
1.

Introduction to Modern
Fortran

Since the publication of the FORTRAN 77 standard in 1978, the Fortran
language has undergone a large number of revisions [61].1 The changes that
were introduced reflect both new insights in programming techniques and
new developments in computer hardware. From the very start, the language
has been designed with computing efficiency in mind. The latest standard
as of this writing, Fortran 2008, puts even more emphasis on this aspect by
introducing explicit support for parallel processing [71].

This first chapter gives an overview of the various standards that have appeared
after FORTRAN 77. There is no attempt to be complete or even to describe
all major features, as that would mean a whole book or even a series of books.
Consult Metcalf [63], [65] or Brainerd et al. [36] for a detailed description of
the standards.

1.1 The Flavor of Modern Fortran
The Fortran 90 standard introduced some very significant changes with respect
to the widespread FORTRAN 77 standard: free form source code, array opera-
tions, modules, and derived types to name a few. To give an impression of what
this means for the programmer, consider this simple problem: you have a file
with numbers, one per line (to keep it simple), and you want to determine the
distribution of these numbers to produce a simple histogram. In FORTRAN
77, a program that does this might look like the following:

*
* Produce a simple histogram
*

PROGRAM HIST

INTEGER MAXDATA
PARAMETER (MAXDATA = 1000)

1 Officially, Fortran 77 should be written as FORTRAN 77. Since the Fortran 90 standard, the name
is written in lowercase.

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01790-0 - Modern Fortran in Practice
Arjen Markus
Excerpt
More information

http://www.cambridge.org/9781107017900
http://www.cambridge.org
http://www.cambridge.org

2 MODERN FORTRAN IN PRACTICE

INTEGER NOBND
PARAMETER (NOBND = 9)
REAL BOUND(NOBND)

REAL DATA(MAXDATA)
INTEGER I, NODATA

DATA BOUND /0.1, 0.3, 1.0, 3.0, 10.0, 30.0,
& 100.0, 300.0, 1000.0/

OPEN(10, FILE = 'histogram.data',
STATUS = 'OLD', ERR = 900)

OPEN(20, FILE = 'histogram.out')

DO 110 I = 1,MAXDATA
READ(10, *, END = 120, ERR = 900) DATA(I)

110 CONTINUE
*
120 CONTINUE

CLOSE(10)
NODATA = I - 1

CALL PRHIST(DATA, NODATA, BOUND, NOBND)
STOP

*
* File not found, and other errors
*
900 CONTINUE

WRITE(*, *) 'File histogram.data could not be opened'
& 'or some reading error'

END

*
* Subroutine to print the histogram
*

SUBROUTINE PRHIST(DATA, NODATA, BOUND, NOBND)
REAL DATA(*), BOUND(*)
INTEGER NODATA, NOBND

INTEGER I, J, NOHIST

DO 120 I = 1,NOBND
NOHIST = 0
DO 110 J = 1,NODATA

IF (DATA(J) .LE. BOUND(I)) THEN
NOHIST = NOHIST + 1

ENDIF

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01790-0 - Modern Fortran in Practice
Arjen Markus
Excerpt
More information

http://www.cambridge.org/9781107017900
http://www.cambridge.org
http://www.cambridge.org

INTRODUCTION TO MODERN FORTRAN 3

110 CONTINUE

WRITE(20, '(F10.2,I10)') BOUND(I), NOHIST
120 CONTINUE

END

Since Fortran 90, this program can be rewritten in the so-called free form,
using various inquiry functions and array operations:

! Produce a simple histogram
!
program hist

implicit none

integer, parameter :: maxdata = 1000
integer, parameter :: nobnd = 9

real, dimension(maxdata) :: data
real, dimension(nobnd) :: &

bound = (/0.1, 0.3, 1.0, 3.0, 10.0, &
30.0, 100.0, 300.0, 1000.0/)

integer :: i, nodata, ierr

open(10, file = 'histogram.data', status = 'old', &
iostat = ierr)

if (ierr /= 0) then
write(*, *) 'file histogram.data could not be opened'
stop

endif

open(20, file = 'histogram.out')

do i = 1,size(data)
read(10, *, iostat = ierr) data(i)

if (ierr > 0) then
write(*, *) 'Error reading the data!'
stop

elseif (ierr < 0) then
exit ! Reached the end of the file

endif
enddo

close(10)
nodata = i - 1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01790-0 - Modern Fortran in Practice
Arjen Markus
Excerpt
More information

http://www.cambridge.org/9781107017900
http://www.cambridge.org
http://www.cambridge.org

4 MODERN FORTRAN IN PRACTICE

call print_history(data(1:nodata), bound)

contains

! subroutine to print the histogram
!
subroutine print_history(data, bound)

real, dimension(:), intent(in) :: data, bound

integer :: i

do i = 1,size(bound)
write(20, '(f10.2,i10)') &

bound(i), count(data <= bound(i))
enddo

end subroutine print_history

end program hist

The main differences are:
■ Fortran 90 and later allow the free form and lower-case program text,

though many FORTRAN 77 compilers did allow for this as well as an
extension.

■ The introduction of the statement implicit none causes the compiler to
check that all variables are actually declared with an explicit type, removing
a whole class of programming errors.

■ By using an internal routine (indicated by the contains statement), you
can ensure that the compiler checks the correctness of the actual arguments
so far as number and types are concerned.2

■ You have no more need for the infamous GOTO statement in this program,
therefore, it can be replaced by its more structured counterpart exit to
terminate the do loop.

■ You can use array sections (such as data(1:nodata)) to pass only that part
of the array data that is of interest, and the inquiry function size() allows
you to get the appropriate number of elements. This also means you can
remove the two arguments that indicate the sizes.

■ Finally, you have eliminated an entire do loop in the code by using the
standard function count() to determine the histogram data.

Note, however, that the first program is still completely valid as far as modern
Fortran standards are concerned. This is a very important aspect of Fortran. It
means that you can gradually introduce modern features, rather than rewrite
an entire program.

2 This is actually only one effect of internal routines – (see Section 1.2).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01790-0 - Modern Fortran in Practice
Arjen Markus
Excerpt
More information

http://www.cambridge.org/9781107017900
http://www.cambridge.org
http://www.cambridge.org

INTRODUCTION TO MODERN FORTRAN 5

1.2 Fortran 90
The Fortran 90 standard introduced a large number of features. The best
known are perhaps those involving array operations, but there are many more:
■ The implicit none statement requires the user to explicitly declare all

variables and it requires the compiler to check this. Using this feature means
typing errors are much less likely to inadvertently introduce new variables.

■ Modules, together with the public and private statements or attributes,
provide an effective means to partition the entire program into smaller units
that can only be accessed when explicitly stated in the source code. Modules
furthermore provide explicit interfaces. to the routines they contain, which
makes it possible for the compiler to perform all manner of checks and
optimizations.

Should this not be possible (such as when dealing with routines in a different
language), you can use interface blocks.

■ The main program but also subroutines and functions can contain so-called
internal routines. These routines have access to the variables of the contain-
ing routine but provide a new scope in which to define local variables. It is
an additional method for modularizing the code.

■ As modern computers allow a flexible memory management that was not
at all ubiquitous when the FORTRAN 77 standard was published, several
features of Fortran 90 relate to managing the memory:

– Recursive routines are now allowed, making it far easier to implement
recursive algorithms.

– Via the allocate and deallocate statements, programmers can adjust the
size of arrays to fit the problem at hand. Arrays whose size can be
adjusted come in two flavors: allocatable and pointer. The former offers
more opportunities for optimization, whereas the latter is much more
flexible.

– Besides explicit allocation, the programmer can also use automatic arrays
– arrays that get their size from the dummy arguments and that are
automatically created and destroyed upon entry or exit of a subroutine
or function.

■ Array operations are an important aspect of the Fortran 90 standard, as
they allow a concise style of programming and make the optimization task
much simpler for the compiler. These operations are supported in arithmetic
expressions but also via a collection of generic standard functions.

Not only can you manipulate an entire array, but you can also select a part,
defined by the start, stop, and stride in any dimension.

User-defined functions can also return arrays as a result, adding to the
flexibility and usefulness of array operations.

■ Besides the obsolete fixed form that characterized Fortran from the start,
there is the free form, where columns 1 to 6 no longer have a special meaning.
This makes source code look much more modern.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01790-0 - Modern Fortran in Practice
Arjen Markus
Excerpt
More information

http://www.cambridge.org/9781107017900
http://www.cambridge.org
http://www.cambridge.org

6 MODERN FORTRAN IN PRACTICE

■ Arrays of values can be constructed on the fly, via so-called array construc-
tors. This is a powerful mechanism that can be put to good use to fill an
array with values.

■ Just as in most other modern languages, Fortran allows the definition of
new data structures. The basic mechanism is that of derived types. Derived
types consist of components of different types – either basic types, like
integers or reals, or other derived types. You can use them in much the
same way as the basic types – pass them to subroutines, use them as return
values, or create arrays of such types.
Moreover, you can use derived types to create linked lists, trees, and other
well-known abstract data types.

■ Overloading of routines and operations, such as addition and subtraction,
makes it possible to extend the language with new full-blown types. The
idea is that you define generic names for specific routines or define +, -,
and so forth for numerical types that are not defined by the standard (for
instance, rational numbers).
It is in fact possible to define your own operations. A simple exam-
ple: suppose your program deals with planar geometrical objects, then
it may make sense to define an intersection operation on two such
objects, object_a .intersects. object_b, to replace the call to a function
intersect_objects(object_a, object_b).

■ Functions and subroutines can now have optional arguments, where the
function present() determines if such an argument is present or not. You
can also call functions and subroutines with the arguments in an arbitrary
order, as long as you add the names of the dummy arguments, so the
compiler can match the actual arguments with the dummy arguments.
A further enhancement is that you can specify the intent of an argument:
whether it is input only, output only, or both input and output. This
is an aid to documentation as well as an aid to the compiler for certain
optimizations.

■ Kinds are Fortran’s way of determining the characteristics of the basic types.
For example, you can select single or double precision for real variables not
via a different type (real or double precision) but via the kind:

integer, parameter :: double = &
select_kind_real(precision, range)

real(kind=double) :: value

■ Besides the introduction of the select/case construct, do while loops and
do loops without a condition, you can use a name for all control structures.
This makes it easier to document the beginning and end of such structures.
To skip the rest of a do loop’s body you can now use the cycle statement –
possibly with the name of the do loop – so that you can skip more than one
do loop in a nested construction. Similarly, the exit statement terminates
the do loop.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01790-0 - Modern Fortran in Practice
Arjen Markus
Excerpt
More information

http://www.cambridge.org/9781107017900
http://www.cambridge.org
http://www.cambridge.org

INTRODUCTION TO MODERN FORTRAN 7

■ The Fortran standard defines a large number of functions and subroutines:

– Numerical inquiry functions for retrieving the properties of the floating-
point model.

– Array manipulation functions that often take an array expression as one
of their arguments. For instance, you can count the number of positive
elements in an array using:

integer, dimension(100,100) :: array
...
write(*,*) 'Number of positive elements:', &

count(array > 0)

– Character functions and bit manipulation functions
■ Enhancements of the I/O system include nonadvancing I/O. That is, rather

than whole records, a program can read or write a part of a record in one
statement and the rest in another one.

1.3 Fortran 95
As the Fortran 95 standard is a minor revision of the previous one, the differ-
ences mostly concern details. However, these details are important:
■ In Fortran 90, variables with the pointer attribute could not be initialized.

Their initial status was explicitly undefined: neither associated nor not
associated. Fortran 95 introduces the null() function to initialize pointers
explicitly:

real, dimension(:), pointer :: ptr => null()

■ A further enhancement is that local allocatable variables without the save
attribute are automatically deallocated, when they go out of scope (upon
returning from a subroutine or function). It is safe for the compiler to do
so, as the memory cannot be reached by any means afterwards.

■ As a preparation for the next standard, a technical report describes how
derived types may contain allocatable components and how functions can
return allocatable results. (This technical report has become part of the
Fortran 2003 standard with some additions.)

■ New features in Fortran 95 are the pure and elemental routines. Elemental
routines release the programmer from having to write versions of a routine
for arrays of all the dimensions they want to support. Many functions and
subroutines in the standard library already were elemental, meaning they
work on individual elements of the arrays that are passed without regard
for any order. With the advent of Fortran 95, programmers themselves can
also write such routines.

Pure routines are routines that provide the compiler more opportunities to
optimize, as, roughly, they cause no side effects.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01790-0 - Modern Fortran in Practice
Arjen Markus
Excerpt
More information

http://www.cambridge.org/9781107017900
http://www.cambridge.org
http://www.cambridge.org

8 MODERN FORTRAN IN PRACTICE

■ Finally, the forall statement must be mentioned, known from High Per-
formance Fortran. It was designed to enhance the capabilities of array
operations, but in practice it turns out to be difficult to use properly. (In
Fortran 2008, a more flexible construct, do concurrent, is introduced.)

1.4 Fortran 2003
Fortran 2003 is also a major revision and its main theme is the introduction of
object-oriented programming.3 However, there are more enhancements, for
instance, a standardization of interacting with C routines.
■ The support for object-oriented programming comes from several new

features:

– Derived types can now contain procedures (functions and subroutines).
These are either bound to the type, so that all variables of a particular
type have the same actual procedure, or they can be procedures particular
to a variable. Such procedures automatically get passed the variable (or
object if you like) as one of their arguments, but you can control which
one. (We will discuss these matters extensively in Chapter 11.)

– Derived types can be extended into new types. This is Fortran’s inher-
itance mechanism. An extended type can have new components (both
data and procedures), it can redefine the procedures that are bound to
the parent type, but it cannot change their signature.

– The select statement has been enhanced to select on the type of the
variable. This is important if you use so-called polymorphic variables –
pointer variables whose type comes from the variable they are associated
with while the program is running. Polymorphic variables are declared
via the class keyword instead of the type keyword.4

– To enhance the flexibility of the extension mechanism, procedures can
be characterized by abstract interfaces. Rather than defining a particular
routine, these interfaces define what a routine should look like in terms
of its argument list and return value. This can then be applied as a mold
for actual routines.

■ While procedure pointers will most often occur within derived types, you
can use them as “ordinary” variables as well.

■ To achieve certain special effects, the concept of intrinsic modules has been
introduced. Examples of these special effects are the control of the floating-
point environment: rounding mode, the effect of floating-point exceptions,

3 Fortran 90 possesses quite a few features that allow a programmer to come close to that style
of programming, but it lacks inheritance, often viewed as one of the important characteristics of
object-oriented programming. Fortran 90 is, therefore, sometimes called object-based.
4 Rouson and Adalsteinsson [73] compare the terminology for object-oriented concepts in Fortran
and C++.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01790-0 - Modern Fortran in Practice
Arjen Markus
Excerpt
More information

http://www.cambridge.org/9781107017900
http://www.cambridge.org
http://www.cambridge.org

INTRODUCTION TO MODERN FORTRAN 9

but also the interfacing to C, as that sometimes requires a different calling
and naming convention.

■ Memory management has been enhanced:

– The length of character strings can now be determined by the allocate
statement.

– Under some circumstances an allocatable array can be automatically
reallocated to the correct size.

– It is possible to move the allocated memory from one variable to the
next via the move alloc routine. This makes it easier to expand an array.

■ Another welcome new feature is that of stream access to files. This makes
it possible to read (and write) files without attention to complete records.
In particular, it makes it possible to read and write binary files that contain
no intrinsic structure, unlike the traditional unformatted files that do have
a record structure and are cumbersome to deal with in other programming
languages.

■ Fortran 2003 also standardizes the access to the system’s environment in
the form of environment variables and to the command-line arguments that
were used to start the program. Previously, you had to use all manner of
compiler-specific solutions to access this information.

1.5 Fortran 2008
The Fortran 2008 standard is a minor revision to the language, even though
it defines a rather large new feature: coarrays. These are discussed more fully
in Chapter 12 [72], [71]. Besides these, the standard defines a number of new
constructs and keywords as well as new standard functions:
■ Coarrays are a mechanism for parallel computing that falls in the category of

Partitioned Global Address Space (PGAS). Essentially, it makes data available
on various copies of the program without the programmer having to worry
about the exact methods that have to be used to transfer the data. It is the
compiler’s job to generate code that does this efficiently and effectively.

■ Arrays can be defined to be contiguous. This enables the compiler to generate
more efficient code, as the array elements are adjacent in memory.

■ The block – end block construct defines a local scope within a program or
routine, so that new variables can be declared that are present only within
that block.

■ Modules as introduced in Fortran 90 are an important mechanism to
modularize a program. However, the module mechanism itself does not
allow much modularization, as the entire module must be compiled. Fortran
2003 introduces submodules to overcome the problem of very large source
files containing a large module. An additional enhancement is the import
feature. This is used in interface blocks to import a definition from the
containing module, instead of having to define a second module containing
just the definitions you require.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01790-0 - Modern Fortran in Practice
Arjen Markus
Excerpt
More information

http://www.cambridge.org/9781107017900
http://www.cambridge.org
http://www.cambridge.org

10 MODERN FORTRAN IN PRACTICE

■ To further reduce the need for a GOTO statement, the exit statement can
be used to jump to the end of if blocks and select blocks.

■ The do concurrent statement may be regarded as a more flexible alternative
to the forall statement/block. It indicates to the compiler that the code can
be run in parallel (note that this is parallellism within the same copy, not
between copies as with coarrays).

■ Internal procedures may now be passed as actual arguments, thus giving
access to the variables in the routine that contains them. It makes certain
interface problems easier to solve (see Chapter 5).

■ New standard functions include various Bessel functions and bit inquiry
functions.

1.6 What Has Not Changed?
The introduction of all these new features to the Fortran language does not
have consequences for existing code that adheres to one or the other standards,
with the exception of a few features that have been deleted or obsoleted.5

Apart from such deleted, and perhaps almost forgotten features, like the
assigned GOTO, old code should still work.6

There are in fact more invariants in the design of modern Fortran, besides this
support for old code:
■ Fortran is case-insensitive, contrary to many other programming languages

in use today.
■ There is no concept of a file as an organizational unit for the source code. In

particular, there can be no code outside the program, subroutine, function,
or module.

■ The design of Fortran is biased to efficient execution. This is especially so
in the latest Fortran 2008 standard, in which features have been added to
help the compiler in the creation of fast and efficient programs.

The details may surprise programmers who are used to languages like C
(see Appendix B).

■ The data type of an expression or subexpression depends solely on the
operands and the operation, not on the context. This makes reasoning
about a program much easier, but again it may cause surprises (Appendix
B). Here is an example:

real :: r

r = 1 / 3

5 The most important of these deleted features is the use of real variables to control a do loop
([68], Section 2.1.5).
6 Most compilers continue to support such features, so that old programs can still be compiled and
run.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01790-0 - Modern Fortran in Practice
Arjen Markus
Excerpt
More information

http://www.cambridge.org/9781107017900
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9781107017900:

