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1

Main Concepts

In this chapter, we recall the main concepts and definitions of continuous and
discrete optimization. Our intent is to provide only the necessary background for
the understanding of the rest of the book. The notions of feasibility, optimality,
convexity and active constraints introduced in this chapter will be widely used in
this book.

1.1 Optimization Problems

An optimization problem is generally formulated as

infz f(z)
subj. to z ∈ S ⊆ Z,

(1.1)

where the vector z collects the decision variables, Z is the optimization problem
domain, and S ⊆ Z is the set of feasible or admissible decisions. The function
f :Z → R assigns to each decision z a cost f(z) ∈ R. We will often use the following
shorter form of problem (1.1)

inf
z∈S⊆Z

f(z). (1.2)

Solving problem (1.2) means to compute the least possible cost f∗

f∗ = inf
z∈S

f(z).

The number f∗ is the optimal value of problem (1.2), i.e.,

f(z) ≥ f(z∗) = f∗ ∀z ∈ S, with z∗ ∈ S,

or the greatest lower bound of f(z) over the set S:

f(z) > f∗ ∀z ∈ S and (∀ε > 0 ∃z ∈ S : f(z) ≤ f∗ + ε).
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4 1 Main Concepts

If f∗ = −∞ we say that the problem is unbounded below. If the set S is empty
then the problem is said to be infeasible and we set f∗ = +∞ by convention. If
S = Z the problem is said to be unconstrained.

In general, one is also interested in finding an optimal solution, that is in
finding a decision whose associated cost equals the optimal value, i.e., z∗ ∈ S with
f(z∗) = f∗. If such z∗ exists, then we rewrite problem (1.2) as

f∗ = min
z∈S

f(z) (1.3)

and z∗ is called an optimizer, global optimizer or optimal solution. Minimizer or
global minimizer are also used to refer to an optimizer of a minimization problem.
The set of all optimal solutions is denoted by

argminz∈Sf(z) = {z ∈ S : f(z) = f∗} .

A problem of determining whether the set of feasible decisions is empty and, if not,
to find a point which is feasible, is called a feasibility problem.

1.1.1 Continuous Problems

In continuous optimization the problem domain Z is a subset of the finite-
dimensional Euclidian vector-space R

s and the subset of admissible vectors is
defined through a list of equality and inequality constraints:

infz f(z)
subj. to gi(z) ≤ 0 for i = 1, . . . ,m

hj(z) = 0 for j = 1, . . . , p
z ∈ Z,

(1.4)

where f, g1, . . . , gm, h1, . . . , hp are real-valued functions defined over R
s, i.e.,

f : Rs → R, gi : Rs → R, hi : Rs → R. The domain Z is the intersection of
the domains of the cost and constraint functions:

Z = {z ∈ R
s : z ∈ dom f, z ∈ dom gi, i = 1, . . . ,m, z ∈ dom hj , j = 1, . . . , p}.

(1.5)

In the sequel we will consider the constraint z ∈ Z implicit in the optimization
problem and often omit it. Problem (1.4) is unconstrained if m = p = 0.

The inequalities gi(z) ≤ 0 are called inequality constraints and the equations
hi(z) = 0 are called equality constraints. A point z̄ ∈ R

s is feasible for problem (1.4)
if: (i) it belongs to Z, (ii) it satisfies all inequality and equality constraints, i.e.,
gi(z̄) ≤ 0, i = 1, . . . ,m, hj(z̄) = 0, i = j, . . . , p. The set of feasible vectors is

S = {z ∈ R
s : z ∈ Z, gi(z) ≤ 0, i = 1, . . . ,m, hj(z) = 0, j = 1, . . . , p}. (1.6)

Problem (1.4) is a continuous finite-dimensional optimization problem (since
Z is a finite-dimensional Euclidian vector space). We will also refer to (1.4) as
a nonlinear mathematical program or simply nonlinear program. Let f∗ be the
optimal value of problem (1.4). An optimizer, if it exists, is a feasible vector z∗

with f(z∗) = f∗.
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1.1 Optimization Problems 5

A feasible point z̄ is locally optimal for problem (1.4) if there exists an R > 0
such that

f(z̄) = infz f(z)
subj. to gi(z) ≤ 0 for i = 1, . . . ,m

hi(z) = 0 for i = 1, . . . , p
‖z − z̄‖ ≤ R
z ∈ Z.

(1.7)

Roughly speaking, this means that z̄ is the minimizer of f(z) in a feasible
neighborhood of z̄ defined by ‖z − z̄‖ ≤ R. The point z̄ is called a local optimizer

or local minimizer.

Active, Inactive and Redundant Constraints

Consider a feasible point z̄. We say that the i-th inequality constraint gi(z) ≤ 0 is
active at z̄ if gi(z̄) = 0. If gi(z̄) < 0 we say that the constraint gi(z) ≤ 0 is inactive
at z̄. Equality constraints are always active for all feasible points.

We say that a constraint is redundant if removing it from the list of constraints
does not change the feasible set S. This implies that removing a redundant
constraint from problem (1.4) does not change its solution.

Problems in Standard Forms

Optimization problems can be cast in several forms. In this book, we use the
form (1.4) where we adopt the convention to minimize the cost function and to
have the right-hand side of the inequality and equality constraints equal to zero.
Any problem in a different form (e.g., a maximization problem or a problem with
“box constraints”) can be transformed and arranged into this form. The interested
reader is referred to Chapter 4 of [65] for a detailed discussion on transformations
of optimization problems into different standard forms.

Eliminating Equality Constraints

Often in this book we will restrict our attention to problems without equality
constraints, i.e., p = 0

infz f(z)
subj. to gi(z) ≤ 0 for i = 1, . . . ,m.

(1.8)

The simplest way to remove equality constraints is to replace them with two
inequalities for each equality, i.e., hi(z) = 0 is replaced by hi(z) ≤ 0 and−hi(z) ≤ 0.
Such a method, however, can lead to poor numerical conditioning and may ruin
the efficiency and accuracy of a numerical solver.

If one can explicitly parameterize the solution of the equality constraint
hi(z) = 0, then the equality constraint can be eliminated from the problem. This
process can be described in a simple way for linear equality constraints. Assume
the equality constraints to be linear, Az − b = 0, with A ∈ R

p×s. If Az = b is
inconsistent then the problem is infeasible. The general solution of the equation
Az = b can be expressed as z = Fx + z0 where F is a matrix of full rank whose
spanned space coincides with the null space of the A matrix, i.e., R(F ) = N (A),
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6 1 Main Concepts

F ∈ R
s×k, where k is the dimension of the null space of A. The variable x ∈ R

k is
the new optimization variable and the original problem becomes

infx f(Fx+ z0)
subj. to gi(Fx+ z0) ≤ 0 for i = 1, . . . ,m.

(1.9)

We want to point out that in some cases the elimination of equality constraints
can make the problem harder to analyze and understand and can make a solver
less efficient. In large problems it can destroy useful structural properties of the
problem such as sparsity. Some advanced numerical solvers perform elimination
automatically.

Problem Description

The functions f, gi and hi can be available in analytical form or can be described
through an oracle model (also called “black box” or “subroutine” model). In an
oracle model, f, gi and hi are not known explicitly but can be evaluated by querying
the oracle. Often the oracle consists of subroutines which, called with the argument
z, return f(z), gi(z) and hi(z) and their gradients∇f(z),∇gi(z),∇hi(z). In the rest
of the book we assume that analytical expressions of the cost and the constraints
of the optimization problem are available.

1.1.2 Integer and Mixed-Integer Problems

If the decision set Z in the optimization problem (1.2) is finite, then the
optimization problem is called combinatorial or discrete. If Z ⊆ {0, 1}s, then the
problem is said to be integer.

If Z is a subset of the Cartesian product of an integer set and a real Euclidian
space, i.e., Z ⊆ {[zc, zb] : zc ∈ R

sc , zb ∈ {0, 1}sb}, then the problem is said to be
mixed-integer. The standard formulation of a mixed-integer nonlinear program is

inf [zc,zb] f(zc, zb)
subj. to gi(zc, zb) ≤ 0 for i = 1, . . . ,m

hj(zc, zb) = 0 for j = 1, . . . , p
zc ∈ R

sc , zb ∈ {0, 1}sb

(1.10)

where f, g1, . . . , gm, h1, . . . , hp are real-valued functions defined over Z.
For combinatorial, integer and mixed-integer optimization problems, all defini-

tions introduced in the previous section apply.

1.2 Convexity

A set S ∈ R
s is convex if

λz1 + (1− λ)z2 ∈ S for all z1 ∈ S, z2 ∈ S and λ ∈ [0, 1].
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1.2 Convexity 7

A function f : S → R is convex if S is convex and

f(λz1 + (1− λ)z2) ≤ λf(z1) + (1− λ)f(z2)

for all z1 ∈ S, z2 ∈ S and λ ∈ [0, 1].

A function f : S → R is strictly convex if S is convex and

f(λz1 + (1− λ)z2) < λf(z1) + (1− λ)f(z2)

for all z1 ∈ S, z2 ∈ S and λ ∈ (0, 1).

A twice differentiable function f : S → R is strongly convex if the Hessian

∇2f(z) ≻ 0 for all z ∈ S.

A function f : S → R is concave if S is convex and −f is convex.

Operations Preserving Convexity

Various operations preserve convexity of functions and sets. A detailed list can be
found in Chapter 3.2 of [65]. A few operations used in this book are mentioned
below.

1. The intersection of an arbitrary number of convex sets is a convex set:

if S1, S2, . . . , Sk are convex, then S1 ∩ S2 ∩ . . . ∩ Sk is convex.

This property extends to the intersection of an infinite number of sets:

if Sn is convex ∀n ∈ N+ then
⋂

n∈N+

Sn is convex.

The empty set is convex because it satisfies the definition of convexity.

2. The sublevel sets of a convex function f on S are convex:

if f(z) is convex then Sα = {z ∈ S : f(z) ≤ α} is convex ∀α ∈ R.

3. If f1, . . . , fN are convex functions, then
∑N

i=1 αifi is a convex function for
all αi ≥ 0, i = 1, . . . , N .

4. The composition of a convex function f(z) with an affine map z = Ax + b
generates a convex function f(Ax+ b) of x:

if f(z) is convex then f(Ax+ b) is convex on {x : Ax+ b ∈ dom(f)}.

5. Suppose f(x) = h(g(x)) = h(g1(x), . . . , gk(x)) with h : Rk → R, gi : R
s → R.

Then,

(a) f is convex if h is convex, h is nondecreasing in each argument, and gi
are convex,
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8 1 Main Concepts

(b) f is convex if h is convex, h is nonincreasing in each argument, and gi
are concave,

(c) f is concave if h is concave, h is nondecreasing in each argument, and gi
are concave.

6. The pointwise maximum of a set of convex functions is a convex function:

f1(z), . . . , fk(z) convex functions ⇒ f(z)

= max{f1(z), . . . , fk(z)} is a convex function.

This property holds also when the set is infinite.

Linear and Quadratic Convex Functions

1. A linear function f(z) = c′z + r is both convex and concave.

2. A quadratic function f(z) = z′Hz + 2q′z + r is convex if and only if H � 0.

3. A quadratic function f(z) = z′Hz + 2q′z + r is strictly convex if and only if
H ≻ 0. A strictly convex quadratic function is also strongly convex.

Convex Optimization Problems

The standard optimization problem (1.4) is said to be convex if the cost function
f is convex on Z and S is a convex set. A fundamental property of convex
optimization problems is that local optimizers are also global optimizers. This is
proven next.

Theorem 1.1 Consider a convex optimization problem and let z̄ be a local

optimizer. Then, z̄ is a global optimizer.

Proof: By hypothesis z̄ is feasible and there exists R such that

f(z̄) = min{f(z) : gi(z) ≤ 0 i = 1, . . . ,m, hj(z) = 0, j = 1, . . . , p ‖z − z̄‖ ≤ R}.
(1.11)

Now suppose that z̄ is not globally optimal. Then, there exist a feasible y such that
f(y) < f(z̄), which implies that ‖y − z̄‖ > R. Now consider the point z given by

z = (1− θ)z̄ + θy, θ =
R

2‖y − z̄‖
.

Then ‖z − z̄‖ = R/2 < R and by convexity of the feasible set z is feasible. By
convexity of the cost function f

f(z) ≤ (1− θ)f(z̄) + θf(y) < f(z̄),

which contradicts (1.11). �

Theorem 1.1 does not make any statement about the existence of a solution to
problem (1.4). It merely states that all local minima of problem (1.4) are also global
minima. For this reason, convexity plays a central role in the solution of continuous
optimization problems. It suffices to compute a local minimum to problem (1.4)
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1.3 Optimality Conditions 9

to determine its global minimum. Convexity also plays a major role in most non-
convex optimization problems which are solved by iterating between the solutions
of convex subproblems.

It is difficult to determine whether the feasible set S of the optimization
problem (1.4) is convex or not except in special cases. For example, if the functions
g1(z), . . . , gm(z) are convex and all the hi(z) (if any) are affine in z, then the
feasible set S in (1.6) is an intersection of convex sets and is therefore convex.
Moreover there are nonconvex problems which can be transformed into convex
problems through a change of variables and manipulations of cost and constraints.
The discussion of this topic goes beyond the scope of this overview on optimization.
The interested reader is referred to [65].

Remark 1.1 With the exception of trivial cases, integer and mixed-integer optimiza-

tion problems are always nonconvex problems because {0, 1} is not a convex set.

1.3 Optimality Conditions

In general, an analytical solution to problem (1.4), restated below, does not exist.

infz f(z)
subj. to gi(z) ≤ 0 for i = 1, . . . ,m

hj(z) = 0 for j = 1, . . . , p
z ∈ Z.

(1.12)

Solutions are usually computed by iterative algorithms which start from an initial
guess z0 and at step k generate a point zk such that the sequence {f(zk)}k=0,1,2,...

converges to f∗ as k increases. These algorithms iteratively use and/or solve
conditions for optimality, i.e., analytical conditions that a point z must satisfy
in order to be an optimizer. For instance, for convex, unconstrained optimization
problems with a smooth cost function the most commonly used optimality criterion
requires the gradient to vanish at the optimizer, i.e., z is an optimizer if and only
if ∇f(z) = 0. In this chapter we summarize necessary and sufficient optimality
conditions for unconstrained and constrained optimization problems.

1.3.1 Optimality Conditions for Unconstrained Problems

The proofs of the theorems presented next can be found in Chapter 4 and Section
8.6.1 of [27].

Necessary Conditions

Theorem 1.2 Suppose that f : R
s → R is differentiable at z̄. If there

exists a vector d such that ∇f(z̄)′d < 0, then there exists a δ > 0 such that

f(z̄ + λd) < f(z̄) for all λ ∈ (0, δ).
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10 1 Main Concepts

The vector d in the theorem above is called a descent direction. At a given
point z̄ a descent direction d satisfies the condition ∇f(z̄)′d < 0. Theorem
1.2 states that if a descent direction exists at a point z̄, then it is possible to
move from z̄ towards a new point z̃ whose associated cost f(z̃) is lower than
f(z̄). The direction of steepest descent ds at a given point z̄ is defined as the
normalized direction where ∇f(z̄)′ds < 0 is minimized. The direction ds of

steepest descent is ds = − ∇f(z̄)
‖∇f(z̄)‖ .

Two corollaries of Theorem 1.2 are stated next.

Corollary 1.1 Suppose that f : Rs → R is differentiable at z̄. If z̄ is a

local minimizer, then ∇f(z̄) = 0.

Corollary 1.2 Suppose that f : Rs → R is twice differentiable at z̄. If z̄
is a local minimizer, then ∇f(z̄) = 0 and the Hessian ∇2f(z̄) is positive

semidefinite.

Sufficient Condition

Theorem 1.3 Suppose that f : R
s → R is twice differentiable at z̄. If

∇f(z̄) = 0 and the Hessian of f(z) at z̄ is positive definite, then z̄ is a local

minimizer.

Necessary and Sufficient Condition

Theorem 1.4 Suppose that f : R
s → R is differentiable at z̄. If f is

convex, then z̄ is a global minimizer if and only if ∇f(z̄) = 0.

When the optimization is constrained and the cost function is not sufficiently
smooth, the conditions for optimality become more complicated. The intent of this
chapter is to give an overview of some important optimality criteria for constrained
nonlinear optimization. The optimality conditions derived here will be the main
building blocks for the theory developed later in this book.

1.4 Lagrange Duality Theory

Consider the nonlinear program (1.12). Let f∗ be the optimal value. Denote by Z
the domain of cost and constraints (1.5). Any feasible point z̄ provides an upper
bound to the optimal value f(z̄) ≥ f∗. Next, we will show how to generate a lower
bound on f∗.

Starting from the standard nonlinear program (1.12) we construct another
problem with different variables and constraints. The original problem (1.12) will
be called the primal problem while the new one will be called the dual problem.
First, we augment the objective function with a weighted sum of the constraints.
In this way the Lagrange dual function (or Lagrangian) L is obtained

L(z, u, v) = f(z) + u1g1(z) + · · ·+ umgm(z) +

+ v1h1(z) + · · ·+ vphp(z), (1.13)
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1.4 Lagrange Duality Theory 11

where the scalars u1, . . . , um, v1, . . . , vp are real variables called dual variables or
Lagrange multipliers. We can write Equation (1.13) in the compact form

L(z, u, v) = f(z) + u′g(z) + v′h(z), (1.14)

where u = [u1, . . . , um]′, v = [v1, . . . , vp]
′ and L : R

s × R
m × R

p → R. The
components ui and vi are called dual variables. Note that the i-th dual variable
ui is associated with the i-th inequality constraint of problem (1.12), the i-th dual
variable vi is associated with the i-th equality constraint of problem (1.12).

Let z be a feasible point: for arbitrary vectors u ≥ 0 and v we trivially obtain
a lower bound on f(z)

L(z, u, v) ≤ f(z). (1.15)

We minimize both sides of Equation (1.15)

inf
z∈Z, g(z)≤0, h(z)=0

L(z, u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

f(z) (1.16)

in order to reconstruct the original problem on the right-hand side of the expression.
Since for arbitrary u ≥ 0 and v

inf
z∈Z

L(z, u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

L(z, u, v), (1.17)

we obtain
inf
z∈Z

L(z, u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

f(z). (1.18)

Equation (1.18) implies that for arbitrary u ≥ 0 and v the solution to

inf
z∈Z

L(z, u, v) (1.19)

provides us with a lower bound to the original problem. The “best” lower bound
is obtained by maximizing problem (1.19) over the dual variables

sup
(u,v), u≥0

inf
z∈Z

L(z, u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

f(z).

Define the dual cost d(u, v) as follows

d(u, v) = inf
z∈Z

L(z, u, v) ∈ [−∞,+∞]. (1.20)

Then the Lagrange dual problem is defined as

sup
(u,v), u≥0

d(u, v), (1.21)

and its optimal solution, if it exists, is denoted by (u∗, v∗). The dual cost d(u, v) is
the optimal value of an unconstrained optimization problem. Problem (1.20) is called
the Lagrange dual subproblem. Only points (u, v) with d(u, v) > −∞ are interesting
for the Lagrange dual problem. A point (u, v) will be called dual feasible if u ≥ 0
and d(u, v) > −∞. d(u, v) is always a concave function since it is the pointwise
infimum of a family of affine functions of (u, v). This implies that the dual problem
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