Stellar Evolution Physics

Volume 2: Advanced Evolution of Single Stars

This volume explains the microscopic physics operating in stars in advanced stages of their evolution and describes with many numerical examples and illustrations how they respond to this microphysics. Models of low and intermediate mass are evolved through the core helium-burning phase, the asymptotic giant branch phase (alternating shell hydrogen and helium burning), and through the final cooling white dwarf phase. A massive model is carried from the core helium-burning phase through core and shell carbon-burning phases. Gravothermal responses to nuclear reaction-induced transformations and energy loss from the surface are described in detail. Written for senior graduate students and researchers who have mastered the principles of stellar evolution, as developed in the first volume of *Stellar Evolution Physics*, sufficient attention is paid to how numerical solutions are obtained to enable the reader to engage in model construction on a professional level.

The processes in this volume build upon those in Volume 1 of *Stellar Evolution Physics: Physical Processes in Stellar Interiors* (ISBN 978-1-107-01656-9), which describes the microscopic physics operating in stars and demonstrates how stars respond from formation, through hydrogen-burning phases, up to the onset of helium burning. *Stellar Evolution Physics* is also available as a 2-volume set (ISBN 978-1-107-60253-3). Taken together, the two volumes will prepare a graduate student for professional-level research in this key area of astrophysics.

Icko Iben, Jr. is Emeritus Distinguished Professor of Astronomy and Physics at the University of Illinois at Urbana-Champaign, where he also gained his MS and PhD degrees in Physics and where a Distinguished Lectureship in his name was established in 1998. He initiated his teaching career at Williams College (1958–61), engaged in astrophysics research as a Senior Research Fellow at Cal Tech (1961–4), and continued his teaching career at MIT (1964–72) and Illinois (1972–99). He has held visiting Professorships at over a dozen institutions, including Harvard University, the University of California at Santa Cruz, the University of Bologna, Italy, and Niigata University, Japan. He was elected to the US National Academy of Sciences in 1985, and his awards include the Russell Lectureship of the American Astronomical Society (1989), the George Darwin Lectureship (1984) and the Eddington Medal (1990) of the Royal Astronomical Society, and the Eminent Scientist Award of the Japan Society for the Promotion of Science (2003–4).

Stellar Evolution Physics

Volume 2: Advanced Evolution of Single Stars

ICKO IBEN, JR. University of Illinois at Urbana-Champaign

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107016576

© I. Iben, Jr. 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Iben, Icko, 1931– Stellar evolution physics / Icko Iben, Jr. p. cm. Includes bibliographical references and index. ISBN 978-1-107-01657-6 (Hardback) 1. Stars–Evolution. 2. Stellar dynamics. I. Title. QB806.I24 2012 523.8'8–dc23

2012019504

ISBN 978-1-107-01657-6 Hardback

Also available as part of a two-volume set, Stellar Evolution Physics ISBN 978-1-107-60253-3

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface

		Part IV Transport processes, weak interaction processes,	
		and helium-burning reactions	891
12	Particle	diffusion and gravitational settling	893
	12.1	Moments of the Boltzmann transport equation for a species under	
		conditions of complete equilibrium	895
	12.2	A monoelemental gas in complete equilibrium at constant temperature	
		in a constant gravitational field	901
	12.3	Diffusion velocities and moments in a multicomponent gas	
		in a gravitational field	906
	12.4	The strength of the electrostatic field when equilibrium with respect	
		to diffusion prevails	909
	12.5	Driving forces for diffusion in an initially homogeneous medium	
		consisting of two ion species in a gravitational field	911
	12.6	On the determination of resistance coefficients for diffusion	915
	12.7	Inclusion of electron-flow properties and ion-electron interactions	
		and determination of diffusion velocities	918
	12.8	Generalization to a multicomponent gas	922
	12.9	Gravitational diffusion velocities for helium and iron at the base	
		of the convective envelope of solar models	925
	12.10	More diffusion velocities below the base of the convective envelope	
		of a solar model	930
	12.11	Equations for abundance changes due to diffusion and solution	
		algorithms	933
	Bibliog	graphy and references	940
42	п.		0.44
13		nduction by electrons	941
	13.1	The basic physics of thermal diffusion	942
	13.2	The macroscopic electrostatic field in an ionized medium	
		in a gravitational field	951
	13.3	Use of the Boltzmann transport equation to find the asymmetry	
		in the electron-distribution function	956
		13.3.1 The cross section integral	960

۷

vi	Contents				
	13.4	Gradients in thermodynamic variables and the electric field	962		
	13.5	Thermal conductivity in the classical approximation	968		
		13.5.1 General considerations	968		
		13.5.2 When electrons are not degenerate	970		
		13.5.3 When electrons are degenerate but not relativistic	971		
	13.6	A quantitative estimate of the conductive opacity	973		
		13.6.1 Fits to still more sophisticated estimates of the conductive			
		opacity	975		
	Biblio	graphy and references	978		
1	4 Beta de	ecay and electron capture in stars at high densities	979		
	14.1	The formalism	980		
	14.2	Electron capture at high densities	984		
	14.3	Electron decay at high densities	989		
	14.4	Positron decay and general considerations concerning electron			
		capture on a positron emitter	993		
	14.5	Electron capture on a positron emitter when electrons are not degenerate	995		
	14.6	Electron capture on a positron emitter when electrons are degenerate	999		
	14.7	Urca neutrino energy-loss rates	1001		
	14.8	Additional neutrino energy-loss rates for beta-decay reactions involving positron-stable isotopes	1004		
	14.9	Neutrino energy-loss rates for electron capture on a positron emitter	1001		
	14.10	Higher order beta transitions and experimental properties	1000		
	11110	of beta-decay reactions	1009		
	Biblio	graphy and references	1010		
1	5 Current	t–current weak interactions and the production of neutrino–antineutrino pairs	1011		
	15.1	The charged-current interaction Hamiltonian and the necessity	1011		
	13.1	for two coupling constants in nuclear beta decay	1013		
	15.2	The charged-current interaction and muon decay	1010		
	15.3	Annihilation of electron–positron pairs into neutrino–antineutrino	1020		
		pairs and the associated energy-loss rate when electrons are not			
		degenerate	1024		
	15.4	The Dirac equation, plane-wave solutions, helicity eigenfunctions,			
		and gamma matrices	1033		
	15.5	Derivation of the cross section for electron-positron pair annihilation			
		in the V-A theory	1042		
	15.6	A brief overview of the history and the nature of weak-interaction			
		induced neutrino-antineutrino production processes	1050		
	15.7	On the character of classical plasma oscillations	1052		
	15.8	Quantized plasma oscillations and the neutrino-antineutrino			
		energy-loss rate due to plasmon decay	1061		
	Biblio	graphy and references	1068		

vii		Contents			
	- 16	Helium-burning nuclear reactions and energy-generation rates	1070		
		16.1 Some basic physics of resonant reactions	1072		
		16.2 The triple-alpha reactions in the classical approximation	1078		
		16.3 Triple-alpha reactions at low temperatures	1086		
		16.4 The formation of 16 O by alpha capture on 12 C and the conversion of 14 N into 22 Ne	1091		
		16.5 Neutron production by (α, n) reactions on ¹³ C and ²² Ne	1094		
		16.6 On the contribution of the ${}^{7}\text{Li}(p, \gamma)^{8}\text{Be reaction to the production}$			
		of carbon in metal-free stars	1099		
		Bibliography and references	1099		
		Part V Evolution during helium-burning phases	1101		
	17	' Evolution of a low mass model burning helium and hydrogen	1103		
		17.1 Helium shell flashes during evolution from the red giant branch			
		to the horizontal branch	1104		
		17.2 Horizontal branch and early asymptotic giant branch evolution	1149		
		17.3 The first helium shell flash on the asymptotic giant branch	1175		
		17.4 Systematics of thermal pulses along the asymptotic giant branch	1191		
		17.5 The roles of nuclear burning, convective mixing, and gravothermal activity in determining abundance changes and dredge-up during			
		the TPAGB phase	1206		
		17.6 Neutron production and neutron capture in helium-burning regions	1214		
		Bibliography and references	1218		
	18	Evolution of an intermediate mass model burning helium and hydrogen	1220		
		18.1 Evolution during the core helium-burning phase	1223		
		18.2 Transition to, evolution along, and transition from the early			
		asymptotic giant branch	1235		
		18.3 The thermally pulsing asymptotic giant branch phase and the third	1000		
		dredge-up phenomenon	1260		
		Bibliography and references	1290		
	19	Neutron production and neutron capture in a TPAGB model star of intermediate mass	1291		
		19.1 History of <i>s</i> -process nucleosynthesis and outline	1291		
		19.2 Neutron-production and neutron-capture reaction rates	1293		
		19.3 Formation of a ¹³ C abundance peak and neutron production			
		and neutron capture in the peak	1302		
		19.4 Neutron production and capture during the interpulse phase in matter	1010		
		processed by hydrogen burning	1313		
		19.5 Neutron-capture nucleosynthesis in the convective shell during the fifteenth helium shell flash	1200		
		the inteenth neurum sneil flash	1322		

viii	. –		Contents	
		19.6	Neutron-capture nucleosynthesis in TPAGB stars and heavy s-process	
			element production in the Universe	1336
		Biblio	graphy and references	1338
	20		ion of a massive population I model during helium- and carbon-burning stages	1339
		20.1	Evolution of surface and central characteristics of a 25 M_{\odot} model during quiescent nuclear burning stages and comparison of character- istics of models of mass 1 M_{\odot} , 5 M_{\odot} , and 25 M_{\odot}	1340
		20.2	Evolution of internal characteristics and production of light s-process	
			elements in a 25 M_{\odot} model during core helium burning	1346
		20.3	Core and shell carbon-burning phases	1359
		20.4	Comments on neon-, oxygen-, and silicon-burning phases	1380
		20.5	More on the relationship between direct and inverse tranformations	1385
		20.6	Concluding remarks on massive star evolution	1389
		Biblio	graphy and references	1389
			Part VI Terminal evolution of low and intermediate mass stars	1391
	21	Wind n	nass loss on the TPAGB and evolution as a PN central star and as a white dwarf	1393
		21.1	Introduction	1393
		21.2	Superwind ejection of the envelope and planetary nebula evolution	1395
		21.3	Departure of a 1 M_{\odot} model from the TPAGB, evolution as the central star of a planetary nebula, and the transition from nuclear	
		21.4	to gravothermal energy as the primary source of surface luminosity Coulomb forces, properties of matter in the solid phase, and a criterion	1397
			for melting	1410
			21.4.1 The Wigner–Seitz sphere	1411
			21.4.2 Debye theory and terrestial metals	1412
			21.4.3 A characteristic frequency of oscillation in the stellar context	1415
			21.4.4 Oscillation amplitude and the melting point	1418
			21.4.5 Application of the Thomas–Fermi model of the atom	1420
		21.5	21.4.6 The zero-point energy and the Helmholtz free energy Algorithms for estimating the energy density and pressure of liquids	1426
		21.3	and solids in stars	1429
		21.6	White dwarf evolution	1433
		21.0	Diffusion and the formation of a pure hydrogen surface abundance	1456
		21.7	The relationship between the final white dwarf surface abundance and	1450
			where in the thermal pulse cycle the precursor first leaves the AGB	1460
		21.9	Theoretical and observed white dwarf number-luminosity	1464
		Rihlia	distributions and the age of the galactic disk	1464
			graphy and references	1470
	Inc	dex		1472

Preface

One might think that the most appropriate division of topics in a two volume book on stellar evolution physics would be the placement of all chapters describing the input physics required for the construction of stellar models in the first volume and the placement of all chapters describing stellar evolutionary models in the second volume. However, such a division disguises the fact that it is the operation of the input physics in stars that explains why they shine and evolve and that, therefore, both the input physics and the response of stars to the operation of this physics comprise the science of stellar evolution physics.

In preparing this book, after describing much of the input physics required for the construction of stellar models during early evolutionary stages, I constructed models in these early stages of evolution. Then, after describing some of the more complicated physical processes that play important roles during more advanced stages of evolution, I constructed models in these more advanced stages. The ordering of topics in the two volumes of this book reflects this chronological development.

After providing a general introduction to the observed properties of real stars and to the results of stellar evolution calculations, the first volume focusses on equations of state, energy generation by hydrogen-burning reactions, energy transport by radiation and convection, and on the elementary equations of stellar evolution and methods of solution. This is followed by a description of stellar models evolving during gravitationally contracting phases onto the main sequence, during the main sequence phase when core hydrogen burning is the primary source of surface luminosity, and during shell hydrogen-burning phases up to the onset of helium burning as the primary factor in controlling the evolutionary time scale and as a source of surface luminosity second only to hydrogen burning.

In the first part of this second volume, which is divided into three parts, input physics of a somewhat more subtle nature than addressed in the first volume is presented – diffusion, heat conduction by electrons, beta decay and electron capture at high densities, and weak interaction processes that are responsible for the production of neutrino–antineutrino pairs. The first part ends with a discussion of helium-burning nuclear reactions, which control the evolutionary time scale during the quiescent core helium-burning phase and play starring roles in the intricate dance between hydrogen burning and helium burning during the thermally pulsing asymptotic giant branch phase, leading to the formation of carbon and neutron-rich s-process elements that make their way from interior regions of production to the surface and thence into the interstellar medium.

All of the input physics developed in the first volume plays a role in the evolutionary models described in both volumes. Some of the input physics developed in this volume also plays a role in several evolutionary models presented in the first volume. For example, electron conduction and energy loss by neutrinos and antineutrinos play decisive roles in

ix

Х

Cambridge University Press 978-1-107-01657-6 - Stellar Evolution Physics: Advanced Evolution of Single Stars: Volume 2 Icko Iben Frontmatter More information

Preface

establishing the thermal structure of the hydrogen-exhausted, electron-degenerate cores of low mass post-main sequence stars as they ascend the red giant branch for the first time, with the consequence that helium is ignited off center and proceeds in a series of flashes until a quiescent core helium-burning phase is reached. Evolution to the off center ignition of helium is described in Chapter 11 at the end of the first volume, whereas the helium flashing phase and the subsequent quiescent core helium-burning phase are described in Chapter 17 in this volume.

Another example of the relevance of the input physics developed in this volume to models described in the first volume is the discussion in Chapter 15 of the interaction Hamiltonion for weak interactions. The interaction between electron neutrinos and electrons predicted by this Hamiltonion has been used in Chapter 10 in Volume 1 to demonstrate that some of the electron neutrinos generated in the Sun are converted into muon neutrinos on their passage outward through the Sun, a demonstration which contributed significantly to the resolution of the solar neutrino problem which plagued stellar astrophysics for many years.

Results of stellar model calculations during helium-burning phases for models of mass $1 M_{\odot}$, $5 M_{\odot}$, and $25 M_{\odot}$ are described in the middle part of this second volume in Chapters 17, 18, and 20, respectively. In the case of the two lower mass models, special attention is given to the thermally pulsing AGB (TPAGB) phase when the main nuclear burning source of energy alternates between hydrogen burning and helium burning. In the case of the 5 M_{\odot} model, special attention is given in Chapter 19 to the activation of s-process nucleosynthesis and to the dredge-up of freshly made carbon and s-process elements during the TPAGB phase. In the case of the 25 M_{\odot} model, evolution is carried into the core and shell carbon-burning stages.

In the third and last part of this volume, consisting of Chapter 21, attention is focussed on the final stages of evolution of low and intermediate mass stars which become white dwarfs, with the evolution of a model of initial mass 1 M_{\odot} being highlighted. Described in the first three sections of Chapter 21 are (1) the wind mass loss which a TPAGB star experiences in consequence of radiation pressure on grains in a shock-inflated atmosphere, the shocks being due to Mira-like acoustical pulsations, and (2) the resulting planetary nebula stage, when the contracting remnant emits radiation of sufficient energy to cause the ejected material to fluoresce. After a discussion in the next two sections of the equation of state and the specific heat of stellar matter in the solid and liquid states, the final evolution of the remnant as it cools as a white dwarf is described in the sixth section. In concluding sections, the formation of monoelemental surface layers due to diffusion, the dependence of final surface abundances on evolutionary history, and quantitative estimates of the birthrate of low mass stars in the Galaxy and of the age of the Galactic disk are presented.