Natural Experiments in the Social Sciences

This unique book is the first comprehensive guide to the discovery, analysis, and evaluation of natural experiments—an increasingly popular methodology in the social sciences. Thad Dunning provides an introduction to key issues in causal inference, including model specification, and emphasizes the importance of strong research design over complex statistical analysis. Surveying many examples of standard natural experiments, regression-discontinuity designs, and instrumentalvariables designs, Dunning highlights both the strengths and potential weaknesses of these methods, aiding researchers in better harnessing the promise of natural experiments while avoiding the pitfalls. Dunning also demonstrates the contribution of qualitative methods to natural experiments and proposes new ways to integrate qualitative and quantitative techniques. Chapters complete with exercises, and appendices covering specialized topics such as cluster-randomized natural experiments, make this an ideal teaching tool as well as a valuable book for professional researchers.

Thad Dunning is Associate Professor of Political Science at Yale University and a research fellow at Yale's Institution for Social and Policy Studies and the Whitney and Betty MacMillan Center for International and Area Studies. He has written on a range of methodological topics, including impact evaluation, econometric corrections for selection effects, and multi-method research in the social sciences, and his first book, *Crude Democracy: Natural Resource Wealth and Political Regimes* (Cambridge University Press, 2008), won the Best Book Award from the Comparative Democratization Section of the American Political Science Association.

Strategies for Social Inquiry

Natural Experiments in the Social Sciences: A Design-Based Approach

Editors

Colin Elman, *Maxwell School of Syracuse University* John Gerring, *Boston University* James Mahoney, *Northwestern University*

Editorial Board

Bear Braumoeller, David Collier, Francesco Guala, Peter Hedström, Theodore Hopf, Uskali Maki, Rose McDermott, Charles Ragin, Theda Skocpol, Peter Spiegler, David Waldner, Lisa Wedeen, Christopher Winship

This new book series presents texts on a wide range of issues bearing upon the practice of social inquiry. Strategies are construed broadly to embrace the full spectrum of approaches to analysis, as well as relevant issues in philosophy of social science.

Published Titles

John Gerring, Social Science Methodology: A Unified Framework, 2nd edition Michael Coppedge, Democratization and Research Methods Carsten Q. Schneider and Claudius Wagemann, Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis

Forthcoming Titles

Diana Kapiszewski, Lauren M. MacLean and Benjamin L. Read, *Field Research in Political Science* Jason Seawright, *Multi-Method Social Science: Combining Qualitative and Quantitative Tools*

Natural Experiments in the Social Sciences

A Design-Based Approach

Thad Dunning

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107698000

© Thad Dunning 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012 5th printing 2015

Printed in the United States of America by Sheridan Books, Inc.

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Dunning, Thad, 1973–
Natural experiments in the social sciences: a design-based approach / Thad Dunning.
p. cm. – (Strategies for social inquiry)
Includes bibliographical references and index.
ISBN 978-1-107-69800-0
1. Social sciences – Experiments. 2. Social sciences – Research. 3. Experimental design. I. Title.
H62.D797 2012
300.72'4-dc23

2012009061

ISBN 978-1-107-01766-5 Hardback ISBN 978-1-107-69800-0 Paperback

Additional resources for this publication at www.cambridge.org/dunning

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Dedicated to the memory of David A. Freedman

Contents

1	Detailed table of contents List of figures List of tables List of boxes Preface and acknowledgements Introduction: why natural experiments?	page ix xiv xv xvi xvii xvii
Part I	Discovering natural experiments	39
2 3 4	Standard natural experiments Regression-discontinuity designs Instrumental-variables designs	41 63 87
Part II	Analyzing natural experiments	103
5 6 7	Simplicity and transparency: keys to quantitative analysis Sampling processes and standard errors The central role of qualitative evidence	105 165 208
Part III	Evaluating natural experiments	233
8 9 10	How plausible is as-if random? How credible is the model? How relevant is the intervention?	235 256 289

viii	Contents	
Part IV	Conclusion	311
11	Building strong designs through multi-method research	313
	References Index	338 353

Detailed table of contents

Preface and acknowledgements

1	Introduction: why natural experiments?	1
1.1	The problem of confounders	5
	1.1.1 The role of randomization	6
1.2	Natural experiments on military conscription and land titles	8
1.3	Varieties of natural experiments	15
	1.3.1 Contrast with quasi-experiments and matching	18
1.4	Natural experiments as design-based research	21
1.5	An evaluative framework for natural experiments	27
	1.5.1 The plausibility of as-if random	27
	1.5.2 The credibility of models	28
	1.5.3 The relevance of the intervention	29
1.6	Critiques and limitations of natural experiments	32
1.7	Avoiding conceptual stretching	34
1.8	Plan for the book, and how to use it	35
	1.8.1 Some notes on coverage	37
Part I	Discovering natural experiments	39
2	Standard natural experiments	41
2.1	Standard natural experiments in the social sciences	43
2.2	Standard natural experiments with true randomization	48
	2.2.1 Lottery studies	49
2.3	Standard natural experiments with as-if randomization	53
	2.3.1 Jurisdictional borders	57
	2.3.2 Redistricting and jurisdiction shopping	59
2.4	Conclusion	60
	Exercises	61

page xvii

x

x	Detailed table of contents	
3	Regression-discontinuity designs	63
3.1	The basis of regression-discontinuity analysis	63
3.2	Regression-discontinuity designs in the social sciences	68
	3.2.1 Population- and size-based thresholds	72
	3.2.2 Near-winners and near-losers of close elections	77
	3.2.3 Age as a regression discontinuity	79
	3.2.4 Indices	80
3.3	Variations on regression-discontinuity designs	81
	3.3.1 Sharp versus fuzzy regression discontinuities	81
	3.3.2 Randomized regression-discontinuity designs	82
	3.3.3 Multiple thresholds	83
3.4	Conclusion	84
	Exercises	85
4	Instrumental-variables designs	87
4.1	Instrumental-variables designs: true experiments	91
4.2	Instrumental-variables designs: natural experiments	92
	4.2.1 Lotteries	94
	4.2.2 Weather shocks	95
	4.2.3 Historical or institutional variation induced by deaths	97
4.3	Conclusion	101
	Exercises	102
Part II	Analyzing natural experimente	102
	Analyzing natural experiments	103
5	Simplicity and transparency: keys to quantitative analysis	105
5.1	The Neyman model	107
	5.1.1 The average causal effect	109
	5.1.2 Estimating the average causal effect	112
	5.1.3 An example: land titling in Argentina	115
	5.1.4 Key assumptions of the Neyman model	118

5.1.4	Key assumptions of the Neyman model	118
5.1.5	Analyzing standard natural experiments	121
Analy	zing regression-discontinuity designs	121
5.2.1	Two examples: Certificates of Merit and digital democratization	123
5.2.2	Defining the study group: the question of bandwidth	127
5.2.3	Is the difference-of-means estimator biased in	
	regression-discontinuity designs?	128

5.2

6

7

xi Detailed table of contents

	5.2.4 Modeling functional form	133
	5.2.5 Fuzzy regression discontinuities	134
5.3	Analyzing instrumental-variables designs	135
	5.3.1 Natural experiments with noncompliance	136
	5.3.2 An example: the effect of military service	143
	5.3.3 The no-Defiers assumption	148
	5.3.4 Fuzzy regression-discontinuities as instrumental-variables	
	designs	149
	5.3.5 From the Complier average effect to linear regression	150
5.4	Conclusion	153
Appe	endix 5.1 Instrumental-variables estimation of the Complier average	
	causal effect	154
Appe	endix 5.2 Is the difference-of-means estimator biased in	
	regression-discontinuity designs (further details)?	158
	Exercises	160
	Sampling processes and standard errors	165
6.1	Standard errors under the Neyman urn model	166
	6.1.1 Standard errors in regression-discontinuity and	
	instrumental-variables designs	173
6.2	Handling clustered randomization	175
	6.2.1 Analysis by cluster mean: a design-based approach	179
6.3	Randomization inference: Fisher's exact test	186
6.4	Conclusion	191
Appe	endix 6.1 Conservative standard errors under the Neyman model	192
Appe	endix 6.2 Analysis by cluster mean	195
	Exercises	201
	The central role of qualitative evidence	208
7.1	Causal-process observations in natural experiments	210
	7.1.1 Validating as-if random: treatment-assignment CPOs	212
	7.1.2 Verifying treatments: independent-variable CPOs	219
	7.1.3 Explaining effects: mechanism CPOs	222
	7.1.4 Interpreting effects: auxiliary-outcome CPOs	224
	7.1.5 Bolstering credibility: model-validation CPOs	225
7.2	Conclusion	228
	Exercises	230
		200

xii

Detailed table of contents

Pa	rt III	Evaluating natural experiments	233
8		How plausible is as-if random?	235
	8.1	Assessing as-if random	236
		8.1.1 The role of balance tests	239
		8.1.2 Qualitative diagnostics	243
	8.2	Evaluating as-if random in regression-discontinuity and	
		instrumental-variables designs	244
		8.2.1 Sorting at the regression-discontinuity threshold: conditional	
		density tests	245
		8.2.2 Placebo tests in regression-discontinuity designs	246
		8.2.3 Treatment-assignment CPOs in regression-discontinuity designs	248
		8.2.4 Diagnostics in instrumental-variables designs	248
	8.3	A continuum of plausibility	249
	8.4	Conclusion	252
		Exercises	254
9		How credible is the model?	256
	9.1	The credibility of causal and statistical models	258
		9.1.1 Strengths and limitations of the Neyman model	259
		9.1.2 Linear regression models	263
	9.2	Model specification in instrumental-variables regression	269
		9.2.1 Control variables in instrumental-variables regression	277
	9.3	A continuum of credibility	278
	9.4	Conclusion: how important is the model?	283
	App	endix 9.1 Homogeneous partial effects with multiple treatments and	
		instruments	285
		Exercises	287
10		How relevant is the intervention?	289
	10.1	Threats to substantive relevance	293
		10.1.1 Lack of external validity	293
		10.1.2 Idiosyncrasy of interventions	297
		10.1.3 Bundling of treatments	300
	10.2	A continuum of relevance	303
	10.3	Conclusion	306
		Exercises	309

xiii

Detailed table of contents

Part IV Conclusion

11		Building strong designs through multi-method research	313
	11.1	The virtues and limitations of natural experiments	315
	11.2	A framework for strong research designs	318
		11.2.1 Conventional observational studies and true experiments	319
		11.2.2 Locating natural experiments	321
		11.2.3 Relationship between dimensions	324
	11.3	Achieving strong design: the importance of mixed methods	326
	11.4	A checklist for natural-experimental research	328
		References	338
		Index	353

311

Figures

1.1	Natural experiments in political science and economics	page 2
1.2	Typology of natural experiments	31
3.1	Examples of regression discontinuities	66
5.1	The Neyman model	113
5.2	A regression-discontinuity design	124
5.3	Potential and observed outcomes in a regression-discontinuity design	129
5.4	Noncompliance under the Neyman model	140
6.1	Clustered randomization under the Neyman model	177
8.1	Plausibility of as-if random assignment	250
9.1	Credibility of statistical models	280
10.1	Substantive relevance of intervention	303
11.1	Strong research designs	318
11.2	A decision flowchart for natural experiments	329

Tables

1.1	Death rates from cholera by water-supply source	page 13
2.1	Typical "standard" natural experiments	44
2.2	Standard natural experiments with true randomization	45
2.3	Standard natural experiments with as-if randomization	46
3.1	Selected sources of regression-discontinuity designs	69
3.2	Examples of regression-discontinuity designs	70
4.1	Selected sources of instrumental-variables designs	90
4.2	Selected instrumental-variables designs (true experiments)	92
4.3	Selected instrumental-variables designs (natural experiments)	93
4.4	Direct and indirect colonial rule in India	98
5.1	The effects of land titles on children's health	117
5.2	Social Security earnings in 1981	145
6.1	Potential outcomes under the strict null hypothesis	187
6.2	Outcomes under all randomizations, under the strict null hypothesis	s 188

Boxes

4.1	The intention-to-treat principle	page 88
5.1	The Neyman model and the average causal effect	111
5.2	Estimating the average causal effect	115
6.1	Standard errors under the Neyman model	170
6.2	Code for analysis by cluster means	181

Preface and acknowledgements

Natural experiments have become ubiquitous in the social sciences. From standard natural experiments to regression-discontinuity and instrumentalvariables designs, our leading research articles and books more and more frequently reference this label. For professional researchers and students alike, natural experiments are often recommended as a tool for strengthening causal claims.

Surprisingly, we lack a comprehensive guide to this type of research design. Finding a useful and viable natural experiment is as much an art as a science. Thus, an extensive survey of examples—grouped and discussed to highlight how and why they provide the leverage they do—may help scholars to use natural experiments effectively in their substantive research. Just as importantly, awareness of the obstacles to successful natural experiments may help scholars maximize their promise while avoiding their pitfalls. There are significant challenges involved in the analysis and interpretation of natural-experimental data. Moreover, the growing popularity of natural experiments can lead to conceptual stretching, as the label is applied to studies that do not very credibly bear the hallmarks of this research design. Discussion of both the strengths and limitations of natural experiments may help readers to evaluate and bolster the success of specific applications. I therefore hope that this book will provide a resource for scholars and students who want to conduct or critically consume work of this type.

While the book is focused on natural experiments, it is also a primer on design-based research in the social sciences more generally. Research that depends on *ex post* statistical adjustment (such as cross-country regressions) has recently come under fire; there has been a commensurate shift of focus toward design-based research—in which control over confounding variables comes primarily from research design, rather than model-based statistical adjustment. The current enthusiasm for natural experiments reflects this renewed emphasis on design-based research. Yet, how should such research be conducted and evaluated? What are the key assumptions

xviii

Preface and acknowledgements

behind design-based inference, and what causal and statistical models are appropriate for this style of research? And can such design-based approaches help us make progress on big, important substantive topics, such as the causes and consequences of democracy or socioeconomic development? Answering such questions is critical for sustaining the credibility and relevance of design-based research.

Finally, this book also highlights the potential payoffs from integrating qualitative and quantitative methods. "Bridging the divide" between approaches is a recurring theme in many social sciences. Yet, strategies for combining multiple methods are not always carefully explicated; and the value of such combinations is sometimes presumed rather than demonstrated. This is unfortunate: at least with natural experiments, different methods do not just supplement but often *require* one another. I hope that this book can clarify the payoffs of mixing methods and especially of the "shoe-leather" research that, together with strong designs, makes compelling causal inference possible.

This book grows out of discussions with many colleagues, students, and especially mentors. I am deeply fortunate to have met David Freedman, to whom the book is dedicated, while finishing my Ph.D. studies at the University of California at Berkeley. His impact on this book will be obvious to readers who know his work; I only wish that he were alive to read it. While he is greatly missed, he left behind an important body of research, with which every social scientist who seeks to make causal inferences should grapple.

I would also like to thank several other mentors, colleagues, and friends. David Collier's exemplary commitment to the merger of qualitative and quantitative work has helped me greatly along the way; this book grew out of a chapter I wrote for the second edition of his book, Rethinking Social Inquiry, co-edited with Henry Brady. Jim Robinson, himself a prominent advocate of natural-experimental research designs, continues to influence my own substantive and methodological research. I would especially like to thank Don Green and Dan Posner, both great friends and colleagues, who read and offered detailed and incisive comments on large portions of the manuscript. Colin Elman organized a research workshop at the Institute for Qualitative and Multi-Method Research at Syracuse University, where John Gerring and David Waldner served as very discerning discussants, while Macartan Humphreys and Alan Jacobs convoked a book event at the University of British Columbia, at which Anjali Bohlken, Chris Kam, and Ben Nyblade each perceptively dissected individual chapters. I am grateful to all of the participants in these two events. For helpful conversations and suggestions, I also thank Jennifer Bussell, Colin Elman, Danny Hidalgo, xix

Cambridge University Press 978-1-107-01766-5 - Natural Experiments in the Social Sciences: A Design-Based Approach Thad Dunning Frontmatter More information

Preface and acknowledgements

Macartan Humphreys, Jim Mahoney, Ken Scheve, Jay Seawright, Jas Sekhon, Rocío Titiunik, and David Waldner. I have been privileged to teach courses and workshops on related material to graduate students at the Institute for Qualitative and Multi-Method Research and at Yale, where Natalia Bueno, Germán Feierherd, Nikhar Gaikwad, Malte Lierl, Pia Raffler, Steve Rosenzweig, Luis Schiumerini, Dawn Teele, and Guadalupe Tuñón, among others, offered insightful reactions. I have also enjoyed leading an annual short course on multi-method research at the American Political Science Association with David Collier and Jay Seawright. These venues have provided a valuable opportunity to improve my thinking on the topics discussed in this book, and I thank all the participants in those workshops and courses for their feedback.

I would also like to thank my editor on this book, John Haslam of Cambridge University Press, as well as Carrie Parkinson, Ed Robinson, and Jim Thomas, for their gracious shepherding of this book to completion. I am particularly grateful to Colin Elman, John Gerring, and Jim Mahoney, who approached me about writing this book for their Strategies of Social Inquiry series. For their steadfast love and support, my deepest gratitude goes to my family.