

Observational Molecular Astronomy

Exploring the Universe Using Molecular Line Emissions

Molecular line emissions offer researchers exciting opportunities to learn about the evolutionary state of the Milky Way and distant galaxies. This text provides a detailed introduction to molecular astrophysics and an array of useful techniques for observing astronomical phenomena at millimetre and submillimetre wavelengths. After discussing the theoretical underpinnings of molecular observation, the authors catalogue suitable molecular tracers for many types of astronomical regions in local and distant parts of the Universe, including cold gas reservoirs primed for the formation of new stars, regions of active star formation, giant photon-dominated regions, and near active galactic nuclei. Further chapters demonstrate how to obtain useful astronomical information from raw telescope data while providing recommendations for appropriate observing strategies. Replete with maps, charts, and references for further reading, this handbook will suit research astronomers and graduate students interested in broadening their skills to take advantage of the new facilities now coming online.

DAVID A. WILLIAMS is the Emeritus Perren Professor of Astronomy at University College London. A former president of the Royal Astronomical Society (2000–2002) and recipient of the RAS's Gold Medal (2009), he has led research groups in Manchester and London and has co-authored a number of texts on astrophysics and astrochemistry. His research interests centre on astrochemistry and using molecular line emissions to describe and understand the evolution of astronomical regions.

SERENA VITI is a professor of astrophysics at University College London. She began her career working on the spectroscopy of very cool stars but soon became interested in star formation and astrochemistry. She is the secretary of the European Astronomical Society and routinely serves on national and international scientific panels and committees.

Cambridge Observing Handbooks for Research Astronomers

Today's professional astronomers must be able to adapt to use telescopes and interpret data at all wavelengths. This series is designed to provide them with a collection of concise, self-contained handbooks, which cover the basic principles peculiar to observing in a particular spectral region, or to using a special technique or type of instrument. The books can be used as an introduction to the subject and as a handy reference for use at the telescope or in the office.

Series Editors

Professor Richard Ellis, Department of Astronomy, California Institute of Technology

Professor Steve Kahn, Department of Physics, Stanford University
Professor George Rieke, Steward Observatory, University of Arizona, Tucson
Dr. Peter B. Stetson, Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, British Columbia

Books currently available in this series:

- 1. Handbook of Infrared Astronomy
 I. S. Glass
- 4. *Handbook of Pulsar Astronomy* D. R. Lorimer and M. Kramer
- 5. *Handbook of CCD Astronomy*, Second Edition Steve B. Howell
- 6. *Introduction to Astronomical Photometry*, Second Edition Edwin Budding and Osman Demircan
- 7. *Handbook of X-ray Astronomy*Edited by Keith Arnaud, Randall Smith, and Aneta Siemiginowska
- 8. *Practical Statistics for Astronomers*, Second Edition J. V. Wall and C. R. Jenkins
- 9. *Introduction to Astronomical Spectroscopy* Immo Appenzeller
- 10. Observational Molecular Astronomy David A. Williams and Serena Viti

Observational Molecular Astronomy

Exploring the Universe Using Molecular Line Emissions

DAVID A. WILLIAMS *University College London*

SERENA VITI University College London

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107018167

© David A. Williams and Serena Viti 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Williams, D. A. (David Arnold), 1937– author.

Observational molecular astronomy: exploring the universe using molecular line emissions / David A. Williams, University College London, Serena Viti, University College London.

pages cm. – (Cambridge observing handbooks for research astronomers ; 10) Includes bibliographical references and indexes.

ISBN 978-1-107-01816-7 (hard cover : alk. paper)

 Molecular astrophysics. I. Viti, Serena, author. II. Title. III. Series: Cambridge observing handbooks for research astronomers; 10.

> QB462.6.W55 2013 523′.02–dc23 2013013585

ISBN 978-1-107-01816-7 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List o	of Illustrations	page xi
	List o	of Tables	xiii
	Prefa	ice	xv
1	Intro	oduction	1
	1.1	Why Are Molecules Important in Astronomy?	1
	1.2	A Very Brief History of the Discovery of Molecules	
		in Space	3
	1.3	Gas and Dust	9
	1.4	What's in This Book	14
	1.5	Further Reading	15
2	Spec	tra and Excitation of Interstellar Molecules	16
	2.1	Molecular Spectroscopy	16
	2.2	Radiative Transport in the Interstellar Medium	20
	2.3	Determining the Level Populations	21
	2.4	Further Reading	23
3	Astro	ochemical Processes	24
	3.1	What Drives Cosmic Chemistry?	24
	3.2	Chemistry Initiated by Electromagnetic Radiation	25
	3.3	Chemistry Initiated by Cosmic Rays	30
	3.4	Chemistry and Dust	37
	3.5	Chemistry Initiated by Gas Dynamics	42
	3.6	Isotopes in Interstellar Chemistry	46
	3.7	Conclusions	48
	3.8	Further Reading	48

viii Contents

4	Phys	sical Processes in Different Astronomical Environments	50
	4.1	Varying the Intensity of Electromagnetic Radiation	51
	4.2	Varying the Cosmic Ray Ionisation Rate	53
	4.3	Varying the Dust: Gas Ratio and the Metallicity	54
	4.4	Varying Shock Speeds in Interstellar Gas	56
	4.5	Timescales	57
	4.6	Conclusions	58
	4.7	Further Reading	61
5	Mole	ecular Tracers in the Milky Way Galaxy	62
	5.1	Molecular Clouds	62
	5.2	Star-Forming Regions and Their Outflows	69
	5.3	Formation of Low-Mass Stars	80
		Formation of High-Mass Stars	85
		Circumstellar Material	88
	5.6	The Galactic Centre	95
	5.7	Further Reading	98
6	Mole	ecular Tracers in External Galaxies	99
	6.1	Multicomponent Galaxies	101
	6.2	Characterisation of Galaxies via Molecules	111
	6.3	Recent Molecular Line Studies of Galaxies	115
	6.4	Star Formation and the Initial Mass Function	123
	6.5	Molecules in the Perseus Cluster of Galaxies	125
		Conclusions	126
	6.7	Further Reading	127
7	The	Early Universe and the First Galaxies	128
	7.1	The Pregalactic Era	128
		Formation of the First Stars	132
		Formation of the First Galaxies	134
	7.4	Further Reading	140
8	Reci	pes for Molecular Submillimetre Astronomy	141
		The Antenna Temperature	142
		Local Thermodynamic Equilibrium	143
	8.3	Non-LTE	149
	8.4	Further Reading	151

	Contents	ix
9	Chemical and Radiative Transfer Models	152
	9.1 Chemical Modelling	152
	9.2 Radiative Transfer Modelling	158
	9.3 Further Reading	164
10	Observations: Which Molecule, Which Transition?	165
	10.1 Further Reading	167
	Appendix: Acronyms	169
	Index	171

List of Illustrations

1.1	Optical and CO image of M83.	page 2
1.2	UV spectrum of H ₂ .	4
1.3	Complex molecules in star-forming regions.	5
1.4	Interstellar extinction curves.	12
1.5	The Horsehead Nebula in the visible and infrared.	13
3.1	The dark cloud Barnard 68 and the stellar jet of	
	Herbig-Haro 49/50.	26
3.2	A schematic diagram of a PDR.	29
3.3	Comparison of PDR and XDR chemistries.	31
3.4	Comparison of UV- and cosmic ray-driven chemistries.	35
3.5	CO depletion observed in a molecular cloud.	41
3.6	J- and C-type shocks.	44
4.1	PDR transition zones.	52
4.2	Chemistry dependence on the cosmic ray ionisation rate.	55
4.3	Timescales in molecular clouds.	59
5.1	The sensitivity of the X -factor to changes in the gas physical	
	conditions.	66
5.2	Contour maps of structure in the molecular cloud L673.	68
5.3	Herbig-Haro 111 in Orion.	71
5.4	Molecular emission near Herbig-Haro 2.	73
5.5	Outflow cones from B5 IRS1 in CO.	74
5.6	Molecular emissions from the L1157 outflow.	76
5.7	Molecular emission from the compact sources in Orion.	78
5.8	Molecular line profiles in Cep A East.	79
5.9	Computed circumstellar disk properties.	83
5.10	Emission contour from the hot core G29.96-0.02.	87
5.11	Schematic diagram of the environment near a carbon-rich	
	AGB star.	90

xii List of Illustrations

5.12	Image of the protoplanetary nebula CRL 618.	92
5.13	Infrared emission from the supernova SN 1987A.	95
5.14	Molecular emission from the Central Molecular Zone.	96
6.1	Optical image of M82 and CO contour maps.	102
6.2	Cloud temperature as a function of cosmic ray ionisation rates.	107
6.3	Image and CO contour map of the colliding galaxies Arp220.	121
6.4	Predicted antenna temperatures for several galaxy models.	124
6.5	Image of the Perseus Cluster.	125
6.6	Image of the galaxy NGC 1275.	126
7.1	Chemical species in the recombination era.	132
7.2	Sketch of the formation of the first galaxies.	135
7.3	Integrated infrared luminosity versus CO luminosity.	137
8.1	Rotational diagram for CO emission in L1157-B1.	144
9.1	Flow diagram of the molecular line radiative transfer problem.	162
9.2	Variation of the CS integrated line fluxes for the ultracompact	
	core (right-hand side) and the envelope (left-hand side).	163

List of Tables

1.1	List of detected molecular species	page 6
1.2	ISM components	9
1.3	Initial abundances	10
3.1	Observed ice composition	42
3.2	Examples of radical-radical reactions on grains	42
3.3	Fractionation in IRAS 16293-2422	46
3.4	Tracers of ISM drivers	48
4.1	Metallicity effects on the chemistry	56
4.2	Relevant timescales for interstellar processes	60
4.3	Sensitivity of chemical abundances	60
5.1	Classification of low-mass stars	70
5.2	Observational data for IRAS 16293–2422	81
5.3	Molecules in disks	85
5.4	Molecules in CRL618	93
6.1	Galaxy classification	101
6.2	Detected molecules in NGC253	103
6.3	HCN/HCO ⁺ and HCN/CO for three galaxies	104
6.4	X-factor for several galaxy types	110
6.5	Detectable molecules in galaxies	113
6.6	Detectable molecules in dense gas in external galaxies	115
6.7	Molecular comparison of the Milky Way with NGC253	
	and M82	118
7.1	Physical characteristics of the key stages in the history of	
	the Universe	130
7.2	Values of <i>X</i> -factors for several CO rotational transitions	138
10.1	Critical densities	166

xiii

Preface

This is a handbook for those astronomers who wish to use molecular line emissions as probes of astronomical sources. These sources may include molecular clouds and star-forming regions, circumstellar envelopes, and ejecta from evolved stars. Molecular lines are particularly useful in deconvolving complex emissions from distant unresolved galaxies.

This is not a textbook; it does not present detailed explanations and derivations. Textbook information can be found in the Further Reading sections at the end of each chapter. This handbook aims to provide a background of understanding so that the observer can begin to address the following questions:

- Why are different astronomical regions best traced in lines from different molecules?
- Which are the most suitable molecular tracers for studying the observer's selected sources?
- How does the observer convert raw telescope data into astrophysically useful information?
- How can the most complete physical description be extracted from the data?