalyzed fields.

1.2.3 The horizontal scaling
of atmospheric fields
We start our tour by considering global-scale satellite
radiances, since they are quite straightforward to inter-
pret. Fig. 1.2 shows the “along track” 1D spectra from
the Visible Infrared Sounder (VIRS) instrument of the
Tropical Rainfall Measurement Mission (TRMM) at
wavelengths of 0.630, 1.60, 3.75, 10.8, 12.0 mm, i.e. for
visible, near infrared and (the last two) thermal infra-
red. Each channel was recorded at a nominal reso-
lution of 2.2 km and was scanned over a “swath” 780
km wide, and � 1000 orbits were used in the analysis.
The scaling apparently continues from the largest
scales (20 000 km) to the smallest available. At scales
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below about 10 km, there is a more rapid fall-off but
this is likely to be an artefact of the instrument, whose
sensitivity starts to drop off at scales a little larger than
the nominal resolution. The scaling observed in the
visible channel (1) and the thermal IR channels (4, 5)
are particularly significant since they are representa-
tive respectively of the energy-containing short- and
long-wave radiation fields which dominate the earth’s
energy budget. One sees that thanks to the effects of
cloud modulation, the radiances are very accurately
scaling. This result is incompatible with classical
turbulence cascade models which assume well-defined
energy flux sources and sinks with a source and sink-
free “inertial” range in between (see Section 2.6.6).

Also of interest is the fact that the spectral slope β is
close (but a little lower) than the value β¼ 5/3 expected
for passive scalars in the classical Corrsin–Obukhov
theory discussed in Chapter 2. This result is consistent
with theoretical studies of radiative transfer through
passive scalar clouds (Watson et al., 2009; Lovejoy
et al., 2009a). Although we cannot directly interpret
the radiance spectra in terms of the wind, humidity or
other atmospheric fields, they are strongly nonlinearly
coupled to these fields so that the scaling of the radi-
ances are prima facie evidence for the scaling of the
variables of state. To put it the other way around: if the
dynamics were such that it predominantly produced
structures at a characteristic scale L, then it is hard to
see how this scale would not be clearly visible in the
associated cloud radiances.

To bolster this interpretation, we can also consider
the corresponding images at microwave channels
(corresponding to black body thermal emission with
wavelengths in the range 0.351–3.0 cm) (Fig. 1.3). In
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Fig. 1.2 Spectra from � 1000 orbits of the Visible Infrared
Sounder (VIRS) instrument on the TRMM satellite channels 1–5
(at wavelengths of 0.630, 1.60, 3.75, 10.8, 12.0 μm from top to
bottom, displaced in the vertical for clarity). The data are for the
period January through March 1998 and have nominal resolutions
of 2.2 km. The straight regression lines have spectral exponents
β ¼ 1.35, 1.29, 1.41, 1.47, 1.49 respectively, close to the value
β ¼ 1.53 corresponding to the spectrum of passive scalars
(¼ 5/3 minus intermittency corrections: see Chapter 3). The units are
such that k ¼ 1 is the wavenumber corresponding to the size of the
planet (20 000 km)–1. Channels 1, 2 are reflected solar radiation so
that only the 15 600 km sections of orbits with maximum solar
radiation were used. The high-wavenumber fall-off is due to the
finite resolution of the instruments. To understand the figure we
note that the VIRS bands 1, 2 are essentially reflected sunlight
(with very little emission and absorption), so that for thin clouds the
signal comes from variations in the surface albedo (influenced by
the topography and other factors), while for thicker clouds it
comes from nearer the cloud top via (multiple) geometric and Mie
scattering. As the wavelength increases into the thermal IR, the
radiances are increasingly due to black body emission and
absorption with very little multiple scattering. Whereas at the visible
wavelengths we would expect the signal to be influenced by the
statistics of cloud liquid water density, for the thermal IR
wavelengths it would rather be dominated by the statistics of
temperature variations – themselves also close to those of passive
scalars. Adapted from Lovejoy et al. (2008).
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Fig. 1.3 Spectra of radiances from the TRMMMicrowave Imager (TMI)
from the TRMM satellite, � 1000 orbits from January through March
1998. From bottom to top, the data are from channels 1, 3, 5, 6, 8
(vertical polarizations, 2.8, 1.55, 1.41, 0.81, 0.351 cm) with spectral
exponents β¼ 1.68, 1.65, 1.75, 1.65, 1.46 respectively at resolutions 117,
65, 26, 26, 13 km (hence the highwavenumber cutoffs), each separated
by one order of magnitude for clarity. To understand these thermal
microwave results, recall that they have contributions from surface
reflectance, water vapour and cloud and rain. Since the particles are
smaller than thewavelengths this is the Rayleigh scattering regime and
as the wavelength increases from 3.5 mm to 2.8 cm the emissivity/
absorbtivity due to cloud and precipitation decreases so thatmore and
more of the signal originates in the lower reaches of clouds and
underlying surface. Also, the ratio of scattering to absorption increases
with increasingwavelength so that at 2.8 cmmultiple scattering can be
important in raining regions. The overall result is that the horizontal
gradients –which will influence the spectrum –will increasingly reflect
large internal liquid water gradients.
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order to extend these results to smaller scales, we can
use either finer-resolution satellites such MODIS,
SPOT or LANDSAT, or we can turn to ground-based
photography (Figs. 1.4a, 1.4b). Again, we see no evi-
dence for a scale break. Interestingly, the average expo-
nent β � 2 indicates that the downward radiances
captured here (with near-uniform background sky)
are smoother (larger β) than for the upward radiances
analysed in Figs. 1.2 and 1.3 (the variability falls off
more rapidly with wavenumber since β is larger).

The remotely sensed data analyzed above give
strong direct evidence of the wide-range scaling of
the radiances and hence indirectly for the usual
meteorological variables of state. For more direct
analyses, we therefore turn our attention to reana-
lyses. Fig. 1.5a shows representative reanalyses taken
from the European Medium Range Weather Fore-
casting Centre (ECMWF) “interim” reanalysis

products, the zonal and meridional wind, the geopo-
tential height, the specific humidity, the temperature,
vertical wind. The ECMWF interim reanalyses are
the successor products to the ECMWF 40-year
reanalysis (ERA40) and are publicly available at
1.5� resolution in the horizontal and at 37 constant
pressure surfaces (every 25 mb in the lower atmos-
phere). At the time of writing, the fields were avail-
able every 6 hours from 1989 to the present. The
data in Fig. 1.5a were taken from the 700 mb level.
The 700 mb level was chosen since it is near the
data-rich surface level, but suffers little from the
extrapolations necessary to obtain global 1000 mb
fields (which is especially problematic in mountain-
ous regions); it gives a better representation of the
“free” atmosphere (see Section 4.2.2 for more infor-
mation and analyses, and Berrisford et al., 2009, for
complete reanalysis details).
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Fig. 1.4 (a) A sample of cloud pictures taken looking
upward from the ground near midday, Montreal,
Quebec. To get a useful resolution of several thousand
pixels on a side, the standard 8 bit imagery of
commercial digital cameras is not adequate. In the
figure it was necessary to scan black and white
negatives (with effectively 13–14 bit dynamical range);
the figure shows typical results in the latter case using
large-format (60 � 60 mm) negatives to resolutions (for
low-lying clouds) down to 50 cm or so. Reproduced
from Sachs et al. (2002). (b) The spectra of the 19 (of 38)
highest-resolution clouds analyzed in with a spectral
slope β � 2; see Fig. 1.4a for 12 of the samples.
Reproduced from Sachs et al. (2002).
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The data analyzed were daily data for the year
2006 with only the band between � 45� latitude
used (with a cylindrical projection). The reason for
this choice was twofold: first, this region is fairly
data-rich compared to the more extreme latitudes;
second, it allows us to conveniently compare the
statistics in the east–west and north–south direc-
tions in order to study the statistical anisotropies
between the two. In addition, the east–west direc-
tion was similarly broken up into two sections, one

from 0� to 180� and the other from 180� to 0�

longitude. For technical reasons (discussed in Chap-
ter 6), the spectrum was estimated by performing
integrals around ellipses with aspect ratios 2 : 1
(EW : NS). The wavenumber scale in Fig. 1.5b
indicates the east–west scale; a full discussion of
the anisotropy is postponed to Chapter 6.

From the figure we can see that the scaling is
convincing (with generally only small deviations at
the largest scales, � 5000 km), although for the
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Fig. 1.5 (a) Comparison of various reanalysis fields for January 1
2006, 0Z, ECMWF interim. This shows the specific humidity (top left),
temperature (top right), zonal, meridional wind (middle left and right),
and vertical wind and geopotential height (bottom left and right).
All fields are at 700 mb. Reproduced from Lovejoy and Schertzer
(2011). (b) Comparisons of the spectra of different atmospheric fields
from the ECMWF interim reanalysis. Top is the geopotential (β¼ 3.35),
second from the top is the zonal wind (β¼ 2.40), third from the top is the
meridional wind (β ¼ 2.40), fourth from the top is the temperature
(β¼ 2.40), fifth from the top is the vertical wind (β¼ 0.4), at the bottom is
the specific humidity (β¼ 1.6). All are at 700 mb and between � 45�
latitude, every day in 2006 at 0GMT. The scale at the far left corresponds to
20 000 km in the east–west direction, at the far right to 660 km. Note that
for these 2D spectra, Gaussian white noise would yield β ¼ –1 (i.e. a
positive slope ¼ þ1). Reproduced from Lovejoy and Schertzer (2011).
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geopotential the deviations begin nearer to 2500 km.
In spite of this generally excellent scaling, the values
of the exponents are not “classical” in the sense that
they do not correspond to the values predicted by
any accepted turbulence theory. An exception is the
value β � 1.6 for the humidity, which is only a bit
bigger than the Corrsin–Obukhov passive scalar
value 5/3 (minus intermittency corrections, which
for this are of the order of 0.15; see Chapter 3),
although in any case classical (isotropic) turbulence
theory would certainly not be expected to apply at
these scales. We could also mention that classically
the atmosphere is “thin” at these scales (since the
horizontal resolution � 166 km is much greater
than the exponential “scale height” � 10 km), and
hence according to the classical isotropic 3D/2D
theory one would expect 2D isotropic turbulence
to apply. For the horizontal wind field this leads
to the predictions β ¼ 3 (a downscale enstrophy
cascade) and β ¼ 5/3 (an upscale energy cascade;
see Chapter 2). In comparison, we see that the
actual value for the zonal wind (β ¼ 2.35) is in
between the two. In Chapter 6 we argue that this
is an artefact of using gradually sloping isobars
(rather than isoheights) in a strongly anisotropic
(stratified) turbulence. These spectra already cau-
tion us that in spite of the intentions of their cre-
ators, the reanalyses should not be mistaken for
real-world fields. Indeed, it is only by comparing
the reanalysis statistics (especially the scaling expo-
nents) with those from other (e.g. aircraft) sources
that they can be validated through scale-by-scale
statistical comparisons.

Satellite imagery and reanalyses are the only
sources of gridded global scale fields, and we have
mentioned some of the limitations of each. We there-
fore now turn our attention to in-situ aircraft
data. First consider the 12 m resolution data from
an experimental campaign over the Sea of China
(Figs. 1.6a, 1.6b). We see that the scaling for both
the temperature and horizontal wind is excellent. In
both cases, the value β � 1.7 (near the Kolmogorov
value 5/3) is reasonable, although in the case of
the temperature we have added reference slopes with
β ¼ 1.9, which seems closer to those of the more
recent data analyzed in Fig. 1.6c over the larger range
560 m to 1140 km. Once again, the scaling is excellent.
We have deliberately postponed discussion of the
larger-scale wind field to Chapters 2 and 6, since
somewhere between � 30 and 200 km (i.e. a bit
beyond the range of Fig. 1.6b) it displays what is
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Fig. 1.6 (a) Aircraft temperature spectra. Grey slopes are 1.9,
black 1.7. The bottom three curves are averages of 10 samples and
each curve is taken at roughly a one-year interval; the top curve is the
overall ensemble average. The curves are displaced in the vertical for
clarity. Adapted fromChigirinskaya et al. (1994). (b) The same as Fig. 1.6a
but for the horizontal wind spectrum; slopes of 1.68 are indicated.
Adapted from Chigirinskaya et al. (1994). (c) Aircraft spectra of
temperature (bottom), humidity (middle), log potential temperature
(top); reference lines β¼ 2. These are averages over 24 isobaric aircraft
“legs” near 200 mb taken over the Pacific Ocean during the Pacific
Winter Storms 2004 experiment; the resolution was 280 m; Nyquist
wavenumber¼ (560 m)�1. Adapted from Lovejoy et al. (2010).
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