FILTERING COMPLEX TURBULENT SYSTEMS

Many natural phenomena ranging from climate through to biology are described by complex dynamical systems. Getting information about these phenomena involves filtering noisy data and making predictions based on incomplete information, and often we need to do this in real time, e.g. for weather forecasting or pollution control. All this is further complicated by the sheer number of parameters involved, leading to further problems associated with the "curse of dimensionality" and the "curse of small ensemble size".

The authors develop, for the first time in book form, a systematic perspective on all these issues from the standpoint of applied mathematics. Their approach follows several strands:

- blending classical stability analysis of partial differential equations and their finite difference approximations;
- extending classical Kalman filters and applying them to stochastic models of turbulence to deal with large model errors;
- developing test suites of statistically exactly solvable models and new SPEKF algorithms for filtering slow-fast systems, moist convection, turbulent tracers, and geophysical turbulent systems.

The book contains enough background material from filtering, turbulence theory, and numerical analysis to make the presentation self-contained, and is suitable for graduate courses as well as for researchers in a range of disciplines across science and engineering where applied mathematics is required to enlighten observations and models.

ANDREW J. MAJDA is the Morse Professor of Arts and Sciences at the Courant Institute of New York University.

JOHN HARLIM is an Assistant Professor in the Department of Mathematics at North Carolina State University.

Cambridge University Press 978-1-107-01666-8 — Filtering Complex Turbulent Systems Andrew J. Majda, John Harlim Frontmatter <u>More Information</u>

FILTERING COMPLEX TURBULENT SYSTEMS

ANDREW J. MAJDA New York University

JOHN HARLIM

North Carolina State University

CAMBRIDGE

Cambridge University Press 978-1-107-01666-8 — Filtering Complex Turbulent Systems Andrew J. Majda, John Harlim Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107016668

© Andrew J. Majda and John Harlim 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-01666-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-1-107-01666-8 — Filtering Complex Turbulent Systems Andrew J. Majda, John Harlim Frontmatter <u>More Information</u>

Contents

	Prefc	ice	<i>page</i> ix		
1	Intro	oduction and overview: Mathematical strategies for filtering			
	turbulent systems				
	1.1	Turbulent dynamical systems and basic filtering	3		
	1.2	Mathematical guidelines for filtering turbulent dynamical systems	9		
	1.3	Filtering turbulent dynamical systems	11		
Par	tI Fu	ndamentals	13		
2	Filte	ring a stochastic complex scalar: The prototype test problem	15		
	2.1	Kalman filter: One-dimensional complex variable	15		
	2.2	Filtering stability	20		
	2.3	Model error	23		
3	The Kalman filter for vector systems: Reduced filters and				
	a thr	ee-dimensional toy model	30		
	3.1	The classical N-dimensional Kalman filter	30		
	3.2	Filter stability	32		
	3.3	Example: A three-dimensional toy model with a single observation	33		
	3.4	Reduced filters for large systems	39		
	3.5	A priori covariance stability for the unstable mode filter given			
		strong observability	43		
4	Continuous and discrete Fourier series and numerical discretization				
	4.1	Continuous and discrete Fourier series	47		
	4.2	Aliasing	49		
	4.3	Differential and difference operators	52		
	4.4	Solving initial value problems	53		
	4.5	Convergence of the difference operator	55		

CAMBRIDGE

Cambridge University Press 978-1-107-01666-8 — Filtering Complex Turbulent Systems Andrew J. Majda, John Harlim Frontmatter <u>More Information</u>

vi		Contents		
Par	tII M	athematical guidelines for filtering turbulent signals	59	
5	Stock	nastic models for turbulence	61	
	5.1	The stochastic test model for turbulent signals	61	
	5.2	Turbulent signals for the damped forced advection-diffusion equation	65	
	5.3	Statistics of turbulent solutions in physical space	66	
	5.4	Turbulent Rossby waves	68	
	Appe	ndix A: Temporal correlation function for each Fourier mode	70	
	Appe	ndix B: Spatio-temporal correlation function	71	
6	Filter	ring turbulent signals: Plentiful observations	72	
	6.1	A mathematical theory for Fourier filter reduction	73	
	6.2	Theoretical guidelines for filter performance under mesh refinement		
		for turbulent signals	77	
	6.3	Discrete filtering for the stochastically forced dissipative advection		
		equation	81	
7	Filter	ring turbulent signals: Regularly spaced sparse observations	94	
	7.1	Theory for filtering sparse regularly spaced observations	94	
	7.2	Fourier domain filtering for sparse regular observations	99	
	7.3	Approximate filters in the Fourier domain	102	
	7.4	New phenomena and filter performance for sparse regular		
		observations	107	
8	Filtering linear stochastic PDE models with instability and model error			
	8.1	Two-state continuous-time Markov process	117	
	8.2	Idealized spatially extended turbulent systems with instability	119	
	8.3	The mean stochastic model for filtering	123	
	8.4	Numerical performance of the filters with and without model error	127	
Par	t III F	Filtering turbulent nonlinear dynamical systems	131	
9	Strat	egies for filtering nonlinear systems	133	
	9.1	The extended Kalman filter	134	
	9.2	The ensemble Kalman filter	136	
	9.3	The ensemble square-root filters	139	
	9.4	Ensemble filters on the Lorenz-63 model	143	
	9.5	Ensemble square-root filters on stochastically forced linear systems	149	
	9.6	Advantages and disadvantages with finite ensemble strategies	151	
10	Filter	ring prototype nonlinear slow–fast systems	153	
	10.1	The nonlinear test model for filtering slow-fast systems with strong		
		fast forcing: An overview	153	
	10.2	Exact solutions and exactly solvable statistics in the nonlinear test		
		model	159	
	10.3	Nonlinear extended Kalman filter (NEKF)	171	
	10.4	Experimental designs	174	

CAMBRIDGE

		Contents	vii			
	10.5	Filter performance	177			
	10.6	Summary	190			
11	Filter	ring turbulent nonlinear dynamical systems by finite				
	enser	nble methods	192			
	11.1	The L-96 model	192			
	11.2	Ensemble square-root filters on the L-96 model	195			
	11.3	Catastrophic filter divergence	200			
	11.4	The two-layer quasi-geostrophic model	204			
	11.5	Local least-square EAKF on the QG model	210			
12	Filtering turbulent nonlinear dynamical systems by linear					
	stoch	astic models	214			
	12.1	Linear stochastic models for the L-96 model	215			
	12.2	Filter performance with plentiful observation	220			
	12.3	Filter performance with regularly spaced sparse observations	223			
13	Stock	nastic parametrized extended Kalman filter for filtering turbulent				
	signa	ls with model error	236			
	13.1	Nonlinear filtering with additive and multiplicative biases:				
		One-mode prototype test model	238			
	13.2	Filtering spatially extended turbulent systems with SPEKF	251			
	13.3	Application of SPEKF to the two-layer QG model	263			
	Appe	ndıx	269			
14	Filter	ring turbulent tracers from partial observations: An exactly				
	solva	ble test model	276			
	14.1	Model description	278			
	14.2	System statistics	279			
	14.3	Nonlinear extended Kalman filter	292			
	14.4	Filter performance	297			
15	The	search for efficient skillful particle filters for high-dimensional				
	turbu	ilent dynamical systems	316			
	15.1	The basic idea of a particle filter	317			
	15.2	Innovative particle filter algorithms	319			
	15.5	Filter performance on the L-05 model	320			
	15.4	Filter performance on the L-96 model	339			
	15.5	Discussion	340			
	Refer	ences	349			
	Index		356			

Cambridge University Press 978-1-107-01666-8 — Filtering Complex Turbulent Systems Andrew J. Majda, John Harlim Frontmatter <u>More Information</u>

Preface

This book is an outgrowth of lectures by both authors in the graduate course of the first author at the Courant Institute during spring 2008 and 2010 on the topic of filtering turbulent dynamical systems as well as lectures by the second author at the North Carolina State University in a graduate course in fall 2009. The material is based on the authors' joint research as well as collaborations with Marcus Grote and Boris Gershgorin; the authors thank these colleagues for their explicit and implicit contributions to this material. Chapter 1 presents a detailed overview and summary of the viewpoint and material in the book. This book is designed for applied mathematicians, scientists and engineers, ranging from first- and second-year graduate students to senior researchers interested in filtering large-dimensional complex nonlinear systems.

The first author acknowledges the generous support of DARPA through Ben Mann and ONR through Reza Malek-Madani which funded the research on these topics and helped make this book a reality.