Transfer Learning

Transfer learning deals with how systems can quickly adapt themselves to new situations, new tasks and new environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available in the target domain. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world.

This self-contained, comprehensive reference text begins by describing the standard algorithms and then demonstrates how these are used in different transfer learning paradigms and applications. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.

Qiang Yang is the Head of AI at WeBank and a chair professor of computer science and engineering at Hong Kong University of Science and Technology. He is a fellow of the ACM, AAAI, IEEE, IAPR and AAAS, and has served on the AAAI Executive Council and as president of IJCAI. Awards include the 2004/2005 ACM KDDCUP Championship, the ACM SIGKDD Distinguished Service Award and AAAI Innovative AI Applications Award. His books include Intelligent Planning, Crafting Your Research Future and Constraint-Based Design Recovery for Software Engineering.

Yu Zhang is an associate professor in the Department of Computer Science and Engineering at Southern University of Science and Technology. He has published about sixty papers in top-tier AI and machine learning conferences and journals. He won the best paper awards at UAI 2010 and PAKDD 2019, and the best student paper award in the 2013 IEEE/WIC/ACM International Conference on Web Intelligence. He was awarded the Young National Distinguished Scholar in China.

Wenyuan Dai is the Founder and CEO of 4Paradigm Co., Ltd. He was a principal architect and senior scientist in Baidu, helping to develop one of China’s largest machine learning systems, and a principal scientist in Huawei Noah’s Ark Lab. He has published numerous papers in ICML, NIPS, AAAI, KDD and other conferences, primarily on transfer learning and AutoML. He won the ACM-ICPC World Final 2005 and the PKDD best student paper award in 2007, and in 2017 was named MIT Technology Review Innovators under 35 in China and Fortune 40 under 40 in China.

Sinno Jialin Pan is Provost’s Chair Associate Professor in the School of Computer Science and Engineering at Nanyang Technological University, Singapore and was formerly Lab Head of Text Analytics with the Data Analytics Department, Institute for Infocomm Research, Singapore. He was named AI 10 to Watch by IEEE Intelligent Systems in 2018.
Transfer Learning

QIANG YANG
Hong Kong University of Science and Technology

YU ZHANG
Southern University of Science and Technology

WENYUAN DAI
4Paradigm Co., Ltd.

SINNO JIALIN PAN
Nanyang Technological University
# Contents

## Preface

### PART I FOUNDATIONS OF TRANSFER LEARNING

1. **Introduction**
   1.1 AI, Machine Learning and Transfer Learning
   1.2 Transfer Learning: A Definition
   1.3 Relationship to Existing Machine Learning Paradigms
   1.4 Fundamental Research Issues in Transfer Learning
   1.5 Applications of Transfer Learning
   1.6 Historical Notes
   1.7 About This Book

2. **Instance-Based Transfer Learning**
   2.1 Introduction
   2.2 Instance-Based Noninductive Transfer Learning
   2.3 Instance-Based Inductive Transfer Learning

3. **Feature-Based Transfer Learning**
   3.1 Introduction
   3.2 Minimizing the Domain Discrepancy
   3.3 Learning Universal Features
   3.4 Feature Augmentation

4. **Model-Based Transfer Learning**
   4.1 Introduction
   4.2 Transfer through Shared Model Components
   4.3 Transfer through Regularization

5. **Relation-Based Transfer Learning**
   5.1 Introduction
   5.2 Markov Logic Networks
   5.3 Relation-Based Transfer Learning Based on MLNs
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Heterogeneous Transfer Learning</td>
<td>68</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>68</td>
</tr>
<tr>
<td>6.2</td>
<td>The Heterogeneous Transfer Learning Problem</td>
<td>70</td>
</tr>
<tr>
<td>6.3</td>
<td>Methodologies</td>
<td>71</td>
</tr>
<tr>
<td>6.4</td>
<td>Applications</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>Adversarial Transfer Learning</td>
<td>93</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>93</td>
</tr>
<tr>
<td>7.2</td>
<td>Generative Adversarial Networks</td>
<td>94</td>
</tr>
<tr>
<td>7.3</td>
<td>Transfer Learning with Adversarial Models</td>
<td>97</td>
</tr>
<tr>
<td>7.4</td>
<td>Discussion</td>
<td>104</td>
</tr>
<tr>
<td>8</td>
<td>Transfer Learning in Reinforcement Learning</td>
<td>105</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>105</td>
</tr>
<tr>
<td>8.2</td>
<td>Background</td>
<td>107</td>
</tr>
<tr>
<td>8.3</td>
<td>Inter-task Transfer Learning</td>
<td>113</td>
</tr>
<tr>
<td>8.4</td>
<td>Inter-domain Transfer Learning</td>
<td>122</td>
</tr>
<tr>
<td>9</td>
<td>Multi-task Learning</td>
<td>126</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>126</td>
</tr>
<tr>
<td>9.2</td>
<td>The Definition</td>
<td>128</td>
</tr>
<tr>
<td>9.3</td>
<td>Multi-task Supervised Learning</td>
<td>128</td>
</tr>
<tr>
<td>9.4</td>
<td>Multi-task Unsupervised Learning</td>
<td>137</td>
</tr>
<tr>
<td>9.5</td>
<td>Multi-task Semi-supervised Learning</td>
<td>138</td>
</tr>
<tr>
<td>9.6</td>
<td>Multi-task Active Learning</td>
<td>138</td>
</tr>
<tr>
<td>9.7</td>
<td>Multi-task Reinforcement Learning</td>
<td>139</td>
</tr>
<tr>
<td>9.8</td>
<td>Multi-task Online Learning</td>
<td>139</td>
</tr>
<tr>
<td>9.9</td>
<td>Multi-task Multi-view Learning</td>
<td>140</td>
</tr>
<tr>
<td>9.10</td>
<td>Parallel and Distributed Multi-task Learning</td>
<td>140</td>
</tr>
<tr>
<td>10</td>
<td>Transfer Learning Theory</td>
<td>141</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>141</td>
</tr>
<tr>
<td>10.2</td>
<td>Generalization Bounds for Multi-task Learning</td>
<td>142</td>
</tr>
<tr>
<td>10.3</td>
<td>Generalization Bounds for Supervised Transfer Learning</td>
<td>145</td>
</tr>
<tr>
<td>10.4</td>
<td>Generalization Bounds for Unsupervised Transfer Learning</td>
<td>148</td>
</tr>
<tr>
<td>11</td>
<td>Transitive Transfer Learning</td>
<td>151</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>151</td>
</tr>
<tr>
<td>11.2</td>
<td>TTL over Mixed Graphs</td>
<td>153</td>
</tr>
<tr>
<td>11.3</td>
<td>TTL with Hidden Feature Representations</td>
<td>158</td>
</tr>
<tr>
<td>11.4</td>
<td>TTL with Deep Neural Networks</td>
<td>162</td>
</tr>
<tr>
<td>12</td>
<td>AutoTL: Learning to Transfer Automatically</td>
<td>168</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>168</td>
</tr>
<tr>
<td>12.2</td>
<td>The L2T Framework</td>
<td>169</td>
</tr>
<tr>
<td>12.3</td>
<td>Parameterizing What to Transfer</td>
<td>170</td>
</tr>
<tr>
<td>12.4</td>
<td>Learning from Experiences</td>
<td>171</td>
</tr>
</tbody>
</table>
Contents

12.5 Inferring What to Transfer 174
12.6 Connections to Other Learning Paradigms 174

13 Few-Shot Learning 177
13.1 Introduction 177
13.2 Zero-Shot Learning 178
13.3 One-Shot Learning 184
13.4 Bayesian Program Learning 187
13.5 Poor Resource Learning 190
13.6 Domain Generalization 193

14 Lifelong Machine Learning 196
14.1 Introduction 196
14.2 Lifelong Machine Learning: A Definition 197
14.3 Lifelong Machine Learning through Invariant Knowledge 198
14.4 Lifelong Machine Learning in Sentiment Classification 199
14.5 Shared Model Components as Multi-task Learning 203
14.6 Never-Ending Language Learning 204

PART II APPLICATIONS OF TRANSFER LEARNING 209

15 Privacy-Preserving Transfer Learning 211
15.1 Introduction 211
15.2 Differential Privacy 212
15.3 Privacy-Preserving Transfer Learning 215

16 Transfer Learning in Computer Vision 221
16.1 Introduction 221
16.2 Overview 222
16.3 Transfer Learning for Medical Image Analysis 229

17 Transfer Learning in Natural Language Processing 234
17.1 Introduction 234
17.2 Transfer Learning in NLP 234
17.3 Transfer Learning in Sentiment Analysis 241

18 Transfer Learning in Dialogue Systems 257
18.1 Introduction 257
18.2 Problem Formulation 259
18.3 Transfer Learning in Spoken Language Understanding 259
18.4 Transfer Learning in Dialogue State Tracker 262
18.5 Transfer Learning in DPL 263
18.6 Transfer Learning in Natural Language Generation 268
18.7 Transfer Learning in End-to-End Dialogue Systems 269
Contents

19  Transfer Learning in Recommender Systems  279
   19.1 Introduction  279
   19.2 What to Transfer in Recommendation  280
   19.3 News Recommendation  284
   19.4 VIP Recommendation in Social Networks  288

20  Transfer Learning in Bioinformatics  293
   20.1 Introduction  293
   20.2 Machine Learning Problems in Bioinformatics  294
   20.3 Biological Sequence Analysis  295
   20.4 Gene Expression Analysis and Genetic Analysis  299
   20.5 Systems Biology  299
   20.6 Biomedical Text and Image Mining  301
   20.7 Deep Learning for Bioinformatics  302

21  Transfer Learning in Activity Recognition  307
   21.1 Introduction  307
   21.2 Transfer Learning for Wireless Localization  307
   21.3 Transfer Learning for Activity Recognition  316

22  Transfer Learning in Urban Computing  324
   22.1 Introduction  324
   22.2 “What to Transfer” in Urban Computing  325
   22.3 Key Issues of Transfer Learning in Urban Computing  326
   22.4 Chain Store Recommendation  327
   22.5 Air-Quality Prediction  330

23  Concluding Remarks  334

References  336
Index  377
Preface

This book is about the foundations, methods, techniques and applications of transfer learning. Transfer learning deals with how learning systems can quickly adapt themselves to new situations, new tasks and new environments. Transfer learning is a particularly important area of machine learning, which we can understand from several angles. First, the ability to learn from small data seems to be a particularly strong aspect of human intelligence. For example, we observe that babies learn from only a few examples and can quickly and effectively generalize from the few examples to concepts. This ability to learn from small data can be partly explained by the ability of humans to leverage and adapt the previous experience and pretrained models to help solve future target problems. Adaptation is an innate ability of intelligent beings and artificially intelligent agents should certainly be endowed with transfer learning ability.

Second, in machine learning practice, we observe that we are often surrounded with lots of small-sized data sets, which are often isolated and fragmented. Many organizations do not have the ability to collect a huge amount of big data due to a number of constraints that range from resource limitations to organizations interests, and to regulations and concerns for user privacy. This small-data challenge is a serious problem faced by many organizations applying AI technology to their problems. Transfer learning is a suitable solution for addressing this challenge because it can leverage many auxiliary data and external models, and adapt them to solve the target problems.

Third, transfer learning can make AI and machine learning systems more reliable and robust. It is often the case that, when building a machine learning model, one cannot foresee all future situations. In machine learning, this problem is often addressed using a technique known as regularization, which leaves room for future changes by limiting the complexity of the models. Transfer learning takes this approach further, by allowing the model to be complex while being prepared for changes when they actually come.

In addition, when facing unforeseeable changes and taking a learned model across domain boundaries, transfer learning still makes sure that the model performance does not deviate from the expected performance too much. In this way,
transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. From a software system's perspective, if a system is capable of adapting itself via transfer learning in new domains, it is said to be more robust and more reliable when the external environment changes. Such systems are often preferred in engineering practice.

If we continuously apply transfer learning in our machine learning practice, we can obtain a lifelong machine learning system that can draw knowledge from a succession of problem-solving experience, both in a long period of time and from a large variety of tasks. Transfer learning endows an intelligent system with the lifelong learning ability.

Last, but not least, a transfer learning system can be the backbone of a sound business model in which user privacy is taken into serious consideration, such that a pretrained model can be downloaded and adapted at the edge of a computer network without leaking user data accumulated at the edge or from the cloud. By moving the model one way from a server to a client, the privacy at the client side is effectively protected. In addition, by carefully structuring the transfer learning algorithms, private user information on the cloud side can also be protected.

Like AI in general and machine learning in particular, the concept of transfer learning has gone through decades of evolution. From AI's early years, researchers have considered the ability to transfer one's knowledge as one of the fundamental cornerstones of intelligence. Transfer learning is also given different names and explored under different guises, including learning by analogy, case-based reasoning, knowledge reuse and reengineering, lifelong machine learning, never-ending learning and domain adaption, to name a few. Outside of AI and Computer Science, the concept of transfer learning has also been invented under different terms. In the fields of educational theory and learning psychology, for example, the concept of transfer of learning has been an important subject in modeling what constitutes effective learning and teaching for educators; it is believed that the best teaching enables the student to learn “how to learn” and adapt the learned knowledge in future situations. Despite different names, their spirits are all similar: to be able to leverage one's past experience to help make more effective decisions in the future.

The study of transfer learning involves many areas of study in science and engineering, including AI, algorithmic theories, probability and statistics, to name a few. The field is also undergoing rapid changes as interests in AI grow, and many new areas contribute to the field. As the first book of its kind in the area, we hope to use it as a tool to help educate the newcomers of machine learning research and application field, as well as a reference book for seasoned machine learning researchers and application developers to use.

The book is partitioned into two parts. Part I presents the foundations of transfer learning. Chapter 1 gives an overview and introduction to transfer learning. Chapters 2–14 introduce various theoretical and algorithmic aspects of transfer
Preface

learning. Part II, which includes Chapters 15–22, covers many application fields of transfer learning. We give concluding remarks in Chapter 23.

The book is an accumulation of hard research work by a group of researchers that spans over a decade, mainly consisting of Professor Qiang Yang's current and former graduate students, postdoctoral researchers and research associates. We have assigned each chapter to one or more students, and then the four main editors either wrote other chapters or went in depth in each chapter to help refine the content, or did both.

The following is a list of these authors.

- Chapter 1: Sinno Jialin Pan and Qiang Yang
- Chapter 2: Xiang Zhang
- Chapter 3: Xu Geng
- Chapter 4: Xueyang Wu
- Chapter 5: Han Tian
- Chapter 6: Ying Wei
- Chapter 7: Yinghua Zhang
- Chapter 8: Bo Liu
- Chapter 9: Yu Zhang
- Chapter 10: Yu Zhang
- Chapter 11: Ben Tan
- Chapter 12: Yu Zhang and Ying Wei
- Chapter 13: Jinliang Deng
- Chapter 14: Lianghao Li and Qiang Yang
- Chapter 15: Xiawei Guo, Yuqiang Chen, Weiwei Tu, and Wenyuan Dai
- Chapter 16: Yinghua Zhang and Weiyan Wang
- Chapter 17: Wenyi Xiao and Zheng Li
- Chapter 18: Kaixiang Mo
- Chapter 19: Weike Pan and Guangneng Hu
- Chapter 20: Qian Xu, Bo Liu and Qiang Yang
- Chapter 21: Vincent W. Zheng and Hao Hu
- Chapter 22: Leye Wang and Yexin Li

Finally, we wish to thank the managerial work of Yutao Deng, who helped keep the schedules and manage team works. To all, our sincere thanks! Without their tremendous effort, the book would have been impossible to complete.

We the editors wish to also thank our colleagues, organizations and collaborators over the years. We thank the support of Hong Kong University of Science and Technology, Hong Kong CERG Fund, Hong Kong Innovation and Technology Fund, the 4Paradigm Corp., Nanyang Technological University Singapore, WeBank and many others for their generous support.

Finally, we wish to acknowledge the support of our families, whose patience and encouragement allowed us to finally complete the book.