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Introduction and overview: Mathematical strategies

for filtering turbulent systems

Filtering is the process of obtaining the best statistical estimate of a natural system from

partial observations of the true signal from nature. In many contemporary applications

in science and engineering, real-time filtering of a turbulent signal from nature involv-

ing many degrees of freedom is needed to make accurate predictions of the future state.

This is obviously a problem with significant practical impact. Important contemporary

examples involve the real-time filtering and prediction of weather and climate as well

as the spread of hazardous plumes or pollutants. Thus, an important emerging scientific

issue is the real-time filtering through observations of noisy signals for turbulent nonlin-

ear dynamical systems as well as the statistical accuracy of spatio-temporal discretizations

for filtering such systems. From the practical standpoint, the demand for operationally

practical filtering methods escalates as the model resolution is significantly increased. In

the coupled atmosphere–ocean system, the current practical models for prediction of both

weather and climate involve general circulation models where the physical equations for

these extremely complex flows are discretized in space and time and the effects of unre-

solved processes are parametrized according to various recipes; the result of this process

involves a model for the prediction of weather and climate from partial observations of

an extremely unstable, chaotic dynamical system with several billion degrees of freedom.

These problems typically have many spatio-temporal scales, rough turbulent energy spectra

in the solutions near the mesh scale, and a very large-dimensional state space, yet real-time

predictions are needed.

Particle filtering of low-dimensional dynamical systems is an established discipline

(Bain and Crisan, 2009). When the system is low dimensional or when it has a low-

dimensional attractor, Monte Carlo approaches such as the particle filter (Chorin and

Krause, 2004) with its various up-to-date resampling strategies (Del Moral, 1996; Del

Moral and Jacod, 2001; Rossi and Vila, 2006) provide better estimates in the presence of

strong nonlinearity and highly non-Gaussian distributions. However, with the above prac-

tical computational constraint in mind, these accurate nonlinear particle filtering strategies

are not feasible since sampling a high-dimensional variable is computationally impossi-

ble for the foreseeable future. Recent mathematical theory strongly supports this curse of

dimensionality for particle filters (Bengtsson et al., 2008; Bickel et al., 2008). Nevertheless
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2 Introduction and overview

some progress in developing particle filtering with small ensemble size for non-Gaussian

turbulent dynamical systems is discussed in Chapter 15. These approaches, including the

new maximum entropy particle filter (MEPF) due to the authors, all make judicious use of

partial marginal distributions to avoid particle collapse. In the second direction, Bayesian

hierarchical modeling (Berliner et al., 2003) and reduced-order filtering strategies (Miller

et al., 1999; Ghil and Malanotte-Rizolli, 1991; Todling and Ghil, 1994; Anderson, 2001,

2003; Chorin and Krause, 2004; Farrell and Ioannou, 2001, 2005; Ott et al., 2004; Hunt

et al., 2007; Harlim and Hunt, 2007b) based on the Kalman filter (Anderson and Moore,

1979; Chui and Chen, 1999; Kaipio and Somersalo, 2005) have been developed with some

success in these extremely complex high-dimensional nonlinear systems. There is an inher-

ently difficult practical issue of small ensemble size in filtering statistical solutions of

these complex problems due to the large computational overload in generating individual

ensemble members through the forward dynamical operator (Haven et al., 2005). Numer-

ous ensemble-based Kalman filters (Evensen, 2003; Bishop et al., 2001; Anderson, 2001;

Szunyogh et al., 2005; Hunt et al., 2007) show promising results in addressing this issue

for synoptic-scale mid-latitude weather dynamics by imposing suitable spatial localization

on the covariance updates; however, all these methods are very sensitive to model resolu-

tion, observation frequency and the nature of the turbulent signals when a practical limited

ensemble size (typically less than 100) is used. They are also less skillful for more complex

phenomena like gravity waves coupled with condensational heating from clouds which are

important for the tropics and severe local weather.

Here is a list of fundamental new difficulties in the real-time filtering of turbulent signals

that need to be addressed as mentioned briefly above.

1(a) Turbulent dynamical systems to generate the true signal. The true signal from

nature arises from a turbulent nonlinear dynamical system with extremely complex

noisy spatio-temporal signals which have significant amplitude over many spatial

scales.

1(b) Model errors. A major difficulty in accurate filtering of noisy turbulent signals with

many degrees of freedom is model error; the fact that the true signal from nature is

processed for filtering and prediction through an imperfect model where by practical

necessity, important physical processes are parametrized due to inadequate numerical

resolution or incomplete physical understanding. The model errors of inadequate res-

olution often lead to rough turbulent energy spectra for the truth signal to be filtered

on the order of the mesh scale for the dynamical system model used for filtering.

1(c) Curse of ensemble size. For forward models for filtering, the state space dimension

is typically large, of order 104–108, for these turbulent dynamical systems, so gen-

erating an ensemble size with such a direct approach of order 50–100 members is

typically all that is available for real-time filtering.

1(d) Sparse, noisy, spatio-temporal observations for only a partial subset of the vari-

ables. In systems with multiple spatio-temporal scales, the sparse observations of

the truth signal might automatically couple many spatial scales, as shown below

in Chapter 7 or in Harlim and Majda (2008b), while the observation of a partial
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1.1 Turbulent dynamical systems and basic filtering 3

subset of variables might mix together temporal slow and fast components of the

system (Gershgorin and Majda, 2008, 2010) as discussed in Chapter 10. For exam-

ple, observations of pressure or temperature in the atmosphere mix slow vortical and

fast gravity wave processes.

This book is an introduction to filtering with an emphasis on the central new issues in

1(a)–(d) for filtering turbulent dynamical systems through the “modus operandi” of the

modern applied mathematics paradigm (Majda, 2000a) where rigorous mathematical the-

ory, asymptotic and qualitative models, and novel numerical algorithms are all blended

together interactively to give insight into central “cutting edge” practical science prob-

lems. In the last several years, the authors have utilized the synergy of modern applied

mathematics to address the following:

2(a) How to develop simple off-line mathematical test criteria as guidelines for filtering

extremely stiff multiple space–time scale problems that often arise in filtering tur-

bulent signals through plentiful and sparse observations? (Majda and Grote, 2007;

Castronovo et al., 2008; Grote and Majda, 2006; Harlim and Majda, 2008b)

2(b) For turbulent signals from nature with many scales, even with mesh refinement, the

model has inaccuracies from parametrization, under-resolution, etc. Can judicious

model errors help filtering and simultaneously overcome the curse of dimensionality?

(Castronovo et al., 2008; Harlim and Majda, 2008a,b, 2010a)

2(c) Can new computational strategies based on stochastic parametrization algorithms

be developed to overcome the curse of dimensionality, to reduce model error and

improve the filtering as well as the prediction skill? (Gershgorin et al., 2010a,b;

Harlim and Majda, 2010b)

2(d) Can exactly solvable models be developed to elucidate the central issues in 1(d) for

turbulent signals, to develop unambiguous insight into model errors and to lead to

efficient new computational algorithms? (Gershgorin and Majda, 2008, 2010)

The main goals of this book are the following: first, to introduce the reader to filtering

from this viewpoint in an elementary fashion where no prior background on these topics

is assumed (Chapters 2–4); secondly, to describe in detail the recent and ongoing devel-

opments, emphasizing the remarkable new mathematical and physical phenomena that

emerge from the modern applied mathematics modus operandi applied to filtering turbulent

dynamical systems. Next, in this introductory chapter, we provide an overview of turbulent

dynamical systems and basic filtering followed by an overview of the basic applied mathe-

matics motivation which leads to the new developments and viewpoint emphasized in this

book.

1.1 Turbulent dynamical systems and basic filtering

The large-dimensional turbulent dynamical systems which define the true signal from

nature to be filtered in the class of problems studied here have a fundamentally different

statistical character than in more familiar low-dimensional chaotic dynamical systems. The
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4 Introduction and overview

most well-known low-dimensional chaotic dynamical system is Lorenz’s famous three-

equation model (Lorenz, 1963) which is weakly mixing with one unstable direction on

an attractor with high symmetry. In contrast, realistic turbulent dynamical systems have a

large phase space dimension, a large dimensional unstable manifold on the attractor, and

are strongly mixing with exponential decay of correlations. The simplest prototype exam-

ple of a turbulent dynamical system is also due to Lorenz and is called the L-96 model

(Lorenz, 1996; Lorenz and Emanuel, 1998). It is widely used as a test model for algorithms

for prediction, filtering and low-frequency climate response (Majda et al., 2005; Majda and

Wang, 2006). The L-96 model is a discrete periodic model given by the following system

duj

dt
= (uj+1 − uj−2)uj−1 − uj + F, j = 0, . . . , J − 1, (1.1)

with J = 40 and with F the forcing parameter. The model is designed to mimic baroclinic

turbulence in the mid-latitude atmosphere with the effects of energy-conserving nonlinear

advection and dissipation represented by the first two terms in (1.1). For sufficiently strong

forcing values such as F = 6, 8, 16, the L-96 model is a prototype turbulent dynamical

system which exhibits features of weakly chaotic turbulence (F = 6), strongly chaotic

turbulence (F = 8), and strong turbulence (F = 16) (Majda et al., 2005). In order to

quantify and compare the different types of turbulent chaotic dynamics in the L-96 model

as F is varied, it is convenient to rescale the system to have unit energy for statistical

fluctuations around the constant mean statistical state, ū (Majda et al., 2005); thus, the

transformation uj = ū + E
1/2
p ũj , t = t̃ E

−1/2
p is utilized where E p represents the energy

fluctuations (Majda et al., 2005). After this normalization, the mean state becomes zero

and the energy fluctuations are unity for all values of F . The dynamical equation in terms

of the new variables, ũj , becomes

dũj

dt̃
= (ũj+1 − ũj−2)ũj−1 + E

−1/2
p ((ũj+1 − ũj−2)ū − ũj ) + E−1

p (F − ū). (1.2)

Table 1.1 lists, in the non-dimensional coordinates, the leading Lyapunov exponent, λ1, the

dimension of the unstable manifold, N+, the sum of the positive Lyapunov exponents (the

KS entropy) and the correlation time, Tcorr, of any ũj variable with itself as F is varied

Table 1.1 Dynamical properties of the L-96 model for regimes with

F = 6, 8, 16. λ1 denotes the largest Lyapunov exponent, N+ denotes

the dimension of the expanding subspace of the attractor, K S denotes

the Kolmogorov–Sinai entropy and Tcorr denotes the decorrelation

time of the energy-rescaled time correlation function.

F λ1 N+ KS Tcorr

Weakly chaotic 6 1.02 12 5.547 8.23

Strongly chaotic 8 1.74 13 10.94 6.704

Fully turbulent 16 3.945 16 27.94 5.594
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Figure 1.1 Space–time diagrams of numerical solutions of the L-96 model for the weakly chaotic

(F = 6), strongly chaotic (F = 8) and fully turbulent (F = 16) regimes.

through F = 6, 8, 16. Note that λ1, N+ and KS increase significantly as F increases while

Tcorr decreases in these non-dimensional units; furthermore, the weakly turbulent case with

F = 6 already has a 12-dimensional unstable manifold in the 40-dimensional phase space.

Snapshots of the time series for (1.1) with F = 6, 8, 16, as depicted in Fig. 1.1, qualita-

tively confirm the above quantitative intuition with weakly turbulent patterns for F = 6,

strongly chaotic wave turbulence for F = 8, and fully developed wave turbulence for

F = 16. It is worth remarking here that smaller values of F around F = 4 exhibit the

more familiar low-dimensional weakly chaotic behavior associated with the transition to

turbulence.

In regimes to realistically mimic properties of nature, virtually all atmosphere, ocean

and climate models with sufficiently high resolution are turbulent dynamical systems with

features as described above. The simplest paradigm model of this type is the two-layer

quasi-geostrophic (QG) model in doubly periodic geometry that is externally forced by a

mean vertical shear (Smith et al., 2002), which has baroclinic instability (Salmon, 1998);

the properties of the turbulent cascade have been extensively discussed in this setting, e.g.

see Salmon (1998) and citations in Smith et al. (2002). The governing equations for the

two-layer QG model with a flat bottom, rigid lid and equal-depth layers H can be written as

∂q1

∂t
+ J (ψ1, q1) + U

∂q1

∂x
+ (β + k2

dU )
∂ψ1

∂x
+ ν∇8q1 = 0,

∂q2

∂t
+ J (ψ2, q2) − U

∂q2

∂x
+ (β − k2

dU )
∂ψ2

∂x
+ κ∇2ψ2 + ν∇8q2 = 0,

(1.3)

where subscript 1 denotes the top layer and 2 the bottom layer; ψ is the perturbed stream

function; J (ψ, q) = ψx qy − ψyqx is the Jacobian term representing nonlinear advection;

U is the zonal mean shear; β is the meridional gradient of the Coriolis parameter; q is the

perturbed quasi-geostropic potential vorticity, defined as follows

qi = βy + ∇2ψi + k2
d

2
(ψ3−i − ψi ), i = 1, 2, (1.4)
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6 Introduction and overview

where kd =
√

8/Ld is the wavenumber corresponding to the Rossby radius Ld ; κ is the

Ekman bottom drag coefficient; and ν is the hyperviscosity coefficient. Note that Eqns (1.3)

are the prognostic equations for perturbations around a uniform shear with stream function

�1 = −U y, �2 = U y as the background state, and the hyperviscosity term, ν∇8q, is

added to filter out the energy buildup on the smaller scales.

This is the simplest climate model for the poleward transport of heat in the atmosphere

or ocean and with a modest resolution of 128 × 128 × 2 grid points has a phase space

of more than 30,000 variables. Again for modeling the atmosphere and ocean, this model

in the appropriate parameter regimes is a strongly turbulent dynamical system with strong

cascades of energy (Salmon, 1998; Smith et al., 2002; Kleeman and Majda, 2005); it has

been utilized recently as a test model for algorithms for filtering sparsely observed turbulent

signals in the atmosphere and ocean (Harlim and Majda, 2010b).

1.1.1 Basic filtering

We assume that observations are made at uniform discrete times, m	t , with m =
1, 2, 3, . . . For example, in global weather prediction models, the observations are given

as inputs in the model every six hours and for large-dimensional turbulent dynamical sys-

tems, it is a challenge to implement continuous observations, practically. As depicted in

Fig. 1.2, filtering is a two-step process involving statistical prediction of a probability dis-

tribution for the state variable u through a forward operator on the time interval between

observations followed by an analysis step at the next observation time which corrects this

probability distribution on the basis of the statistical input of noisy observations of the

system. In the present applications, the forward operator is a large-dimensional dynamical

system perhaps with noise written in the Itô sense as

du

dt
= F(u, t) + σ(u, t)Ẇ (t) (1.5)

for u ∈ R
N , where σ is an N ×K noise matrix and Ẇ ∈ R

K is K -dimensional white noise.

The Fokker–Planck equation for the probability density, p(u, t), associated with (1.5) is

1. Forecast (prediction)

um, + (posterior)
um + 1, − (prior)

um + 1, + (posterior)

um + 1, − (prior)

true signal true signal

observation (vm + 1) observation (vm + 1)

t m t m + 1 t m t m + 1

2. Analysis (correction)

Figure 1.2 Filtering: Two-step predictor–corrector method.
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1.1 Turbulent dynamical systems and basic filtering 7

pt = −∇u · (F(u, t)p) + 1

2
∇u · ∇u(Qp) ≡ LFP p (1.6)

pt |t=t0 = p0(u)

with Q(t) = σσ T . For simplicity in exposition, here and throughout the remainder of the

book we assume M linear observations, �vm ∈ R
M , of the true signal from nature given by

�vm = Gu(m	t) + �σ o
m, m = 1, 2, . . . (1.7)

where G maps R
N into R

M while the observational noise, �σ o
m ∈ R

M , is assumed to be a

zero-mean Gaussian random variable with M × M covariance matrix,

Ro = 〈�σ o
m ⊗ (�σ o

m)T 〉. (1.8)

Gaussian random variables are uniquely determined by their mean and covariance; here

and below, we utilize the standard notation N ( �X , R) to denote a vector Gaussian random

variable with mean �X and covariance matrix R. With these preliminaries, we describe the

two-step filtering algorithm with the dynamics in (1.5), (1.6) and the noisy observations

in (1.7), (1.8). Start at time step m	t with a posterior probability distribution, pm,+(u),

which takes into account the observations in (1.7) at time m	t . Calculate a prediction or

forecast probability distribution, pm+1,−(u), by using (1.6), in other words, let p be the

solution of the Fokker–Planck equation,

pt = LFP p, m	t < t ≤ (m + 1)	t (1.9)

p|t=m	t = pm,+(u).

Define pm+1,−(u), the prior probability distribution before taking observations at time

m + 1 into account, by

pm+1,−(u) ≡ p(u, (m + 1)	t) (1.10)

with p determined by the forward dynamics in (1.9). Next, the analysis step at time (m + 1)

	t which corrects this forecast and takes the observations into account is implemented by

using Bayes’ theorem

pm+1,+(u)p(vm+1) = pm+1(u|vm+1)p(vm+1)

= pm+1(u, v) = pm+1(vm+1|u)pm+1,−(u). (1.11)

With Bayes’ formula in (1.11), we calculate the posterior distribution

pm+1,+(u) ≡ pm+1(u|vm+1) = pm+1(vm+1|u)pm+1,−(u)
∫

pm+1(vm+1|u)pm+1,−(u)du
. (1.12)

The two steps described in (1.9), (1.10), (1.12) define the basic nonlinear filtering

algorithm which forms the theoretical basis for practical design of algorithms for filter-

ing turbulent dynamical systems (Jazwinski, 1970; Bain and Crisan, 2009). While this

is conceptually clear, practical implementation of (1.9), (1.10), (1.12), directly in turbu-

lent dynamical systems, is impossible due to large state space, N ≫ 1, as well as the

fundamental difficulties elucidated in 1(a)–(d) in the introduction.
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8 Introduction and overview

The most important and famous example of filtering is the Kalman filter where the

analysis step in (1.5) is associated with linear dynamics which can be integrated between

observation time steps m	t and (m + 1)	t to yield the forward operator

um+1 = Fum + f̄m+1 + σm+1. (1.13)

Here F is the N × N system operator matrix and σm is the system noise assumed to be

zero-mean and Gaussian with N × N covariance matrix

R = 〈σm ⊗ σ T
m 〉, ∀m, (1.14)

while f̄m is a deterministic forcing. Next, we present the simplified Kalman filter equa-

tions for the linear case. First assume the initial probability density p0(u) is Gaussian, i.e.

p0(u) = N (ū0, Ro) and assume by recursion that the posterior probability distribution,

pm,+(u) = N (ūm,+, Rm,+), is also Gaussian. By using the linear dynamics in (1.13), the

forecast or prediction distribution at time (m + 1)	t is also Gaussian,

pm+1,−(u) = N (ūm+1,−, Rm+1,−)

ūm+1,− = Fūm,+ + f̄m+1 (1.15)

Rm+1,− = F Rm,+FT + R.

With the assumptions in (1.7), (1.8) and (1.13), (1.15), the analysis step in (1.12) becomes

an explicit regression procedure for Gaussian random variables (Chui and Chen, 1999;

Anderson and Moore, 1979) so that the posterior distribution, pm+1,+(u), is also Gaussian

yielding the Kalman filter

pm+1,+(u) = N (ūm+1,+, Rm+1,+)

ūm+1,+ = (I − Km+1G)ūm+1,− + Km+1vm+1 (1.16)

Rm+1,+ = (I − Km+1G)Rm+1,−
Km+1 = Rm+1,−GT (G Rm+1,−GT + Ro)−1.

The N × M matrix, Km+1, is the Kalman gain matrix. Note that the posterior mean after

processing the observations is a weighted sum of the forecast and analysis contributions

through the Kalman gain matrix and also that the observations reduce the covariance,

Rm+1,+ ≤ Rm+1,−. In this Gaussian case with linear observations, the analysis step going

from (1.15) to (1.16) is a standard linear least-squares regression. An excellent treatment

of this can be found in chapter 3 of Kaipio and Somersalo (2005). There is a huge litera-

ture on Kalman filtering; two excellent basic texts are Chui and Chen (1999) and Anderson

and Moore (1979) where more details and references can be found. Our intention in the

introductory parts in this book in Chapters 2 and 3 is not to repeat the well-known mate-

rial in (1.15), (1.16) in detail; instead we introduce this elementary material in a fashion

to set the stage for the mathematical guidelines developed in Part II (Chapters 5–8) and

the applications to filtering turbulent nonlinear dynamical systems presented in Part III

(Chapters 9–15).
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1.2 Mathematical guidelines for filtering 9

Naively, the reader might expect that everything is known about filtering linear sys-

tems; however, when the linear system is high dimensional, i.e. N ≫ 1, the same issues

elucidated in 1(a)–(d) occur for linear systems in a more transparent fashion. This is the

viewpoint emphasized and developed in Part II of the book (Chapters 5–8) which is moti-

vated next. For linear systems without model errors, the recursive Kalman filter is an

optimal estimator but the recursive nonlinear filter in (1.7)–(1.12) may not be an optimal

estimator for the nonlinear stochastic dynamical system without model error in (1.5).

1.2 Mathematical guidelines for filtering turbulent dynamical systems

How can useful mathematical guidelines be developed in order to elucidate and ameliorate

the central new issues in 1(a)–(d) from the introduction for turbulent dynamical systems?

This is the topic of this section. Of course, to be useful, such mathematical guidelines

have to be general yet still involve simplified models with analytical tractability. Such cri-

teria have been developed recently by Majda and Grote (2007); Castronovo et al. (2008)

and Harlim and Majda (2008b) through the modern applied mathematics paradigm and

the goal here is to outline this development and discuss some of the remarkable phenom-

ena which occur. The starting point for this development for filtering turbulent dynamical

systems involves the symbiotic interaction of three different disciplines in applied mathe-

matics/physics, as depicted in Fig. 1.3: stochastic modeling of turbulent signals, numerical

analysis of PDEs and classical filtering theory outlined in (1.13)–(1.16) of Section 1.1.

Here is the motivation from the three legs of the triangle.

First, the simplest stochastic models for modeling turbulent fluctuations consist of

replacing the nonlinear interaction at these modes by additional dissipation and white noise

Modeling turbulent signals

Stochastic Langevin models

Complex nonlinear

dynamical systems

Extended Kalman filter

Observability

Controllability

Filtering

Classical stability criteria:

Classical von Neumann

stability analysis for

frozen coefficient linear PDEs

Stiff ODEs

Numerical analysis

Figure 1.3 Modern applied mathematics paradigm for filtering.
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10 Introduction and overview

forcing to mimic rapid energy transfer (Salmon, 1998; Majda et al., 1999, 2003; Majda and

Timofeyev, 2004; Delsole, 2004; Majda et al., 2008). Conceptually, we view this stochas-

tic model for a given turbulent (Fourier) mode as given by the linear Langevin SDE or

Ornstein–Uhlenbeck process for the complex scalar

du(t) = λu(t)dt + σdW (t), (1.17)

λ = −γ + iω, γ > 0,

with W (t) a complex Wiener process, and σ its noise strength. Of course, the amplitude

and strength of these coefficients, γ, σ , vary widely for different Fourier modes and depend

empirically on the nonlinear nature of the turbulent cascade, the energy spectrum, etc.

These simplest turbulence models are developed in detail in Chapter 5 and an important

extension with intermittent instability at large scales is developed in Chapter 8. Quantitative

illustrations of this modeling process for the L-96 model in (1.1) in a variety of regimes

and the two-layer model in (1.3) are developed in Part III in Chapters 12 and 13, together

with cheap stochastic filters with judicious model errors based on these linear stochastic

models.

Secondly, the most successful mathematical guideline for numerical methods for deter-

ministic nonlinear systems of PDEs is von Neumann stability analysis (Richtmeyer and

Morton, 1967): The nonlinear problem is linearized at a constant background state,

and Fourier analysis is utilized for this constant-coefficient PDE, resulting in discrete

approximations for a complex scalar test model for each Fourier mode,

du(t)

dt
= λu(t), λ = −γ + iω, γ > 0. (1.18)

All the classical mathematical phenomena such as, for example, the CFL stability condition

on the time step 	t and spatial mesh h, |c|	t/h < 1, for various explicit schemes for the

advection equation ut + cux = −du, occur because, at high spatial wavenumbers, the

scalar test problem in (1.18) is a stiff ODE, i.e.

|λ| ≫ 1. (1.19)

For completeness, Chapter 4 provides a brief introduction to this analysis.

The third leg of the triangle involves classical linear Kalman filtering as outlined in

(1.13)–(1.16). In conventional mathematical theory for filtering linear systems, one checks

algebraic observability and controllability conditions (Chui and Chen, 1999; Anderson and

Moore, 1979) and is automatically guaranteed asymptotic stability for the filter; this the-

ory applies for a fixed state dimension and is a very useful mathematical guideline for

linear systems that are not stiff in low-dimensional state space. Grote and Majda (2006)

developed striking examples involving unstable differencing of the stochastic heat equation

where the state space dimension is N = 42 with 10 unstable modes where the classical

observability (Cohn and Dee, 1988) and controllability conditions were satisfied yet the

filter covariance matrix had condition number 1013 so there is no practical filtering skill!
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