Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>xi</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Background
 - 1.1.1 The need 2
 - 1.1.2 The means 3

1.2 Wavelet transform as a tool for wireless communications
 - 1.2.1 Wavelets and wavelet transform 3
 - 1.2.2 Advantages of wavelet transform for wireless communication 4
 - 1.2.3 Application of wavelets for wireless transmission 6
 - 1.2.4 Wavelet-packet-based multi-carrier modulation (WPM) system 6

1.3 Scope of the book
 - 1.3.1 Theoretical background (Chapters 1 and 2) 8
 - 1.3.2 Wavelet radio (Chapters 3, 4 and 5) 8
 - 1.3.3 Wavelet applications in cognitive radio design (Chapters 6 and 7) 9

2 Theory of wavelets

2.1 Introduction 12
 - 2.1.1 Representation of signals 12
 - 2.1.2 Fourier analysis 13
 - 2.1.3 Gabor transform 13
 - 2.1.4 Wavelet analysis 14

2.2 Continuous wavelet transform 14
 - 2.2.1 Orthonormal wavelets 17
 - 2.2.2 Non-dyadic wavelets 18

2.3 Multi-resolution analysis 18

2.4 Discrete wavelet transform 20

2.5 Filter bank representation of DWT
 - 2.5.1 Analysis filter bank 21
 - 2.5.2 Synthesis filter bank 24
Table of Contents

2.6 Wavelet packet transform 26
2.7 Wavelet types 28
 2.7.1 Wavelet properties 29
 2.7.2 Popular wavelet families 32
2.8 Summary 33

3 Wavelet packet modulator 35
 3.1 Modulation techniques for wireless communication 36
 3.1.1 Single-carrier transmission 36
 3.2 Orthogonal frequency division multiplexing 38
 3.3 Filter bank multi-carrier methods 41
 3.3.1 Filtered multi-tone (FMT) 42
 3.3.2 Cosine modulated multi-tone (CMT) 43
 3.3.3 OFDM-offset QAM/staggered multi-tone (SMT) 44
 3.4 Wavelet and wavelet-packet-based multi-carrier modulators 45
 3.4.1 Wavelet packet modulator (WPM) 45
 3.4.2 Variants of wavelet packet modulator 48
 3.4.3 Interpolated tree orthogonal multiplexing (ITOM) 51
 3.5 Summary 52

4 Synchronization issues of wavelet radio 55
 4.1 Introduction 55
 4.2 Frequency offset in multi-carrier modulation 56
 4.2.1 Modelling frequency offset errors 56
 4.2.2 Frequency offset in OFDM 57
 4.2.3 Frequency offset in WPM 58
 4.2.4 Numerical results for frequency offset 59
 4.3 Phase noise in multi-carrier modulation 65
 4.3.1 Modelling the phase noise 66
 4.3.2 Phase noise in OFDM 67
 4.3.3 Phase noise in WPM 68
 4.3.4 Numerical results for phase noise 70
 4.4 Time offset in multi-carrier modulation 76
 4.4.1 Modelling time offset errors 76
 4.4.2 Time offset in OFDM 78
 4.4.3 Time synchronization error in WPM 80
 4.4.4 Modulation scheme 81
 4.4.5 Numerical results for time offset 82
 4.5 Summary 90

5 Peak-to-average power ratio 93
 5.1 Background 93
 5.2 Introduction 93
6 Wavelets for spectrum sensing in cognitive radio applications

6.1 Background 112
6.2 Spectrum sensing in cognitive radio 112
6.3 Spectrum sensing methods 114
6.3.1 Periodogram 114
6.3.2 Correlogram 115
6.4 Advantages and disadvantages of conventional spectrum sensing techniques in cognitive radio 116
6.4.1 Pilot detection via matched filtering 116
6.4.2 Energy detection 116
6.4.3 Cyclostationary feature detection 116
6.4.4 Multi-taper spectrum estimation (MTSE) 117
6.4.5 Filter bank spectrum estimation (FBSE) 119
6.5 Advantages of wavelets in spectrum estimation 120
6.6 Performance evaluation of spectrum sensing in cognitive radio 121
6.6.1 Basic principle of energy detector 121
6.6.2 Evaluation of receiver operating characteristic (ROC) 122
6.7 Wavelet packet spectrum estimator (WPSE) 123
6.7.1 Evaluation of ROC performance of WPSE 125
6.8 An efficient model of wavelet-packet based spectrum estimator 129
6.8.1 WPSE model 129
6.8.2 Study of the detection performance of the developed model 131
6.9 Wavelet-packet-based spectrum estimator (WPSE) and compressed sensing 132
6.9.1 Introduction to compressed sensing 132
6.9.2 Compressed sensing and WPSE 133
6.10 Summary 136

7 Optimal wavelet design for wireless communications 139
7.1 Introduction 139
7.2 Criteria for design of wavelets 140
7.2.1 Design procedure 140
Contents

7.2.2 Filter bank implementation of WPM 141
7.2.3 Important wavelet properties 141
7.2.4 Degrees of freedom to design 144
7.3 Example 1 – Maximally frequency selective wavelets 144
7.3.1 Formulation of design problem 146
7.3.2 Transformation of non-convex problem to linear/convex problem 147
7.3.3 Reformulation of optimization problem in the $Q(\omega)$ function domain 151
7.3.4 Solving the convex optimization problem 154
7.3.5 Results and analysis 154
7.4 Example 2 – Wavelets with low cross-correlation error 162
7.4.1 Time offset errors in WPM 165
7.4.2 Formulation of design problem 165
7.4.3 Transformation of the mathematical constraints from a non-convex problem to a convex/linear one 167
7.4.4 Results and analysis 168
7.5 Summary 177

8 Conclusion

8.1 Study of wavelet radio performance under loss of synchronization 182
8.2 PAPR performance studies 183
8.3 Wavelet-based spectrum sensing for cognitive radio 183
8.4 Design of wavelets 184
8.5 Future research topics 185
8.5.1 Study of WPM performance under loss of synchronization 185
8.5.2 PAPR performance studies 185
8.5.3 Equalization of channel 186
8.5.4 Wavelet packet spectrum estimator (WPSE) 186
8.5.5 Design of wavelets 187
8.6 Related studies 187
8.7 Beyond this book 188
8.7.1 Wavelet-based modelling of time-variant wireless channels 188
8.7.2 Multiple-access communication 189
8.7.3 Wavelet radio for green communication 189
8.7.4 Wavelet-based multiple-input–multiple-output communications (MIMO) 190
8.8 Concluding remarks 191

Appendix 1: Semi-definitive programming 193
Appendix 2: Spectral factorization 194
Appendix 3: Sum of squares of cross-correlation 195

Index 196