Index

Abell 41, planetary nebula, 17 Abell 63, planetary nebula, 17 Abdurashitov, J. N., Veretenkin, E. P., Vermul, V. M., et al., 680 Abraham, Z., & Iben, I., Jr., 673 absorption coefficient for free-free absorption versus the absorption cross section, 432-433 absorption cross sections for photon-matter interactions, 298-434 abundances of elements at Sun's surface, Table 2.1.1, 35 abundances of elements at the surface of a 1 M_{\odot} model at the red giant tip versus abundances in the initial model, Table 11.1.4, 767 significant depletions of ²H, ⁶Li, ⁷Li, ⁹Be, and ¹⁰B, 768 enhancements of ³He, ¹³C, and ¹⁴N, 768 abundances of elements in stony meteorites, Table 2.1.1, 35 abundances of elements in the Universe, 529, 597-598 hydrogen and helium are made in the Big Bang, 529 carbon, nitrogen, oxygen, and heavy elements such as Fe are made in stars, 529 abundances in the current interstellar medium and in typical population I stars reflect enrichment by previous generations of stars, 597-598 accretion disk in LMXBs, 21 accretion rate onto a protostellar core, 535, 538 through a standing shock from a free-falling envelope, 535, 538 α Cen and Regulus define a mean main sequence in the HR diagram for population I stars, 839, Fig. 2.2.1, 40 Achernar, MS star, 52, 53 acoustical, 5-minute oscillations in the Sun, 38 acoustical, radial pulsators, 4-7, 11, 158 Cepheids, 6, 7, 11, 158 long period variables, 8-10 RR-Lyrae stars, 4, 6, 158 adiabatic equilibrium, models in, 224-231 properties of a very low mass homogeneous model in adiabatic equilibrium, Table 5.6.1, 228 adiabatic temperature-pressure gradient Vad, 75, 145-147, 167, 178, 390

definition, $V_{ad} = (d \log(T)/d \log(P))_{ad}$, 75 in a nearly perfect gas plus radiation mixture, 390 in partially ionized hydrogen when electrons are non relativistic, 167 in stellar envelopes, 178 when positron abundances \ll ion abundances, 145 - 146when positron abundances \gg ion abundances, 146 - 147AGB (asymptotic giant branch) stars, 7-10, 48, 50 CO or ONe cores, 7, 8, 15, 50, 51 dredge up in, 9-10, 506 in clusters, 8, 9, 10 in the HR diagram, Fig. 2.2.1, 40 lifetimes, 7, 8, 10 remnant evolution during the planetary nebula phase, 9 source of carbon and s-process elements in the Universe, 9, 10 superwind, 8-10, 48, 52 thermal pulse AGB (TPAGB) phase, 7, 8, 48, 50 thermonuclear flashes, 7, 8, 48, 49, 50 thermonuclear runaway, 7, 8, 48, 49, 50 AGB (asymptotic giant branch), 7-10, 48, 50 age of the Earth, 80 age of the Solar System, 31 ages of clusters and stars in the Galaxy, 9-10 disk and globular clusters, 9-10 oldest white dwarfs, 10 age of the Universe (Hubble time), 27 Aharmin, B., Ahmed, S. N., Anthony, A. E. et al., 681.711 Ahmad, Q. R., Allen, R. C., Anderson, T. C., et al., 681 Ahmed, S. N., Anthoney, A. E., Beier, E. W., et al., 681 Airey, J. R., 199 Aldebaran in Taurus, red giant star, 51-53 Alexander, D. R., & Ferguson, J. W., 415, 541 Alfvèn, H., 37 Alfvèn waves, 37 Algenib, core helium-burning star, 52 Algol, MS star with subgiant companion, 18-19, 26, 52 Algol precursors - RS CVn, UX Ari, 19, 26

846

Cambridge University Press & Assessment 978-1-107-01656-9 - Stellar Evolution Physics Icko Iben Index More Information

847

Index

Algol stars, 18-19, 26 TW Dra, 26 AW Peg, 26 RY Aqr, 26 Allen, C. W., 38 Aller, L. H., 174 α Aurigae (Capella A and B), core helium-burning stars, 7, 40, 52, 53 α Cen A, a MS star, 839 Alpha Persei, disk cluster, 10 Altair, main sequence star, 52 Altmann, M, Balata, M., Belli, P., et al., 679 Amsler, C., Doser, M., Antonelli, M., et al., 711 ambipolar diffusion in the core of a protostar allows neutral particles to diffuse inward relative to charged particles that result from ionization by cosmic rays and are tied to the magnetic field, 534 Anders, E., & Grevesse, N., 34 abundances of elements in the Sun's photosphere, Table 2.1.1, 35 Anderson, P. W., 310, 347 Andromeda galaxy, 13 angular momentum loss by the low mass main sequence component in a precataclysmic variable translates into orbital angular momentum loss. When the mass losing star fills its Roche lobe, it donates mass to its white dwarf companion. When the layer of accreted matter reaches a critical mass, hydrogen is ignited explosively in the layer, resulting in a nova outburst, 15, 20-21, 840 angular momentum loss by the Sun, 37 magnetic field and wind coupling, 15, 37 time scale for, 15, 19, 37 angular momentum loss from some stars is due to a coupling between a global magnetic field and charged particles in a stellar wind, 15, 19, 37 Angulo, C., Arnould, M., & Rayet, M., et al., 276, 286, 541 Antares, a TPAGB star, 53 antineutrinos from nuclear reacters, 639, 687-688 Appel, K., 524 Appel, K., & Haken, W., four color theorem calculations, 524 Appenzeller, I., & Tscharnuter, W., 536 Araki, T., 687 Araki, T., Eguchi, K., Enomoto, S., et al., 687, 711 Arnett, W. D., 47 Ashie, Y., Hosaka, K., Ishihara, K., et al., 687 Asplund, M., Grevesse, N., & Sauval, A. J., 34, 419, 541 asymptotic giant branch (AGB), 7-9 asymptotic giant branch (AGB) stars, 7-9, see AGB asymptotic series, 108, 113, 136-138

 α negative, 112–113 Fermi energy positive, 113 d'Atkinson, R. E., & Houtermans, F. G., 275 Aufderheide, M. B., Bloom, S. B., Resler, D. A., & Goodman, C. D., 676 aurora australis and aurora borealis, 37 Avogadro's number NA, 93, 96 AW Peg, Algol system, 26 AW UMa in the group HR 1614, 24 Baade, Walter, 12 Baade, W., & Zwicky, F., 12 Bahcall, J. N., 522, 676, 679 Bahcall, J. N., & May, R. M., 673 balance between the pressure-gradient and gravitational force in a spherical star, 58 Balantekin, A. B., Barger, V., Marfatia, D., Pakvasa, S., & Yuksel, H., 711 Banachiewicz, Tadeusz, 504 matrix decomposition, 504 Barbier, D., procedure for calculating specific heats, etc., 174 baryon content of Sun, 32 basic equation of quasistatic equilibrium models follows by assuming a balance between pressure-gradient and gravitational forces, 57, 58 Basu, S., & Mouschovias, T. Ch., 534 Batten, A. H., Hill, G., & Lu, W., 820 ⁷Be electron-capture rate, 277–279 Bessel functions, 136-137 β as gas pressure over total pressure, 64, 135 $\beta = 1/kT$ in particle distribution functions, 92, 94-96 obtained by invoking the first law of thermodynamics and the empirical relationship between particle number N, pressure P, volume V, and temperature T in rarified gases, 94-96 beta-decay coupling constant, 261, 262-264, 678, 689–699 Betelgeuse in Orion, TPAGB star, 51, 52, 53 Bethe, H. A., 269, 284, 389, 419, 420, 690 Bethe, H. A., & Critchfield, 269 Biedenharn, L., C., 335 Big Bang marks the zero point for measuring time, see age of Universe, 10 Big Bang nucleosynthesis produces the isotopes ¹H, ²H, ³He, ⁴He, and ⁷Li found in stars of the first generation, 541 binary stars, 14-28, 40-44 detached eclipsing, Tables 2.3.2 and 2.3.3, 43-44 evolution of, 14-28 nearby, Table 2.2.2, 40 spectroscopic, Table 2.3.1, 42 visual, Tables 2.2.2 and 2.2.3, 40-41

for Bessel functions, 136-137

848		ndex
	_	
	binary white dwarf mergers and type Ia SNe, 26–28 binding energy of a 1 M_{\odot} model versus time during main sequence, subgiant, and giant branch evolution, Fig. 11.1.50, 764	derivation of number and occupation-number distributions versus energy, 149–151 radiation field characteristics, energy density, energy flux, number density, average photon
	binding energy of a model at zero temperature equals the total rest mass energy of pressure supplying particles, 236–237	energy, maxima in differential energy versus frequency and wavelength distributions, 151–154
	binding energy of a neutron star, 12, 13 binding energy of a star, 65–68, 81, 456	wavelength times temperature at the maximum the energy density versus wavelength distribu
	gravitational binding energy = $-22, 63-65, 81, 436$ net binding energy = $E_{\text{bind}} = -\Omega$ minus thermal energy, 65–68, 456	constant k , Planck's constant h and the speed light c , which can be used to obtain an estimation
	birth line, a line in the HR diagram that is defined by completely convective models which are burning	of <i>k</i> , 154 Bose, S. N., 149
	deuterium in central regions, proposed by Palla & Stahler as the place where cores of accreting	bound-bound photon absorption cross sections, 343–344
	stars, 539	effect of line broadening on related opacity, 345–347
	birthrate function for stars in the Galactic disk (Salpeter), 85	bound-tree absorption by K-shell electrons, 312–319
	black body radiation, $32-33$, 64 , $149-154$ Bose-Einstein statistics for, $149-151$ energy density of, $U_{rad} = a T^4$, 33 , 69 , 152	Born approximation, 316 comparison of cross sections, Born versus other Fig. 7.4.1, 317
	energy of an average photon, 153 energy flux, 153–154 hu/kT = 2.82 at maximum in frequency	Coulomb-distorted plane waves for electrons, 3 opacity from cross section, 319 two K shall electrons, 317
	$\lambda T = 0.28$ at maximum in requery distribution, 153 $\lambda T = 0.28$ at maximum in wavelength distribution,	undistorted plane waves for electrons, 312–316 bound-free absorption by L-shell electrons, 317–3
	33, 154 maximum in intensity vs wavelength, 33, 154	Boyanovitch, D., 473 Boyle, J. J., & Kutzner, M. D., 319
	photon number density, 152 pressure, 153	Boys, C. V., 31 bound-free absorption of photons, 73, 312–319
	radiation constant a , 64, 153 black holes, end products of the evolution of stars	branches in the HR diagram represented by real st 51, 53, Fig. 2.2.1, 40
	more massive than $\sim 30 \ M_{\odot}$, 8, 20, 256 black holes exist, 256 blue giants, early designation of core helium burning	core helium burning branch, shell hydrogen burning, intermediate to high mass, Rigel, Deneb, Algenib, Canopus, Mirfak, Capella A
	sequence and red giant stars, 52 blue stragglers, 23–24	and B, Polaris, Fig. 2.2.1, 40, 52 core helium burning, shell hydrogen burning branch, low mass (clump, HB stars), RR Lyr
	Blum, E. K., 476 Bodenheimer, P., 539 Bodenheimer, P. & Swaigert, A., 515	core hydrogen-burning (main sequence) branch Sun, Spica, Achernar, Regulus, Algol, Formalbaut Vaga, Castor Sirius A. Altair
	Bohr radius, Compton wavelength, and classical radius of the electron are related by the electrical fine structure constant, 315	Procyon, Fig. 2.2.1, 40, 52, 53 shell hydrogen and helium-burning branch (asymptotic giant branch), Betelgeuse, Antar
	Bohr radius, orbital radius of the electron in the hydrogen atom in the ground state, 58	Mira, 52, 53, Fig. 2.2.1, 40 shell hydrogen-burning, electron-degenerate he
	Boltzmann, L., 6, 59, 72, 83, 154 Boltzmann's constant <i>k</i> , where 3 <i>kT</i> /2 is the energy per particle in a perfect gas, 6, 33, 59, 96, 154 determination from experiment, 154	core (first red giant) branch, Aldebaran, Pollu RS CVn, 52, 53, Fig. 2.2.1, 40 white dwarf branch, Sirius B, Eridani B, L870– B, 42, 52, 53, Fig. 2.2.1, 40
	Bonner, W. B., 537	ь, 42, 52, 55, Fig. 2.2.1, 40 Branscomb, L. M., & Smith, S. J., 428
	Born approximation for the bound-free absorption of photons, 312, 316	Breene, R. G., Jr., 310, 347 bremsstrahlung process, 72
	Bose-Einstein statistics for indistinguishable particles and its consequences for photons, 149–154	bright stars in the HR diagram, Fig. 2.2.1, 40 in the Solar neighborhood, Table 2.2.1, 39

849	I	ndex
	British Association Tables give properties of	Cavendish. H., 31, 191
	polytropic models, 199–206	Cavendish's torsion balance experiments, 191
	Table 5.2.1, properties vs position for polytropic	CDC 6600 computer, 523
	index $N = 1.5,200$	CDC 7600 computer, 523
	Table 5.2.2, properties vs position for polytropic	Center for Space Research, MIT, 522
	index $N = 3.0, 203-204$	center of mass cross section factor 83
	Table 5.2.3, central, surface, and global properties	central temperature vs stellar mass radius and
	as a function of N , 206	molecular weight, 59–60
	building block defining isotopes connected by nuclear	high mass stars 65
	reactions, Fig. 8.8.1, 495	low mass homogeneous stars 59–60
	deBroglie, L., 99	Cepheid period-luminosity relationship 11
	deBroglie wavelength = Planck's constant over linear	Cepheid period-mass relationship 11
	momentum, 99, 272	Cepheids acoustically pulsating stars at the
	average value for ions, 100–101 average value for non degenerate electrons,	intersection of a pulsation instability strip and core helium-burning band, 7, 11, 12
	114–115	Cepheids in our Galaxy, 4, 7, 11
	electrons, 114–116, column 5 in Table 4.7.1, 111	Ceschino, F, & Kuntzmann, J. (Boyanovitch, D.), 473
		Chadwick, James, discoveror of the neutron, 12
	${}^{12}C(\alpha, \gamma){}^{16}O$ reaction, 46	Chandrasekhar (limiting) mass, mass of a white dw
	C12/C13 ratio at the surface of a red giant daughter of	of zero radius, 8, 24, 27, 231, 235–236, 239–2
	a 1 M_{\odot} Solar model, 648–649, 664	approached as radius goes to zero in a single zon
	California, University of at Santa Cruz, 523	model, 239–241
	Cal Tech, 522	binding energy equals total rest mass energy of
	Cameron, A. G. W., 35, Table 2.1.1, 35	electrons, 236–237
	canonical evolutionary (Hayashi) track during the	given by an $N = 3$ polytrope on the assumption
	gravitational contraction phase, 529, 556–560,	that electron and light speeds are identical,
	505, Fig. 9.2.11, 557	235–236
	time scales for evolution along the nearly vertical	numerical value, 235
	nortion of the track in the HR-diagram can be	real world limit is smaller because nuclei capture
	estimated from properties of $N = 3/2$	electrons, 237
	polytropes, 557–558	Chandrasekhar, S., 39, 136, 191, 205, 231, 235, 392
	qualitative explanation of evolution at nearly	428, 732
	constant temperature can be understood by using	Chandraseknar, S.,& Breen, F. H., 428
	properties of $N = 3/2$ polytropes and analytic	characteristics of a 1 M_{\odot} model approaching the m
	approximations to the H^- opacity, 558–560	sequence and beginning to burn hydrogen,
	qualitative description, though popular, assumes	structure variables vs mass and radius Figs 0.3
	unjustifiably a match between an interior in	
	which elements are highly ionized and a	radiative gradient and its ingredients and adjabat
	supraphotospheric region in which most	gradient vs mass Fig. 9.3.3.575
	elements are not ionized, 560–562, Figs,	gravothermal energy-generation rates and
	9.2.12–9.2.15, 561–562	hydrogen-burning energy-generation rates vs
	Canopus, a star in the core nelium-burning band, 7, 52	mass and radius, Figs. 9.3.4 & 9.3.5, 576
	the core helium-burning band, 7, 40, 52, 53, 820,	logarithmic increments in structure variables dur
		light isotope abundances vs mass Fig. 0.3.7.578
	carbon-oxygen (CO) core in AGB stars of initial mass	abundances of beta unstable isotopes versus mas
	$2-8 M_{\odot}$ /, 8	Fig 9.3.8 579
	carbon stars, 4, 9	characteristics of a 1 M_{\odot} model settling onto the
	Castor, a main sequence star, 52	ZAMS global nuclear burning and gravothert
	cataclysmic variables (CVs) 14_18 20_21	luminosities being comparable, 579–587
	CV precursors (progenitors) 16–17	structure variables vs mass and radius. Figs. 9.3
	C, precuboro (progenitoro), 10 1/	
	CV = white dwarf accreting mass from a low mass	& 9.3.10, 580
	CV = white dwarf accreting mass from a low mass main sequence star and experiencing nova	& 9.3.10, 580 radiative gradient and its ingredients and adiabat

> 850 Index characteristics of a 1 M_{\odot} model settling onto the core contracts and cools, envelope expands and ZAMS, global nuclear burning and gravothermal cools, 596 luminosities being comparable (cont.) core cools because of a temperature overshoot gravothermal and nuclear energy-generation rates which occurs as nuclear energy release replaces vs mass and radius, Figs. 9.3.12 & 9.3.13, gravothermal energy release, 596-597 582-583 characteristics of a Solar-like model when Z = 0.015, logarithmic increments in structure variables during 722-726 structure and composition characteristics vs mass, a time step, Fig. 9.3.14, 584 Fig. 11.1.8, 724 light isotope abundances vs mass, Fig. 9.3.15, 585 abundances of CN-cycle isotopes and of several structure and composition characteristics vs radius, Fig. 11.1.9, 724 beta-unstable isotopes versus mass, Fig. 9.3.16, pp-chain contributions to luminosity vs radius, 586 Fig. 11.1.10, 725 pp-chain contributions to luminosity versus radius, ⁷Be and ⁸B contributions to luminosity vs radius, Fig. 9.3.17, 587 local virial theorem does not operate, 583 Fig. 11.1.11, 726 CN-cycle contributions to luminosity vs radius, effective polytropic index \sim 3, 583 Fig. 11.1.12, 726 nuclear energy production dominates in the core, characteristics of a 1 M_{\odot} model (Z = 0.015) near the gravothermal energy production dominates in the end of the main sequence phase, envelope, 584 $t = 9.7 \times 10^9$ yr, 727–728 small convective core due to large fluxes generated structure and composition versus mass, by nuclear burning reactions, 581 Fig. 11.1.13, 727 characteristics of a 1 M_☉ ZAMS model, 587–597 structure and composition versus radius, gravothermal luminosity in 4000 times smaller than Fig. 11.1.14, 728 nuclear burning luminosity, 587 characteristics of a 1 M_{\odot} model in transition from the at center, matter is marginally stable against main sequence to the subgiant branch, 728-730 convection, 589 $t = 10.8 \times 10^9$ yr, 728–730 envelope convective zone has 40% of the volume structure and composition versus mass, and 2% of the mass of the model, 589 Fig. 11.1.15, 728 structure variables vs mass and radius, Figs. 9.3.18 structure and composition versus radius, & 9.3.19.588 Fig. 11.1.16, 729 effective polytropic index ~3, 587 nuclear and gravothermal energy-generation rates radiative gradient V_{rad} and its ingredients and vs mass, Fig. 11.1.17, 729 adiabatic gradient V_{ad} vs mass, Fig. 9.3.20, 589 nuclear energy-generation rates versus radius, light isotope abundances vs mass, Fig. 9.3.21, 589 Fig. 11.1.18, 730 abundances of ⁷Li, ⁷Be, and ¹⁰B vs mass, characteristics versus mass of a 1 M_{\odot} model subgiant, Fig. 9.3.22, 590 731-732 all isotopes in the pp chains are in local structure and composition midway in the phase, equilibrium, 592 Fig. 11.1.19, 731 abundances of CN-cycle isotopes vs mass, structure and composition near the end of the Fig. 9.3.23, 591 phase, Fig. 11.1.20, 731 energy-generation rates by pp-chain and $C \rightarrow N$ structure variable of both subgiant models, reactions vs radius, Fig. 9.3.24, 592 Fig. 11.1.21, 732 pp-chain luminosity is 40 times the CN-cycle characteristics versus mass in the interior of a 1 M_{\odot} luminosity, 592 (Z = 0.015) red giant model at the end of the energy-generation rates by pp-chain reactions vs first dredge-up episode when the convective radius, Fig. 9.3.25, 593 envelope attains its maximum mass, energy-generation rates by CN-cycle reactions vs Figs. 11.1.29-11.1.31, 742-744 radius, Fig. 9.3.26, 594 opacities and temperature-pressure gradients, rates at which gravity and compression do work vs Fig. 11.1.29, 742 mass, Fig. 9.3.27, 595; the two rates are locally structure variables, Fermi energy over kT, and different, but are globally the same *P*_{rad}/*P*, Fig. 11.1.30, 743 gravothermal energy-generation rates vs mass and ingredients of radiative temperature-pressure radius, Figs. 9.3.28 & 9.3.29, 595-596 gradient, Fig. 11.1.31, 744 logarithmic increments in structure variables during three components of the temperature-pressure a time step, Fig. 9.3.30, 597 gradient, 742-744, 754, 785

characteristics of 1 M_{\odot} models on the subgiant and red giant branches, Figs. 11.1.33–11.1.38,	mass near the center of the hydrogen-burning shell, Fig. 11.1.48, 761
746–751 luminosity versus mass of the hydrogen burning shell, Fig. 11.1.33, 746	ingredients of the gravothermal energy-generati rate and the neutrino energy-loss rate versus mass in the core, Fig. 11.1.49, 762
temperature profiles vs mass in the core, Fig. 11.1.34, 747 temperature versus density in the core and	characteristics of a 5 M_{\odot} pre-main sequence mod midway in the conversion of ¹² C into ¹⁴ N, 604–608
hydrogen-abundance profiles versus density, Fig. 11.1.35, 748	structure variables vs mass, Fig. 9.4.4, 605 gravothermal and nuclear energy-generation rat
hydrogen-abundance profiles versus pressure, Fig. 11.1.36, 749	ingredients of gravothermal energy-generation vs radius, Fig. 9.4.6, 607
mass profiles vs radius in the core and hydrogen-abundance profiles versus radius outside of the core, Fig. 11.1.37, 750	CNO isotope abundances vs mass, Fig. 9.4.7, 6 energy-generation rates for CN-cycle reactions radius, Fig. 9.4.8, 608
mass profiles versus radius in the envelope, Fig. 11.1.38, 750 characteristics of a 1 M_{\odot} (Z = 0.015) model on the early red giant branch $L = 32.8L_{\odot}$	characteristics of a 5 M_{\odot} model approaching the sequence, global nuclear burning luminosity being ~1.5 times the global gravothermal luminosity, 608–613
Figs. 11.1.39–11.1.41, 751–754 structure variables vs mass, entire model, Fig. 11.1.39, 752	structure variables vs mass, Fig. 9.4.9, 609 gravothermal and nuclear energy-generation ra vs radius, Fig. 9.4.10, 609
structure variables vs mass, from below the hydrogen-burning shell to beyond the base of the convective envelope, Fig. 11.1.40, 753	ingredients of gravothermal energy-generation vs radius, Fig. 9.4.11, 610 CNO isotope abundances vs mass, Fig. 9.4.12,
structure variables, nuclear energy-generation rate, and hydrogen abundance versus mass in the	energy-generation rates for CN-cycle reactions radius, Fig. 9.4.13, 611
Fig. 11.1.41, 754 characteristics of a 1 $M_{\odot}(Z = 0.015)$ model on the	average radiation pressure over gas pressure is the order of 1% , 621
late red giant branch, $L = 456L_{\odot}$, Figs. 11.1.42–11.1.44, 755–757 structure variables vs mass, entire model.	central concentration of density very similar to of index 3 polytrope, 621 conversion of ¹⁶ O to ¹⁴ N is very slow compare
Fig. 11.1.42, 755 structure variables vs mass, from below the	with CN-cycling rate, 617 cooling of core is due to a temperature oversho
H-burning shell to beyond the base of the convective envelope, Fig. 11.1.43, 756 structure variables, nuclear energy-generation rate,	which occurs as nuclear energy replaces gravothermal energy release, followed by thermal relaxation, 615
and H abundance vs mass in the neighborhood of the hydrogen-burning shell, Fig. 11.1.44, 757 characteristics of a 1 Ma model near the tip of the rad	local polytropic index varies from 1.5 in the convective core to 4 near the surface, the ma average being ~2.25, 621
giant branch, $L = 1712L_{\odot}$, Figs. 11.1.45–11.1.49, 758–762	structure variables vs mass, Fig. 9.4.14, 613 gravothermal and nuclear energy-generation ra
structure variables versus mass for the entire model, Fig. 11.1.45, 758 structure variables vs mass, from below the	vs radius, Fig. 9.4.15, 614 ingredients of gravothermal energy-generation vs radius, Fig. 9.4.16, 615
hydrogen-burning shell to beyond the base of the convective envelope, Fig. 11.1.46, 759	CNO isotope abundances vs mass, Fig. 9.4.17, energy-generation rates for CN-cycle reactions radius Fig. 9.4.18, 617
energy-generation rates, and isotope number abundances versus mass in the vicinity of the	energy-generation rates for ¹⁶ O to ¹⁴ N convers vs radius, Fig. 9.4.19, 618
hydrogen-burning shell, Fig. 11.1.47, 760 nuclear energy-generation rates, the gravothermal energy-generation rate and its ingredients versus	light isotope abundances vs mass, Fig. 9.4.20, 6 pp-chain energy-generation rates vs mass, Fig. 9.4.21, 619

Cambridge University Press & Assessment 978-1-107-01656-9 — Stellar Evolution Physics Icko Iben Index More Information

853 Index at the start of the core helium-burning phase, CN-cycle contribution to the global nuclear Figs. 11.2.57-11.2.58, 816-817 energy-generation rate is nearly 4000 times structure, Fig. 11.2.57, 816 larger than the contribution of pp-chain differential contributions to the luminosity, reactions, 825 Fig. 11.2.58, 817 CN-cycle reactions are everywhere in local characteristics of a 25 M_{\odot} ZAMS model, 627–635 equilibrium, 825 adiabatic gradient is smaller than in the absence of decrease with time in the number abundances of radiation pressure by 25%, resulting in a very particles in the core is responsible for the slow contraction of the core, 826, 828 large convective core (of mass $\sim 12 M_{\odot}$), 630-631 characteristics versus mass or radius of a 25 M_{\odot} $C \rightarrow N$ reactions occur outside of convective core, model near the end of the core hydrogen-burning 632 phase, Figs. 11.3.8-11.3.10, 826-828 CN-cycle reactions confined to be in the convective structure variables and the hydrogen abundance, core, 632 Fig. 11.3.8, 827 conversion of $\rm ^{16}O$ to $\rm ^{14}N$ is very slow compared radiative and adiabatic temperature gradients, with the CN-cycling rate, compare Fig. 9.5.13, opacity, and ratio of radiation to gas pressures, 634, with Fig. 9.5.12, 633 Fig. 11.3.9, 827 mass-weighted local polytropic index is 2.3, 631 differential contributions versus radius to the main source of opacity is electron scattering, luminosity of nuclear, gravothermal, and 631 neutrino sources, Fig. 11.3.10, 828 photon energy and particle kinetic energy are, on characteristics versus mass or radius of a 25 M_{\odot} average, in the ratio 1 to 3, 631 model near the end of the overall contraction ratio of radiation pressure to gas pressure is, on phase, Figs. 11.3.11-11.3.13, 828-830 average, 0.15, 630 structure variables and hydrogen abundance versus structure variables vs mass, Fig. 9.5.8, 628 mass, Fig. 11.3.11, 829 gravothermal and nuclear energy-generation rates radiative and adiabatic temperature gradients, vs radius, Fig. 9.5.9, 628 opacity, and ratio of radiation and gas pressures radiative gradient and its ingredients and adiabatic vs mass, Fig. 11.3.12, 829 gradient vs mass, Fig. 9.5.10, 630 differential contributions versus radius of nuclear, CNO isotope abundances vs mass, Fig. 9.5.11, gravothermal, and neutrino sources to the 632 luminosity, Fig. 11.3.13, 830 energy-generation rates by CN-cycle and $C \rightarrow N$ characteristics versus mass or radius of a 25 M_{\odot} reactions vs radius, Fig. 9.5.12, 633 model which has exhausted hydrogen at the leakage out of CN-cycle due to the conversion of center, Figs. 11.3.14-11.3.16, 832-833 ¹⁶O into ¹⁴N, Fig. 9.5.13, 634 structure variables and the hydrogen abundance, energy-generation rates for CN-cycle reactions vs Fig. 11.3.14, 832 radius, Fig. 9.5.12, 633 radiative and adiabatic temperature gradients, energy-generation rates for ¹⁶O to ¹⁴N conversion opacity, and ratio of radiation to gas pressure, vs radius, Fig. 9.5.13, 634 Fig. 11.3.15, 833 light isotope abundances vs mass, Fig. 9.5.14, differential contributions versus radius of nuclear. 634 gravothermal, and neutrino sources to the differential contributions of pp-chain reactions to luminosity, Fig. 11.3.16, 833 the surface luminosity are small, two thirds of characteristics versus mass or radius of a 25 M_{\odot} the contributions coming from outside of the model which has ignited helium at the center, convective core, Fig. 9.5.15, 635 Figs. 11.3.17-11.3.19, 834-836 characteristics versus mass or radius of a 25 M_{\odot} structure variables and hydrogen abundance versus model midway in the core hydrogen-burning mass, Fig. 11.3.17, 835 phase, Figs. 11.3.5-11.3.7, 822-826 radiative and adiabatic temperature gradients, structure variables and hydrogen abundance, opacity, and the ratio of radiation to gas pressure, Fig. 11.3.5, 824 Fig. 11.3.18, 835 radiative and adiabatic temperature gradients, differential contributions versus radius of nuclear, opacity, and ratio of radiation and gas pressures, gravothermal, and neutrino sources to the Fig. 11.3.6, 825 luminosity, Fig. 11.3.19, 836 differential contributions versus radius to the chemical potential in thermodynamics, 446-447 luminosity of nuclear, gravothermal, and neutrino sources, Fig. 11.3.7, 826 not the creation-destruction potential, 446-447

chemical potential α in statistical mechanics, 93, 129, 137, 143, 148	clump stars, concentrated next to the red giant brar population I analogues of population II HB st
electrons, 102, 103, 157 electrons and positrons, 128–149 positrons, 129, 137	CN-cycle contribution to the luminosity in Solar models depends only on the metallicity, 725
relationship to Fermi energy and temperature 110 Cherenkov radiation and Kamiokande neutrino detectors, 680 Cherenking E. & Kentermann L. 472	CN-cycle energy generation dominates pp-chain energy generation in intermediate and massiv main sequence models, 530–531, 604, 612, 622, 625
Chiennini, C. Bondo, A. & Mattaussi, E. 541	033-033
Chin H-Y 432	in a 25 M_{\odot} ZAMS model 633–635
Chlorine 37 neutrino experiment, 637	CN-cycle nuclear reactions 45–46, 49, 284–287
detects neutrinos from boron 8 positron decay and from electron capture on beryllium 7, 637 see Homestake mine neutrino detector	characteristics of reactions, Table 6.10.1, 284 lifetimes of CNO isotopes versus temperature, Table 6.10.2, 285
Cholesky, André Louis, 504	qualitative description of reactions, 45, 49
matrix decomposition, 504	CO (carbon-oxygen) cores of AGB stars, 7, 8, 50.
Ciolek, G. E., & Mouschovias, T. Ch., 535 classical fitting technique for model construction, 436,	CODATA values for fundamental constants, Mohr Taylor, 96, 152
459-462	Cohen, M., & Kuhi, L. V., 539, 556
fitting point selection 460	collisional broadening, 347
development near center, 459–460	Colorado, University of, 522–523
development near surface, 457–459 inward and outward integrations produce four	common envelope formation in close binaries, 16- 25
discrepancies at the fitting point, 460–461 four additional sets of discrepancies are produced	cores, 389–392, 394
by varying each variable and integrating, 461 from five sets of discrepancies construct four derivatives of discrepancies with respect to	convective diffusion in the mixing length approximation, 508–510
changes in surface and central variables, 461–462	prolongation of main sequence lifetime due to mixing of unburned matter with burned matter 506
linear equations yield four new starting variables,	relevant timescales, 507-508, Table 8.10.1, 508
repeat all procedures until discrepancies are suitably small, 462	solution of the convective diffusion equation, 511–513
since structure variables differ widely in size, it is best to deal with logarithmic derivatives and	inner boundary condition and the determination new composition variables, 515–516
logarithmic increments of fitting variables, 461–462	composition changes in radiative regions due to nuclear transformations, 493–499
classical radius of the electron, 72, 79, 515 classical radius of the electron, Bohr radius of the hydrogen atom, and the Compton wavelength of	matrix building block relating isotopes connect by nuclear reactions, Fig. 8.8.1, 495
the electron are related to one another by powers of the electrodynamic fine structure constant,	equations for the time rate of change of composition variables, 494–499
315 Clayton, D. D., 275, 522	variables in a time step, 500–506
close binary star evolution, 14–28	composition changes in a state envelope, 510 compound nucleus formed by two free protons aft
cataclysmic variables, 14–17	penetration of Coulomb barrier, 83
algols, 18–20	see pp reaction
LMXBs, 20-23	compressional work, total rate, 446
W UMa stars, 23–24	Compton wavelength of an electron, 117, 232, 24
PSR 1913+16, 24–25	Compton wavelength of a nucleon, 248
Eridani B, 26	Computation Center, Cal Tech, 522

855

Index

concentration factors for ions in stellar envelopes, 174 - 175concepts relevant to star formation, 529, 531-539 conduction of heat by electrons, 78-80 effect on opacity, 79-80 consequences of the conservation of mass, momentum, and energy, 437-447 energy balance equation, 440 pressure balance equation, 439 constraints on Solar models: age, luminosity, radius, 638 construction of a completely convective gravitationally contracting model, 539-540 Conti, P., 841 convection at model center, criterion for, 389-392 convective core mass in a 5 M_{\odot} model during the main sequence phase, Fig. 11.2.2, 770 convective core mass in ZAMS models, 614, 629 $\sim 1.1 M_{\odot}$ in a 5 M_{\odot} model, 614 $\sim 12 M_{\odot}$ in a 25 M_{\odot} model, 629 convective cores (CCs) sustained by nuclear burning, 388-399 composite nature of models with convective cores, 389-382 core mass in realistic ZAMS models, 395-399 Table 7.13.1, 395, Table 5.5.1, 223 core mass vs model mass, 392-394, Table 7.13.1, 395 core terminates at a mass smaller than model mass due to a decrease outward in the luminosity-mass ratio, 397-398 estimate of the mass of a convective core in CN-cycle burning ZAMS stars, 392-394 examination of the radiative temperature-pressure gradient V_{rad} near the outer edge of a convective core, 793-794 the decrease outward in the ratio of the energy flux to the gravitational acceleration (L/M) is the primary reason for the finite size of a convective core, 397-398 isotopes which are completely mixed in the convective core, 398-399 isotopes which are locally in equilibrium in core, 399 probability of occurrence of convective core CN-cycle dominates, 389-392 pp-chain dominates, 390-391, 396 time scale for mixing in convective core, 398-399, 507-508 convective diffusion, 398-399, 507-516 equations for, 508-510 mixing length approximation, 508-516 relevant time scales: spatial mixing, local equilibrium, evolution time step, 398-399, 507-508

see convective transport convective envelopes in low mass model main sequence stars, 395-399 envelope convection due to large opacities at low temperatures, 396-397 mass fraction of a convective envelope increases with decreasing stellar mass, extending to the center for model masses smaller than 0.25 M_{\odot} , 396, Table 7.13.1, 395 convective mixing time scale, 398-399, 507 convective overshoot during main sequence evolution, 11 convective transport, 73-78 flux, mixing-length approximation, 75-76 mixing-length algorithm for, 77-78 Schwarzschild criterion for, 74 solving for the temperature-pressure gradient, 77-78 time scale for mixing, 78 velocity, mixing-length approximation, 76 conversion of ¹²C and ¹⁶O into ¹⁴N, primary mechanism for nitrogen production in the Universe, 649 conversion of ¹⁶O into ¹⁴N is very slow compared with CN-cycling rate, 671-673 conversion of initial deuterium into ³He is completed in a 1 M_{\odot} model prior to the main sequence phase, 577-578 cooling of core in a ZAMS star due to a temperature "overshoot" as energy generation by nuclear burning replaces gravothermal energy generation, 596-597, 615 cooling of heavy ions in white dwarfs, 53 cooling white dwarf, one zone model, 245-248 internal temperature maximum, 245 internal temperature vs distances between adjacent particles, 245-246 luminosity as time rate of change of thermal energy, 246-248 radius minimum at zero temperature, 245 time dependence of luminosity, 247-248 core helium-burning band in the HR diagram defined by stars burning helium in a convective core and hydrogen in a shell, 6, 7, 11, 12, 40, 50 examples: Canopus, Capella, Rigel, 7 Cepheids, 4, 7, 11, 12 Deneb, Rigel, RS CVn, 50 filled circles surrounded by open circles in Fig. 2.2.1, 40 intermediate mass to high mass stars of both population I and II, 6 low mass population II horizontal branch (HB) stars in globular clusters, 6, 841

low mass population I clump stars in disk clusters, 11

core hydrogen-burning main sequence stars, 3-4

solution of equations, 511-516

856	Index		
		Cornu, A., & Baile, J. B., 31, 191 cosmic rays as triggers for the collapse of molecular	critical ratio of density in H-burning shell to central density for core collapse, 732–733
		clouds 534	cross section for bound-free (photoelectric) absorption

 clouds, 534
 cosmic ray muon and tau neutrinos measured by Super-Kamiokande detector, 687
 cosmic rays: ionization enhances the coupling between the magnetic field and matter in protostellar clouds, 534
 cosmological distance scale and Cepheids, 12

- Coulomb barrier between charged paticles, 82 Coulomb barrier penetration probability, 82, 265–266,
- 271–272, 288–289 Coulomb-distorted plane waves, 334–335 at high densities, an undistorted plane wave may be a better representation of an electron wave

function than a distorted plane wave, 334 Coulomb interaction energy per unit volume, 181-189 when electrons are not degenerate, 181 when electrons are modestly degenerate, 184-186 when electrons are significantly degenerate, 187-188 Coulomb interactions, influence on equations of state and other quantities, 104-105, 164-165, 179-188 degree of ionization, 164-165 equation of state, 182-184 energy density, 179-181 pressure, 182-187 when electrons are modestly degenerate, 184-186 when electrons are not degenerate, 104-105 when electrons are very degenerate, 187-189 coupling between global magnetic field and the charged particles in a stellar wind leads to angular momentum loss by stars, 840 Cowling, T. G., 389 Cox, A. N., & Stewart, J. N., 380, 382, 384-385 Crab pulsar, 12-13

- Crab nebula, 12
- creation-destruction (cd) potential, 93, 168, 442, 443, 446–453
- examples, 446–453 non-degenerate particles, 446–448
- partially degenerate electrons, 449–450
- highly degenerate electrons, 450–453
- in ionized hydrogen, 168
- the cd potential is not the chemical potential of thermodynamics, 446–447
- creation-destruction potential in ionized hydrogen, 168
- criteria for spatial zoning and time step size in evolutionary calculations, 519–521
- criterion for stability against collapse, magnetic flux vs cloud mass, 534
- critical mass for core collapse, 732
- see Schönberg–Chandrasekhar mass
- critical radius of collapsing protostellar core, 535-536

on by K-shell and L-shell electrons, 312-319 plane wave approximation, 312-316 Born approximation, 316 Coulomb-distorted plane wave result, 316 cross section when there are two electrons in the K shell, 318 cross section for ejection of an L-shell electron, 317-319 opacity associated with electron ejection, 319 cross section for photon absorption and the related absorption probability, 311-314 cross section for the pp reaction, qualitative description of physics of, 82-84 Crout matrix decomposition, 504-506 Crout, P. D., 504 C to N conversion precedes CN-cycling as the major source of nuclear energy due to the facts that, in population I stars, the initial abundance of C12 is larger than the N14 abundance and the lifetime of a C12 nucleus against proton capture is two orders of magnitude smaller than the lifetime of an N14 nucleus, with consequences for evolutionary tracks in the HR-diagram, 602-604, 626-627 for a 5 M_☉ model, 602–604, Figs. 9.4.1, 9.4.1a, 599, 600, Fig. 9.4.3, 603 for a 25 M_☉ model, 626–627, Fig. 9.5.5, 626, Fig. 9.5.6, 627 cubic spline interpolation, 404-410 CVs (cataclysmic variables), white dwarfs accreting mass from a low mass main sequence companion, 15-18, 20-21 CV precursors (progenitors), 16-17 Cygnus X-1, a black hole, 256

- Davis, L., Jr., 37
- Davis, R., Jr., 38, 637, 678
- Davis, R., Jr., Harmer, D. S., & Hoffman, K. C., 637
- Debye-Hückel electron screening, 164–165, 180–184 applicable only when electrons are not degenerate or are only modestly degenerate, 179–184 Coulomb interaction energy per unit volume, 181
 - effect on nuclear reaction rates, 287–290
 - electrostatic potential about an ion, 164, 181 energy per gram when screening is taken into
 - account, 165, 181–182 ionization energy of a screened ion, 165
 - modifications when electrons are modestly degenerate, 184–186
 - Poisson's equation for the electrical potential about an ion and its solution, 180–181, 184–187
 - pressure as modified by screening, 182-184

857	I	ndex
	Schrödinger equation for an electron about a screened ion and its solution, 164–165	of the state which decays by photon emission, 344–345
	Debye-Hückel weak screening, effect on nuclear reaction rates, 287–291	deuterium-burning "precursor Hayashi band" model of mass 1 M_{\odot} , 543–547
	Debye radius, 164, 184 electrons non degenerate, non relativistic, 164	gravothermal energy-generation rates vs mass and radius, Figs. 9.2.3 & 9.2.4, 545–546
	electrons partially degenerate, non relativistic, 184 Debye radius over average separation between	Figs. 9.2.1 & 9.2.2, 543–544
	adjacent ions, 185 Debye temperature and maximum ion oscillation	deuterium-burning luminosity maximum, 555–556 Table 9.2.3 and Fig. 9.2.10, 555
	Debye theory and ion entropy as temperature goes to	deuterium-burning model of mass 1 M_{\odot} , 548–556 accuracy of quasistatic approximation, 553–554
	degeneracy parameter δ for electrons, 102	characteristics of convective region, Table 9.2.2, 549
	Demorest, P. B., Pennuci, T., Ransom, S. M., Roberts, M.S. F. & Hessels, W.T. 225	comparison of model properties with those of an $N = 3/2$ polytrope, 553–554
	Deneb, core helium-burning star, 50, 52 departures from perfect gas law 61–65	gravothermal energy-generation rates vs mass and radius, Figs. 9.2.8 & 9.2.9, 552
	electrostatic forces, 61–62 electron degeneracy, 62–64	mixing time in convective interior is 1% of an evolutionary time step, 549
	radiation pressure, 64–65 derivation of equations for stellar evolution in general	gravothermal energy-generation rates and total and partial gravothermal energy-generation rates vs radius,
	when viscosity and shear forces are neglected, but spherical symmetry is not assumed and bulk	structure characteristics vs mass and radius, Figs. 9.2.5 & 9.2.6, 548, 549
	acceleration is not neglected, 435–436 continuity equation when conversion of rest mass	time for deuterium to reach equilibrium at the center is 3000 times the convective mixing time,
	energy into photon energy is neglected, 438–439 energy-balance equation, 437, 438, 439–440	549–550 deuterium-burning region in the HR diagram, 559,
	pressure-balance equation, 437, 439 when spherical symmetry is adopted, these	599, 623 1 M_{\odot} model, Fig. 9.2.11, 557
	equations, supplemented with an equation relating energy flux to the temperature gradient, become four first order differential equations in	5 M_{\odot} model, Fig. 9.4.1, 599 25 M_{\odot} model, 622–625, Figs. 9.5.1–9.5.3, 623, 624
	one dimension, 453–454, 69, 77, 79, 80 detailed balance between creation and destruction	development of a radiative core in a gravitationally contracting 1 M_{\odot} pre-main sequence model,
	reactions and particle distribution functions, 96–97, 156	563–565 mass of the radiative core vs time, Fig. 9.2.16, 564
	detailed balance between microscopic photon absorption and emission processes when thermodynamic equilibrium prevails, 341–345	diffusion and Solar surface abundances, 36 diffusion of various kinds, qualitative discussion, 516–518
	application of the principle gives the same occupation number, or number of photons per unit cell of phase space, as is given by	abundance-gradient-induced diffusion, 516–517 diffusion and nuclear burning in main sequence stars, 517
	Bose-Einstein statistics (see 149–151), 341–342 concepts of spontaneous and stimulated emission follow naturally from the rates of emission and	diffusion and nuclear burning in white dwarfs, 518 gravity induced diffusion, 516–517 rotation-induced diffusion, 517–518
	absorption processes, 342–345 Einstein A and B coefficients are proportional to	dipole moment for a transition between atomic states, 339–341
	absorption and emission rates. The energy density in the radiation field in thermodynamic	Dirac equation, approximate solutions for free electrons, 89
	equilibrium is a function of A, B, and $h\nu/kT$. Comparing with the predictions of Bose-Einstein	Dirac, P. A. M., 93 discontinuities in an evolutionary track due to changes
	statistics, a relationship between A and B is established and $A = 1/t$, where t is the lifetime	in the mass of the static envelope, 564–565 disk, or open clusters, 10–11

> 858 Index dissociation of molecular hydrogen, 174-179, 536 Earth will be engulfed by Sun either when it becomes dissociation in the opaque quasistatic core of a a red giant or when it becomes an AGB star, protostar initiates a short lived dynamical 765-767, Fig. 11.1.51, 765 collapse phase, 536 Ebert-Bonner spheres, 537 distances to white dwarfs, 4 isothermal spheres in hydrostatic equilibrium under distances to Cepheids, 11 an external pressure, 537 distribution function for particles in a gas defined as spheres are stable when the ratio of central density particle number fraction versus particle energy, to average density is less than a critical value and 91-97, 149-151, 154-156, 158-160, 170-172 are unstable otherwise, 537 Bose-Einstein statistics, 149-151 in unstable spheres, the density decreases inversely Fermi-Dirac statistics, 91-97 with the square of the distance from the center, in Maxwell-Boltzmann statistics, 154-156, 158-160, agreement with Larson's models and with 170-172 Looney et. al. observational results, 537-538 the value of the common temperature-dependent Ebert, R., 537 parameter β in all distribution functions is eccentricity of Earth's orbit, 686 obtained by invoking the first law of Eddington, A. S., xiii, 71, 86, 191, 199, 231, 259, 436, thermodynamics and the empirical relationship 457-459 for rarified gases between particle number N, Eddington luminosity, 71 pressure P, volume V, and temperature T, giving Eddington photospheric boundary condition, 457-459 $\beta = 1/kT$, where k is Boltzmann's constant, effective polytropic index of realistic ZAMS models, 94-96 222-224 Doppler broadening, 345-347 effective temperature of Sun. 33 Dorman, B., & Rood, R. T., 389 efficiency of star formation is quite small, as is evident dredge-up following a helium shell flash in a TPAGB from the fact that the mean density of matter in star, 9, 10, 506 stars in open clusters is about the same as that of dredge-up process on the red giant branch, 9, 10, matter in giant molecular clouds whereas the 739-741 total mass in a cloud is several orders of consequences in a 1 M_{\odot} model, 739–741, 767, magnitude larger than that in an open cluster, 531 Table 11.1.4, 767 most of the original matter in the original molecular consequences in a 5 M_{\odot} model, 785, 816–820, cloud is blown away by shocks from the Fig. 11.2.59, 817, Table 11.2.2, 818, supernova into which the most massive star dredge-up process in TPAGB stars, 10, 506 formed in the cluster evolves, 531 drivers of mass transfer in close binaries, Eggen, Olin, 5 accretion from wind, 20, 21 Eggleton, Faulkner, & Flannery algorithm for electron Roche-lobe overflow due to orbital angular EOS, 127-128 momenum loss by GWR or a MSW, 5, 15-16, Eguchi, K., Enomoto, S., Furuno, K., et al., 687 22-23, 25-27, 53 Ehrman, J., 521-522 gravitational wave radiation (GWR), 15, 22-23, Einstein, A., 25, 149, 344 25 - 27.53Einstein A and B coefficients, 344 magnetic stellar wind (MSW), 5, 19, 22-23 Einstein's general theory of relativity and during most nuclear burning stages, structural changes gravitational wave radiation, 25 are consequences of gravothermal responses to electrical polarization in modestly electron-degenerate changes in particle number abundances rather matter, 184–185 than responses to the release of nuclear energy, electrical potential about a charged particle and its 759 consequences (Debye-Hückel estimate), Dwight, H. B., 136, 209, 216 179-189 approximate (Maxwell-Boltzmann) distribution of electrons about an ion, 180 Earth's age, 80 solution of Poisson's equation for the potential, Earth's orbit expands in response to mass loss from 180-189 Sun as it evolves as a red giant, 767 in partially ionized non-electron degenerate Earth's surface temperature changes in response to the Sun's evolution, 765, 766, Fig. 11.1.51, 765 matter, 180-181 in modestly electron-degenerate matter, 184-186 Earth-Sun distance, 31, 686 Earth-Sun distance compared with distance over in highly electron-degenerate matter, 187-189 which neutrinos are produced in the Sun, electromagnetic field and photons, properties as given 686 by Bose-Einstein statistics, 149-154

859 Index

average energy of a photon, 153 black body radiation characteristics, 149-154 energy density, 33, 64, 152 energy flux, 152 photon number density, 152 pressure, 153 $h\nu/kT$ and λT at maxima in frequency and wavelength energy distributions, 153 - 154electron capture on ⁷Be under stellar conditions, 277 - 280electron chemical potential, 93, 102, 108, 129, 137 electron conductivity and opacity, 742-743 electron degeneracy, 6, 7, 8, 10, 62-64, 734-738, Fig. 11.1.24, 735, Fig. 11.1.30, 743 Fermi energy over kT as an indicator of the degree of degeneracy, Fig. 11.1.24, 735, Fig. 11.1.30, 743 electron-degenerate core of a subgiant, 734-735, 737-738 approximately half of the compressional energy released contributes to increasing the kinetic energy of degenerate electrons, half contributes to the outward flow of energy, 736, 738 rate of increase of thermal energy of electrons at the top of the Fermi sea is comparable to rate of increase of the thermal kinetic energy of heavy ions, 738 at the center, heating of electrons and heavy ions occurs at approximately twice the rate of cooling by plasma neutrinos, 738 electron-degenerate cores in red giants and AGB stars CO core in a 5 M_{\odot} model during the AGB phase, 47 - 48CO core in a 1 M_{\odot} model at end of AGB phase, 50 helium core in a 1 M_{\odot} model on the first red giant branch, 49 electron density in Solar models versus radial distance from the center, models A and B, Fig. 10.8.3, 706 analytical approximation, 705 electron energy per unit volume, relativistically degenerate electrons at zero temperature, 118-119 electron Fermi energy $\epsilon_{\rm F}$, 27, 1058, 117 $\epsilon_{\rm F}/kT$ as a function of density and temperature, Table 4.7.1, 111 electron Fermi sea, characteristics at zero temperature, 116-121, Table 4.8.1, 121 Fermi energy ϵ_F , 117 Fermi momentum pF, 117 electron gas properties, non relativistic, 110-116 Table 4.7.1. 111

electron-neutrino interaction with electrons, 637–638, 689–699

effective mass of the electron neutrino is proportional to the product of the electron density and the weak coupling constant, 689, 690-692 electron number distribution, in general, 93 electron-photon interaction Hamiltonian, 300-302 electron-positron pairs, 68, 128-149 abundance by number of pairs is determined by a balance between photo-production and annihilation into photons, 130 annihilation into neutrino-antineutrino pairs occurs infrequently, 130 curves of constant positron/proton ratio in the temperature-density plane, Fig 4.10.4, 141 positron/proton number ratio as a function of temperature and density along the electron-degeneracy border, 131-133, Fig. 4.10.1, 132 positron/proton number ratio as a function of density for various temperatures, Figs. 4.10.2, 4.10.3.140 positron/proton number ratio when pairs are non relativistic, 132-133 highly relativistic, 134-135 arbitrary values of kT/m_ec^2 , 136–143 thermodynamic characteristics for arbitrary values of kT/m_ec^2 , 143–149 when pairs are highly relativistic, their thermodynamic characteristics are like those of photons and their rest mass can exceed the rest mass of heavy ions, 135, 149 electron radius (classical), 72, 79, 315 electron-scattering, 71, 72 cross section, 71 opacity, 72 electron scattering (Thomson) cross section, 315 electron screening, 162-165, 184-189 in partially ionized hydrogen, 162-165 in very electron-degenerate matter, 187-189 in weakly electron-degenerate matter, 184-186 electrostatic field in stars, 86-87 due to fact that the gravitational forces on electrons and protons differ by three orders of magnitude while pressure-gradient forces are comparable, 86 electric field strength is related to gravitational acceleration by the ratio of proton mass to charge of electron, 86 electrostatic screening, effect on nuclear reaction rates, 287-291 electrons highly degenerate, 290-291 electrons not degenerate, 287-289 electrons partially degenerate, 289 strong screening, 290-291 weak screening, 287-290

860		ndex
	elements with low ionization potentials, 419–425, Fig. 9.16.1, 420 cross section for free–free absorption from	Pauli exclusion principle and electron degeneracy, 62–64 radiation energy density, 64
	elements of low ionization potentials, 430 listing of elements and ionization potentials,	radiation pressure, 64 ionization potentials of H and He, 60
	Table 7.16.1, 420 number abundances vs temperature and density, 420, 424, Figs. 7.16.1–7.16.4, 422–424	mean temperature-density relationship vs stellar mass, 60 particle numbers and separations, 58
	opacity for free-free absorption from, 430 Saha equations for elements of low ionization	perfect gas equation of state, 59 pressures and temperatures, 59–60
	potential, 420–421 solutions of Saha equations, 421–425 Eliot, T.S., xiii	equations of state, 88–189 equations of state as influenced by Coulomb interactions, 61–62, 179–189
	Emden, R., 191, 199, 205 energy per unit mass and volume for	electrons not degenerate, 179–184 electrons modertly degenerate, 184–186
	ions, 99–101 non-relativistic electrons, 101–105, 105–110, 110–116	electrons very degenerate, 187–189 equations of state, derivations, 95–98 using specular reflections, 97–98
	photons, 152 positrons, 134, 142–143	using the first law of themodynamics, 95, 98 equations of state for electrons, 101–128
	relativistic electrons, 116–128 energy per unit mass and volume, notation, 99 energy transport in stallar interiors, 68–80	non-relativistic, 101–116 weak degeneracy, 101–105
	conductive transport, 78–80 convective transport, 73–78	strong degeneracy, 105–110 relativistic, 116–128
	radiative transport, 69–71 opacities, 71–73	at zero temperature, 116–121 at finite temperature, 121–128
	electron scattering, 71–72 free–free transitions, 72–73	non-relativistic, 99–101 equations of state in stellar envelopes, 174–179
	enrichment of heavy elements in the interstellar medium, 53	equations of stellar evolution, 437–459 conservation of mass, momentum, and energy,
	of carbon and s-process process elements, 53 massive stars are net producers of iron and many other heavy elements, 53	due to conversion of rest mass into photon energy which escapes, mass conservation is only approximate, 438
	entropy and gravothermal energy changes, 446–453 entropy and the most probable thermodynamic distribution, Maxwell-Boltzmann statistics,	entropy and gravothermal energy changes, 446–44 examples of creation-destruction potential, 446–453
	156–157 entropy in thermodynamics, 446–448	gravothermal energy-generation rate and its components, 440–444
	entropy of a model in adiabatic equilibrium, 228–231 decreases with time, 228, Table 5.6.1, 228 vanishes at zero temperature, 230–231	photospheric boundary condition, 457–459 quasistatic equations in spherical symmetry, 453–454
	entropy, specific, 447, 448 equation of state (EOS) in main sequence stars and its	thermal energy-generation rate, absent particle abundance changes, 441
	balance between pressure-gradient and gravitational forces, 58–59	abundance changes, absent temperature and density changes, 441–443
	central temperature vs radius assuming a perfect gas EOS, 59–60	work done by gravity and work done by compression are related, 445–446, 454–456
	electrostatic forces and Coulomb interaction energy, 61–62	in general, 439–440 energy balance, 440
	Heisenberg uncertainty principle and electron separation vs electron momentum, 62–64	pressure balance, 439 in spherical symmetry, 453–454

801	·'	lidex
	equilibrium abundances and energy-generation rates	virial theorem holds locally as well as globally
	for CN-cycle reactions, 286–287 equilibrium abundances and energy-generation rates	during gravitational contraction phases, 545 work done locally by gravity is communicated
	for pp-chain reactions, 280–283 energy density notation, total and kinetic energy per	pressure-gradient forces and appears locally elsewhere as work done by compression, 544-545
	40 Eridani B, a very low mass WD in a close binary, 26, 40–43, 50, Fig. 2.3.1, 43, Fig. 2.2.1, Table 2.2.2, 40	accuracy of quasistatic approximation, 554 time dependences of central, surface, and globa characteristics, Table 9.2.3, 555
	cooling age relative to other WDs, 248 establishment of pressure gradients in protostars.	time evolution of global energy-generation rate Fig. 9.2.10, 555
	536 evaporative wind from red giants, 6, 766–767	evolution of a 1 M_{\odot} model through the Hayashi b and toward the main sequence, 556–572
	evaporative wind from Sun, 32, 37 evaporative program se a model mass changing tool	evolution with time of global luminosities, Fig. 9.2.10, 555
	598–599	evolution with time of interior and global characteristics, Fig. 9.2.16, 564
	program which takes gravothermal energy	evolutionary tracks in the HR diagram, Fig. 9.2 557
	before each time step, increase mass of each mass shell in both models by the same factor $(1 + df)$,	evolution downward in the HR diagram, 556–5 evolution upward and to the blue in the HR diagram, 563–572
	continue until desired mass is achieved	factors influencing evolution downward in the l diagram, 565
	contracting model into a 5 M_{\odot} gravitationally contracting model of approximately the same	factors influencing evolution upward and to the blue in the HR diagram, 565 formation and growth of a realisting age, 562
	radius as the initial model, but with interior temperatures approximately five times larger,	model which has completed deuterium burning 560–563, Figs. 9.2.12–9.2.15, 561–562
	evolutionary tracks in the HR diagram of an early generation (1985) of theoretical models, 45–51,	model with a radiative core and a deep convecti envelope, 566–572, Figs. 5.2.17–5.2.22, 566–572
	Fig. 2.4.1, 45 evolutionary tracks in the HR diagram of a 1 M_{\odot} model 717, 745, 765	radiative core growth and direction change in the HR diagram, 563–566
	from the base to the tip of the red giant branch, Fig. 11.1.32, 745, Fig. 11.1.51, 765	slowing of the rate of evolution in the HR diagn during convective-radiative transition is understandable as a change in effective
	from the deuterium-burning phase to the initial ascent of the red giant branch, Fig. 11.1.1, 717,	polytropic index, 568–569 evolution of a 1 M_{\odot} model onto the main sequence
	Fig. 11.1.32, /45, and Fig. 11.1.51, /65 evolution in the HR diagram during the	573–597 onset of hydrogen burning, 573–579,
	hydrogen-burning first red giant branch phase is essentially the inverse of that during the Hayashi gravitational contraction phase, 739	Figs. 9.3.1–9.3.8, 574–579 settling onto the ZAMS, global nuclear burning
	evolution of a 1 M_{\odot} model just before, during, and just after deuterium burning, 539–563	gravothermal luminosities being comparable 579–587, Figs. 9.3.9–9.3.17, 580–587
	construction of a model in the Hayashi band, 539–540	times smaller than the luminosity due to the
	initial isotope abundances, 541–543, Table 9.2.1, 542	Figs. 9.3.18–9.3.30, 588–597 evolution of a 1 M_{\odot} model through the main
	properties of a pre-deuterium-burning model, 543–547	sequence to the tip of the red giant branch, outline, 714–715
	properties of a deuterium-burning model, 548–556	hydrogen burns in a radiative core until hydrog vanishes at center
	properties of a post-deuterium-burning model,	hydrogen burns in a shell at edge of core which

Cambridge University Press & Assessment 978-1-107-01656-9 — Stellar Evolution Physics Icko Iben Index More Information

862	Index		
	-		
	evolution of a 1 M_{\odot} model through the main sequence	parity is achieved at $t \sim 10.7 \times 10^9$ yr, 722	
	to the tip of the red giant branch, outline (cont.)	after $\sim 8 \times 10^8$ yr of main sequence evolution	
	critical hydrogen-exhausted core mass is reached	the central hydrogen abundance decreased	
	main sequence phase terminates	to $Y_{\rm H} \sim 0.02, 719-720$	
	core contracts and heats rapidly	hydrogen burning shifts to a shell, 719	
	electrons in core become degenerate, contraction	during next $\sim 2.5 \times 10^9$ yr, the region betwee	
	rate slows, electron conductivity controls energy	the center and the hydrogen-burning sh	
	flow, core becomes nearly isothermal	becomes isothermal, and L_{CN} exceeds	
	subgiant branch evolution between main sequence	720	
	and red giant branch at nearly constant	time evolution during late main sequence,	
	luminosity, hydrogen burns in narrowing shell,	subgiant, and red giant branch phases, 733–7	
	envelope convection extends inward in mass	state variables at model center. Fig. 11.1.22.	
	red giant branch evolution: H ⁻ onacity forces	733	
	evolution at nearly constant surface temperature	state variables at center of hydrogen-burning	
	the electron-degenerate core grows in mass as the	shell Fig. 11.1.23, 734	
	luminosity increases	Shell, Fig. 11.1.25, 754	
	avalution in the UD discreme during the red signt	opacity components and electron Fermi ener	
	brough manage is acceptially the inverse of that	model center, Fig. 11.1.24, 755	
	during the Heyeshi growitational contraction	evolution of a 5 M_{\odot} model to the main sequence,	
	mbase	597-622	
	pliase	initial abundances, population 1, 597–598	
	hemaniaella and Chanten 17 in Values 2	first model obtained by accretion onto 1 M_{\odot}	
	dynamically, see Chapter 17 in volume 2	model, 598–600	
	evolution of a 1 M_{\odot} model from the main sequence to	Hayashi phase is bypassed, deuterium is destro	
	the tip of the red giant branch, details, 716–768	everywhere, model has a radiative core; upp	
	composition of initial model,	limit on Hayashi phase lifetime estimated at	
	(X, Y) = (0.015, 0.275), 716	1.3×10^{3} yr, 601–602	
	evolution in the HR diagram, Fig. 11.1.1, 717,	model contracts gravitationally, evolves upware	
	Fig. 11.32, 745, Fig. 11.1.51, 765	to the blue in the HR diagram, Fig. 9.4.1, 59	
	lifetimes of various evolutionary phases,	conversion of ¹² C into ¹⁴ N causes a drop in	
	Fig. 11.1.1, 717, Fig. 11.1.32, 745	luminosity, Fig. 9.4.1, 599, Fig. 9.4.1a, 601	
	deuterium burning, $\sim 10^{5}$ yr	evolution with time of central and global	
	pre main sequence, $\sim 3 \times 10^7$ yr	characteristics, Fig. 9.4.2, 602	
	central hydrogen burning, $\sim 8.5 \times 10^9$ yr	evolution with time of gravothermal, $C \rightarrow N$,	
	thick shell hydrogen burning, $\sim 2.5 \times 10^9$ yr	CN-cycle, pp-chain, and surface luminosities	
	subgiant branch phase, $\sim 5 \times 10^8$ yr	Fig. 9.4.3, 603	
	red giant branch phase, $\sim 5 \times 10^8$ yr	characteristics of a model midway in the conve	
	time evolution of interior and global	of C to N, 604–608, Figs. 9.4.4–9.4.8, 605,	
	characteristics, 717–722.	607–608	
	central hydrogen abundance, Fig. 11.1.2, 718	characteristics of a model approaching the ZAN	
	location in mass of the hydrogen-burning zone.	608–613, Figs. 9.4.9–9.4.13, 609–611	
	Fig 1112 718	characteristics of a ZAMS model 613–621	
	mass of the convective envelope Fig. 11.1.2.718	Figs 9 4 14–9 4 22, 613–620	
	state variables at the center Fig. 11.1.2, 718	evolution of a 5 M_{\odot} model through the main sequ	
	state variables at the center of the hydrogen hurning	to the tip of the red giant branch outline 71	
	variables at the center of the hydrogen-burning	during main sequence phase, hydrogen burns in	
	Zolle, Fig. 11.1.4, 719	convective core which shrinks in mass	
	temperature versus density promes during the	budragan vanishas suddanly over a large contro	
	main sequence phase, Fig. 11.1.5, 720	nydrogen vanisnes suddenly over a large centra	
	nydrogen-abundance profiles during the main		
	sequence and subgrant phases, Fig. 11.1.6,	overall contraction phase ensues	
	7/21	nydrogen-exhausted core becomes gravotherma	
	pp-chain and CN-cycle luminosities, Fig. 11.1.7,	unstable	
	722	core contracts and heats, envelope expands	
	$L_{\rm pp}$ dominates during the main sequence and	hydrogen burns in a thick shell until a thermal	
	subgiant phases, 722	instability occurs	
	during the subgiant phase, L_{pp} remains constant,	hydrogen burns in narrowing shell	
	Low grows 722	envelope convection extends inward in mass	

863		ndex
863	 model ascends red giant branch helium ignites in core quiescently evolution of a 5 <i>M</i>_☉ model through main sequence, overall contraction, and thick shell H-burning phases, details, 768–820 evolution in the HR diagram, Fig. 11.2.1, 769 hydrogen abundance at the center vs location in the HR diagram, Fig. 11.2.1, 769 time development of global and interior characteristics, 770 radius, convective core mass, and central state variables vs time, Fig. 11.2.2, 770 nuclear burning and surface luminosities vs time, Fig. 11.2.3, 771 central abundances of ¹H, ¹⁴N, and ¹⁶O versus time, Fig. 11.2.3, 771 thermal, radiative, gravitational binding, and binding energies vs time, Fig. 11.2.4, 772 global luminosities, central hydrogen abundance, and mass of convective core vs time during transition from core to shell hydrogen burning, Fig. 11.2.31, 795 mass boundaries of the H-burning zone during the transition from core to shell H burning, Fig. 11.2.32, 795 global thermal, radiative, gravitational binding, and binding energies during the transition from core to shell hydrogen burning, Fig. 11.2.33, 796 evolution of a 5 <i>M</i>_☉ model from the thick shell hydrogen-burning phase to the tip of the red giant branch, details, 803–808, 817 evolution in the HR-diagram, Fig. 11.2.42, 804 time development of various global and interior characteristics, Figs. 11.2.43, 804 nuclear burning, gravothermal, and surface luminosities, and surface radius versus time, Fig. 11.2.44, 805 thermal, radiative, gravitational binding, and net binding energies versus time, Fig. 11.2.45, 806 mass boundaries of the hydrogen-burning shell versus time, Fig. 11.2.46, 807 radius and state variables at the center of the 	densities accordingly, and leaving temperatures unchanged, 622 model ultimately becomes a deuterium-burning model, Fig. 9.5.1, 623 time scale for evolution is unaffected by deuterium burning which provides, at maximum, only 20% of the surface luminosity, Fig. 9.5.2, 623 interior is in radiative equilibrium, so deuterium is exhausted first at the center and then burns in a shell which reaches the surface, Fig 9.5.2, 623 gravothermal and nuclear energy-generation rates vs mass in a model when the deuterium-burning luminosity is near maximum, Fig. 9.5.3, 624 time evolution of global and central characteristics during gravitational contraction onto ZAMS, Fig. 9.5.4, 625 time evolution of surface, gravothermal, and nuclear-burning luminosites as the model settles onto the ZAMS, Fig. 9.5.5, 626 two episodes of C → N conversion, Figs. 9.5.5 & 9.5.6, 626, 627 zoning adopted prior to convective core growth, Fig. 9.5.7, 628 characteristics of a ZAMS model, 628–635, Figs. 9.5.7–9.5.15, 628–635 evolution of a 25 M _☉ model through the main sequence to the blue giant branch, outline, 715–716 hydrogen burns in a convective core which shrinks in mass semiconvection produces variable hydrogen/helium ratio outside the convective core overall contraction phase ensues before hydrogen vanishes in the core hydrogen-exhausted core is gravothermally unstable core contracts and heats, envelope expands, model evolves to the red helium ignites quiescently in the core before the model becomes a red giant evolution of a 25 M _☉ model through the main sequence and overall contraction phases up to the
	versus time, Fig. 11.2.46, 807 radius and state variables at the center of the hydrogen-burning shell versus time, Fig. 11.2.47, 807 mass at the base of the convective envelope, mass of the convective core, and surface abundances of various isotopes versus time during evolution along the red giant branch, Fig. 11.2.59, 817 evolution of a 25 M_{\odot} model from before deuterium burning to the ZAMS, 622–635 initial model is constructed from a 1 M_{\odot}	 evolution of a 25 M_☉ model through the main sequence and overall contraction phases up to the ignition of helium at the center, details, 820–836 evolution in the HR diagram, Fig. 11.3.1, 821 time development of global characteristics: radius, luminosity, and surface temperature, Fig. 11.3.2, 822 temperature, pressure, and density at the center versus time, Fig. 11.3.3, 823 central abundances of ¹H, ¹²C, ¹⁴N, and ¹⁶O vs

864 Index evolution of theoretical models from the 1980s MS (main sequence) stars, 4, 5 RG (red giant) stars, 4, 6 through main sequence, core helium burning, and shell helium- and hydrogen-burning phases, RR-Lyrae stars, low mass analogues of Cepheids on 45 - 51the horizontal branch, 6 25 M_☉ models, 47 subgiants, 18 supergiants, 4 5 M_☉ models, 47-48 thermally pulsing AGB (TPAGB) stars, $1 M_{\odot}$ models, 49–50 white dwarf (WD) stars, 4, 8, 9, 10, 21, 25 evolutionary paths in the HR-diagram, Fig. 2.4.1, Wolf Rayet (WR) stars, 4, 13-14 46 evolutionary status of binary stars, 14-28 evolutionary time scale for the core Algols, 18-19, 26 hydrogen-burning phase as a function of model blue stragglers, 23-24 mass, 45 high mass X-ray binary (HMXB) stars, 20-22 evolutionary time scale for the core helium-burning low mass X-ray binary (LMXB) stars, 20-23 phase as a function of model mass, 47 subdwarfs, 17 in the 25 M_{\odot} model, neutrino-antineutrino pairs are excitation energies of atomic states, 158 produced by the annihilation of real exclusion principle (Wolfgang Pauli), 6, 63-64 electron-positron pairs in a non Plank's constant h as size of a unit cell in phase electron-degenerate core and the consequent space, 63 acceleration of the core contraction rate numerical value of h. 63 effectively decouples the envelope of the star exposure by surface mass loss from massive stars of from the core, which ultimately collapses into a layers containing matter enriched by products of neutron star, 47 fresh hydrogen burning, 841-843 in the 5 M_{\odot} model, during the shell helium burning estimates of mass loss rates and total mass lost during and shell hydrogen-burning, second red giant the main sequence phase, 841, 843, Table 11.4.2, branch phase, neutrino-antineutrino pairs 843 produced in the electron-degenerate CO core by Ezer, D., & Cameron, A. G. W., 432 the plasma process carry off energy which cools the core to such an extent that carbon is not ignited in the core before the termination of the Faraday, M., 298 TPAGB phase by a superwind, 47-48 Ferguson, J. W., et al., 415 in the 1 M_{\odot} model during the shell Fermi-Dirac distribution function, 93, 96-97 hydrogen-burning, first red giant branch phase, derivation assuming non interacting particles and neutrino-antineutrino pairs produced in the using Lagrange multipliers, 92-93 electron-degenerate helium core by the plasma derivation assuming interactions and detailed process carry off energy which cools the core in balance, 96-97 such a way that helium is ignited Fermi-Dirac integrals, 225 semi-explosively off center in the core, 2.25-2.26 Fermi-Dirac statistics for particles which obey the in the 1 M_{\odot} model, evolution during the shell Pauli exclusion principle, 91-97 helium burning and shell hydrogen-burning, enumeration of the number of ways P_i in which N_i second red giant branch phase, and during the identical non-interacting particles can occupy a subsequent TPAGB phase is qualitatively similar set of g_i equal energy states, 91–92 to that of the 5 M_{\odot} model, 50 maximization of the product of all P_i with respect evolutionary status of single and binary stars, 3-29 to changes in all N_i , subject to the constraints evolutionary status of familiar stars, 51-53 that the total number of particles and the total evolutionary status of single stars, 3-14 energy of the system remain separately constant, AGB (asymptotic giant branch) stars, 7-10 produces a number distribution function blue supergiants, 4 $N_i = f_i g_i$ where f_i is an occupation probability, Cepheids, acoustically pulsating core helium 92-93 burning and shell hydrogen burning stars of taking interactions into account and adopting the intermediate mass, 4, 7, 11, 12 principle of detailed balance, with the proviso clump stars, 11 that the rate at which particles in states 1 and 2 core helium-burning stars, 6, 7, 11, 12 transform into particles in states 1' and 2' is core helium- and shell hydrogen-burning stars of proportional to $f_1 f_2 (1 - f'_1) (1 - f'_2)$, where f_i low mass same as clump and HB stars .le. 1 is an occupation probabilty, produces the core hydrogen-burning (MS) stars, 4, 5 same result, 96-97 HB (horizontal branch) stars, 6, 11 Fermi distance unit. 82

865		ndex
	Fermi, E., 63, 82, 93 Fermi energy and momentum, electron-degenerate	formation of a protostellar core in a giant molecular cloud and its subsequent evolution, 534–539
	Fermi momentum $p_{\rm F}$ of degenerate electrons, 63, 233, 238 relative to the minimum momentum $p_{\rm min}$ suggested	diffuse inward relative to charged particles that form because of ionization by cosmic rays and are tied to the magnetic field, 534
	by the Heisenberg uncertainty principle, 238 Fermi sea of electrons, properties of, 101–128, 738 weakly degenerate, non-relativistic electrons,	when the gravitational binding energy of a central region exceeds its thermal energy content and the mass of this region divided by the magnetic flux exceeds a critical value, the region becomes a
	strongly degernerate non-relativistic electrons, 105–110 non relativistic electrons of intermediate	collapsing core, 534 when the hydrogen number densities in the core reach $\sim 10^{10}$ cm ⁻³ an onaque hydrostatic core
	degeneracy, 110–116 relativistic electrons at zero temperature, 116–121	forms and continues to accrete from the surrounding cloud at an average rate of the order of $10^{-5} M_{\odot} \text{ yr}^{-1}$, the magnetic field outside of
	Fernbach, S., & Taub, A., 521 Feynman, R. P., 68, 298	the core controls the rate of accretion, 535 accretion takes place through a standing shock, the core continues to heat as it contracts and
	Feynman, R. P., & Gell-Mann, M., 639, 710–711 FG-Sge stars which manifest observable surface abundance changes, 4	experiences a brief collapse episode when molecular hydrogen dissociates, 536 four color theorem 524
	Fiedler, R. A., & Mouschovias, 535 Fields, B. D., 541 fine structure constant in electrodynamics as a	Fowler, W. A., Caughlan, G. R., & Zimmerman, B. A., 276 Fowler, W. A., & Hoyle, F. dynamical instability due
	convenient scaling factor, 315 fine structure constant, gravitational, and the number of nucleons in a star of the Chandrasekhar mass,	to electron-positron pair production during the evolution of massive stars, 147
	232 first dredge-up episode in a 1 M_{\odot} model, 739–744, 767–768	free-fall collapse time, 533, 536, 538 free-free absorption near the surface of a
	begins on subgiant branch and ends when the base of the convective envelope reaches its maximum inward extent on the red giant branch, 739, 741	gravitationally contracting model in the Hayashi band, 563 free-free absorption of photons and free-free opacity.
	changes in surface abundances, 739, Table 11.1.4, 767	72–73, 334 photon mean free path, 69, 331 free_free absorption of photons, calculational
	abundances of ⁷ H, ⁷ Ll, etc. decrease, $767-768$ ³ He, ⁴ He, ¹³ C, and ¹⁴ N increase, 739–740, 768 ⁴ He to ¹ H ratio increases by 11%, 740–741, 768	preliminaries, 321–325 matrix element (effective) for transition probability
	characteristics in the interior at the end of the dredge-up episode, Figs. 11.1.29–11.1.31, 742–744	321–325 matrix element for absorption, 323 matrix elements for scattering, 323–325
	first dredge-up episode in a 5 M_{\odot} model, 816–820 abundance changes at surface, Table (11.2.2), 818, Fig. 11.2.59, 817	perturbation Hamiltonion for, 321 second order perturbation theory, 321–322 free-free opacity coefficient, 334
	⁶ Li, ⁷ Li, ⁹ Be, and ¹⁰ B decrease at surface by factors ranging from 144 to 17, 818 ¹³ C. ¹⁴ N. and ¹⁷ O increase at surface by factors of	free-free photon absorption, calculation of cross section and opacity, 325–331, 334 differential probability for the obsorption of a
	2.6, 2.7, and 4.8, respectively, 818 first order quantum mechanical perturbation theory, 202 207	photon by one electron in the field of one ion, 325–327
	flavor combination of neutrinos is the same for all neutrinos reaching the Earth from any point in a	average over polarization directions of absorbed photon, 326 sum over all directions of the final electron, 326
	spherical shell in the Sun, 639, 703–704 Fogli, G. L., Lisi, E., Marrone, A., & Palazzo, A., 711 Formalhaut, a main sequence star, 52	sum over all initial electrons scattered by one ion, 327–330; this sum is proportional to a function $\Lambda_{ff}(h\nu/kT)$ plotted in Fig. 7.6.1, 329

866 Index free-free photon absorption, calculation of cross lifetime versus mass, intermediate to high mass models, 838-839 section and opacity (cont.) sum over all scattering ions to find opacity luminosity versus mass, intermediate to high mass coefficient, 330 models, 838-839 taking stimulated emission taken into account, maximum convective core mass versus model mass, Rosseland mean opacity is calculated, 334 838 Freiden hand-crank desk calculator, 521 lifetime $\propto M_{\rm CC}^{\rm max}/L$, high mass models, 839 Frieman, E., & Motz, L., 269 radius-luminosity relationship for main sequence Fujimoto, M. Y, & Iben, I., Jr., 733 models, 839 Fukuda, S., 680, 687 global rates of work done by gravity and by Fukuda, S., Fukuda, Y., Ishitsuka, S., et al., 680 compression are equal, 446, 454-456 globular clusters, 5, 6, 8, 10, 11, 22 golden rule for radiative transition probability, 306, Galactic rotation period, 24 308 GALLEX gallium experiment in Gran Sasso, Italy, Gould, R. J., & Guessoum, N., 629 678-680, 688, 710 graphics package used to construct figures in the text gallium neutrino detection experiments, 678-680 is WIP (Work in Progress) by J. A. Morgan, 543 gallium experiment (GALLEX) in Gran Sasso, gravitational acceleration in a spherical star, 59 Italy, 678-680, 688, 710 gravitational binding energy = $-\Omega$, 66–68, 456 gallium neutrino observatory (GNO) in Gran Sasso, gravitational constant (Newton), 31, 58 Italy, 678, 688, 710 gravitational contraction timescale, 85 Soviet-American gallium experiment (SAGE), 678, gravitational fine structure constant $GM_H^2/\hbar c$ and the 680, 688, 710 number of nucleons in a star of the Gamow Coulomb barrier penetration probability, Chandrasekhar mass, 232 265-266 gravitational potential $\phi(r)$ defined by a continuous Gamow, G., 265, 275 distribution of matter characterized by a density Gamow peak in the nuclear reaction-rate integrand, $\rho(r)$ can be converted into a differential equation 275 relating the Laplacian of ϕ to the density times gas constant R_0 for rarified gas, 95–96 the gravitational constant G, 193-194Gaunt factors, 331-337 gravitationally contracting 1 M_{\odot} model: the big Gaunt, J. A., 333 picture with regard to evolution in time, Gauss, Carl Friedrich, 500 Fig. 9.2.11, 557, 563-565, Fig. 9.2.16, 564 Gaussian elimination, solution of linear equations, time evolution in the HR-diagram, Fig. 9.2.11, 557 500 - 504time evolution of central and surface chracteristics, Gaussian elimination with pivoting, 500-504 Fig. 9.2.16, 564 Gaustad, J. E., 536 gravitationally contracting 1 M_{\odot} model shortly after Geis, D.R., & Bolton, C.T., 256 deuterium burning has been completed, 560-563 Geiss, J., & Gloeckler, G., 543 number abundances of free electrons, free protons, Gelmini, G. B., Kusenko, A., & Weiler, T. J., 711 hydrogen molecules, and H-minus ions near the Geltman, S., 428 surface, Fig. 9.2.13, 561 general relativistic effects on EOS, 149 structure and ionization near the surface, general relativity and stars of mass greater than Figs. 9.2.12-9.2.13, 561 $10^6 M_{\odot}, 68$ giant molecular clouds as stellar nurseries, 529, 531 structure variables, Rosseland mean opacity, temperature-pressure gradients, and ionization birthplaces of stars, 539 cloud masses vary from $10^2 M_{\odot}$ to $10^5 M_{\odot}$, 531 state vs distance below the photosphere, Figs. 9.2.14 & 9.2.15, 562 densities and temperatures in clouds are such that the typical Jeans mass is $\sim 75 M_{\odot}$, small in supraphotospheric layers, the abundance of free compared with typical cloud masses, suggesting electrons is over two orders of magnitude larger that magnetic energy provides more support than than the abundance of ionized hydrogen,

- gas pressure, 534-535
- Gill, S., 474-476
- global properties of main sequence models versus model mass, 836–840, Table 11.4.1, 837 lifetime versus mass, low mass models, 837, 838 luminosity versus mass, low mass models, 838 lifetime $\propto M/L$, low mass models, 838

demonstrating that most free electrons are

gravitationally contracting 1 M_{\odot} model near the base

of its Hayashi track, 566-571

Figs. 9.2.17-9.2.18, 566-567

structure variables vs mass and radius,

Fig. 9.2.13, 561

donated by elements of low ionization potential,

867	·	ndex
	-	
	radiative gradient and its ingredients and adiabatic	see also H-minus and negative hydrogen ion
	gradient vs mass, Fig. 9.2.19, 568	Haken, W., 524
	gravothermal energy-generation rates vs mass and	Hall, H., 317
	radius, Figs. 9.2.20 & 9.2.21, 570–571 model as composite of polytropic segments of	Hamada, I., & Salpeter, E. E., 234–235
	index $N = 1.5 \& 3.4 567-568$	Table 5./.1 relates radii of realistic white dwarf
	transition times for changes in effective polytropic	radii giyen by $N = 3/2$ polytropes 235
	index. Table 9.2.4. 569	Hamiltonian for electron-electromagnetic field
	logarithmic increments in structure variables during	interaction 300–302
	a time step, Fig. 9.2.22, 572	Hampel, W., Handt, J., Huesser, G., et al., 679
	gravitational wave radiation (GWR), and orbital	Hayashi band: where young stars evolve at nearly
	shrinkage, 15, 22–23, 25–27, 53	constant surface temperature during the early
	gravitational work, 445-446	gravitational contraction phase, 529, 556–56
	local rate, 445	evolution in the HR diagram of a 1 M_{\odot} model
	global rate, 446	during gravitationally contracting phases,
	gravothermal activity in the deep interior of a 1 M_{\odot}	Fig. 9.2.11, 557
	model at the base of the red giant branch,	nearly constant T_e evolution demonstrated
	Figs. 11.1.25 & 11.1.26, 736, 737	analytically for a fully convective 1 M_{\odot} mod
	gravothermal energy-generation rate, ϵ_{grav} , 167–169,	558-560
	440–444	number abundances of free electrons, free proto
	consists of a term $\epsilon_{\rm gth}$ which is independent of the	hydrogen molecules, and H-minus ions near
	c which depends only on the rates of change	surface, Fig. 9.2.13, 561
	of particle abundances 167–168 441–444	stars in the Hayashi band are completely conve
	ϵ_{odth} is the sum of products of rates of change of	below the photosphere, $529-530$, Fig. 9.2.11
	particle abundances Y_i and creation-destruction	557, Fig. 9.2.12, 501
	potentials, μ_i , 167–168, 442–443	$of a 1 M_{\odot}$ model in the Hayashi hand
	in partially ionized hydrogen, 168–170	Fig. $9.2.12$ 561
	gravothermal energy-generation rate, its components	Havashi C 529 530 717
	and ingredients, and the plasma-neutrino loss	Hayashi, C., Hoshi, R., & Sugimoto, D., 395, 530
	rate in a 1 M_{\odot} model near the base of the	Havashi track, 529–530, 556–563, 717
	redgiant branch, 736–738	Hayden, F. J., xiii
	centered on the hydrogen-burning shell,	HB (horizontal branch) stars, 6, 11
	Fig. 11.1.25, 736	heat conduction by electrons, 78-80
	in the electron-degenerate core, Fig. 11.1.26, 737	Heisenberg uncertainty principle, 62–63, 114, 238
	gravothermal energy-generation rates in the core of a	Heisenberg uncertainty principle applied to electr
	$1 M_{\odot}$ red giant model, Table (11.1.3), 738	62–64, 238
	732–733 808	relationship between the average electron deBr
	occurrence in a 5 M_{\odot} model 732–733	wavelength and the average distance between
	evolution from the onset of the gravothermal	adjacent electrons, 114–116
	instability to the red giant branch is better	Heisenberg, W., 62
	characterized as a natural transition between two	Heitler, W., 298
	nuclear burning stages than as a catastrophe, 808	helium-burning reactions, qualitative description,
	Grevesse, N., & Noels, A., 415	helium core flashes, 6, 49
	GWR (gravitational wave radiation) and orbital	III a 1 M_{\odot} model, 49
	shrinkage, 15, 22–23, 25–27, 53	244–245
	II) molecular discontinum and the M. C.	belium ignition temperature reached when
	n2 molecular dissociation parameter, vardya, M. S.,	mass $\sim 0.45 M_{\odot}$ 45.244
	H^{-} (H-minus) absorption and/or opacity A10 A22	helium shell flashes in TPAGR stars 7 & 48 50
	558–560 73	helium to hydrogen ratio in the Solar wind versus
	determination of cross section and onacity 419–432	He/H ratio at surfaces of OB stars and in HI
	role in influencing the evolutionary track during the	regions and planetary nebulae. 37
	Hayashi band and red giant branch phases of	Henyey, L. G., LeLevier, R, & Levee, R. D., 226
	,	, , , , , , , , , , , , , , , , , , ,

868	Index		
	Hertzsprung, E., 39	Humphreys, R. M., 843	
	Hertzsprung-Russell (HR) diagram, 3-4, 6, 11, 38-41,	Humphreys, R. M., & Davidson, 843	
	45–53, Fig. 2.2.1, 40	Hunter, C., 536	
	density of stellar types in the HR diagram versus	Hyades cluster, 11, 17	
	the density of types in space, 41 evolutionary tracks of model stars, Fig. 2.4.1, 46	hydrodynamical explorations give insights into protostar behavior, 539	
	some near and bright stars in the HR diagram,	hydrodynamic equilibrium, 32	
	Fig. 2.2.1, 40, Table 2.2.1, 39	hydrogen-abundance profiles vs mass in a 1 M_{\odot}	
	high mass X-ray binary (HMXB), 20, 22	model during the early ascent of the red giant	
	H-minus (H ⁻) absorption in supraphotospheric layers	branch, Fig. (11.1.28), 741	
	of a model in the Hayashi band, Figs. 9.2.12 & 9.2.13, 561	hydrogen and helium abundances in the Universe, 59 after the Big Bang, 529, 598	
	dependence of opacity on density and temperature,	in typical population I stars, 529, 598	
	559, 560	hydrogen atom wave functions, 340	
	leads to result that evolution in the HR diagram is at a nearly constant surface temperature, 558–560	hydrogen-burning by CN-cycle reactions, 45, 49, 284–287	
	H-minus (H ^{$-$}) ion, see also negative hydrogen ion, 419–433	characteristics of CN-cycle reactions, Table 6.10. 284	
	analytic approximation to number abundance as a	conversion of ¹⁶ O into ¹⁴ N, 285	

function of density and temperature, 425-426 cross section for photoionization of, 426-429 cross section versus frequency, Fig. 7.16.6, 429 cross section versus wavelength, Fig. 7.16.5, 429 electron scattering contribution to opacity is negligible, 430 ionization energy of, 419 number abundance of, 420-426, Figs. 7.16.1-7.16.4, 422-424 photoionization cross section for, 426-433, vs photon wavelength and frequency, Figs. 7.16.5-7.16.6, 429 Rosseland mean cross section vs temperature for, calculational details, Fig. 7.16.7, 431 Rosseland mean opacity for as a function of temperature and density, 431-432 when density = 10^{-6} g cm⁻³, Table 7.16.2, 432 when 3000 K < T < 6000 K, an analytic

- approximation for, 432 Saha equation for, 420-421 HMXB (high mass X-ray binary), 20, 22
- Hodgman, C. D., Weast, R., C., & Selby, S. M., 362

Homestake mine neutrino detector, 38, 675-678

- located in Lead, South Dakota, 38, 678 tetrachloroethylene detector, ${}^{37}\text{Cl} + \nu_e \rightarrow {}^{37}\text{A} + e^-, 38, 675-678$ Homestake mine neutrino experiment, 38, 615, 676,
- 678 horizontal branch (HB) stars, 6, 11, 841
- Hoyle, Fred, xiii
- HR (Hertzsprung-Russell) diagram, 3-4, 6, 11, 38-41, 45-53, Fig. 2.2.1, 40
- evolutionary tracks of model stars in, Fig. 2.4.1, 46 HR 1614 group, 24
- Hubble time = age of Universe, 27
- Humphreys-Davidson forbidden region in the HR diagram, 843

energy-generation rates, 286 enumeration of reactions, 284 particle lifetimes vs temperature, 275, Table 6.10.2, 285 primary contributors to luminosity in main sequence stars more massive than $\sim 2 M_{\odot}$ and in red giants and TPAGB stars of all masses, 285 reaction and energy-generation rates, equilibrium achieved, 286 hydrogen-burning by pp-chain reactions, 271-275, 275-283 characteristics of pp-chain reactions, Table 6.8.1, 276 electron-capture rate of 7Be, 277-280 enumeration of pp-chain reactions, Table, 6.8.1, 276 equilibrium abundances and energy-generation rates, 280-283 laboratory cross sections, 271-275 particle lifetimes vs temperature, Table 6.8.2, 277 pp-chain reaction rates, 275-280 pp reaction, diproton into deuteron and two leptons, pp-chain initiator, 260-271 primary contributors to luminosity in main sequence stars less massive than $\sim 2M_{\odot}$, 258 hydrogen-burning reactions, primary contributors to luminosity during most nuclear burning stages, 258 hydrogen-burning shell, analytical approximations to shell properties, 754-758 hydrogen-burning shell, temperature versus shell mass, 746 hydromagnetic waves as support for giant molecular clouds, 534 hydrostatic equilibrium, 32 hydrostatic protostellar core, 535-538 Hylleras, E. A., 419

869		ndex
	-	
	hyperonic and strongly interacting strange quarks as major constituents of neutron stars are ruled out	thermal energy component ϵ_{th} when particle number abundances are held constant, 441
	by the existence of neutron stars of baryonic mass as least as large as $2 M_{\odot}$, 256	creation-destruction component ϵ_{cdth} when thermodynamic variables are held constant, 44
		interpolation in opacity tables, 399–415 bicubic spline, 410–415
	Iben, I., Jr., 45, 46, 68, 110, 149, 174, 223, 287, 293,	cubic spline, 404–410
	294, 383, 384, 395, 524, 540, 649, 677, 733, 808, 820, 844	natural spline follows by setting second derivatives of the dependent variable equa
	Iben, I., Jr., & Ehrman, J., 381–382, 393, 396, 522	examples fits to OPAL and Anderson-Ferguson
	Iben I. Ir. & Rood R T. 841	opacity tables, 415–418, Figs. 7.15.1 and 7.15.
	Iben, I., Jr., & Tutukov, A. V., 247, 518	416–417
	IBM 360/75 computer, 523	contrast with bare bones opacity, Fig. 7.15.3, 418
	IBM 360/158 computer, 523	linear, 399–401
	IBM 7044 computer, 522	quadratic, 401–404
	IBM 7094 computer, 522	instability strip for acoustical pulsators, 6–7, 10
	Iglesias, C. A., & Rogers, F. J., 381, 541	models and cluster stars in the HR diagram
	ignition of hydrogen in intermediate mass protostars,	5–6
	JS0 III LIAC L computer 521	intrinsic neutrino mass, 637-638, 682-699
	Illinois Computational Center, 523	intrinsic antineutrino mass, 637
	impact on the Earth of changes with time in the Sun's global properties, 11.36–11.38	experimental estimates involving nuclear reactors 687–688
	impact is noted along the evolutionary track in the	inverse brenmstranlung, 72–73, 319–331
	HR diagram, Fig. 11.1.51, 11.36 implicit relaxation technique for model construction, 436, 477–493	ionization potentials of light elements, Table 7.16.1, 420
	Ince, E. L., 473	ionization equilibrium and Saha equations, 158–165 170–173
	indistinguishable particles and Bose Einstein statistics	for pure helium, 171–173
	as applied to photons 149–154	for pure hydrogen, 158–165
	enumeration of the number of ways P_i in which N_i	general case, 170–171
	indistinguishable particles can occupy a set of g_i equal energy states, 149–151, Table 4.11.1,	importance in pulsation variables, etc., 158, 171–173
	150	ionization state in stars 60
	maximizing P_i with respect to N_i produces a number distribution function and an occupation number 151	iron peak nuclei and collapse of cores of massive stars, 47, 53
	infrared radiation from photosphere of protostar 536	iron-peak nuclei, origin in massive stars, 53
	integration algorithms, 462–476	irreducible unit cell in position-momentum phase
	first order differential equation $dy/dx = f(x)$, 462–465	(an) isolated electron can neither absorb nor radiate photon, 72, 321
	solution good to second order in step size, 462–463 solution good to fourth order in step size, Simpson's rule, 464–465	isothermal core of a cooling white dwarf, 246–248 isotopes related by nuclear reactions, Fig. 8.8.1, 495
	differential equation $dy/dx = f(x, y)$, 465–476	
	solution good to second order in step size,	J1614–2230, binary with pulsar component of mass
	family of second order algorithms 466-468	1.97 M_{\odot} , 200 Leans criterion for stability of an isothermal gas
	family of third order solutions, 468–473	against gravitational collapse 531–534
	Runge-Kutta fourth order algorithms, 473–476.	basic equations follow from conservation of mass
	Table 8.6.1, 475	the relationship between bulk acceleration, the
	application to stellar structure, 476	gravitational acceleration, and the pressure
	internal energy (thermal and Coulomb)	gradient, and Poisson's equation connecting the
	energy-generation rate, ϵ_{grav} , 441	gravitational potential and the density, 531-534

870	I I	ndex
	-	
	Jeans criterion for stability of an isothermal gas	Koshiba, M., 680
	against gravitational collapse (cont.)	Kramers, H. A., 332
	criterion follows by assuming a plane wave solution	Kramers opacity, 331–337, 732
	to obtain a dispersion relationship between the	Kramers semiclassical approximation to the free-fr
	frequency and wave number of a longitudinal	opacity and Gaunt factors, 331–337
	wave which involves the sound speed and the	Kuhi, L. V., 539
	density, 533–534	Kulsrud, R. M., 334
	Jeans length: wavelength of a critically unstable perturbation, 553	Kutta, M. W., 4/3–4/6
	Jeans mass: mass of a critically unstable	1726 0 A & D loss many him and in subject the
	perturbation, 533–534	L/20-8 A & B, low mass binary pair in which the
	minimum linear size of an unstable region is about three times the distance sound can travel in a free	³ He, 295–296
	fall time, 534	L870-2 A, B, binary white dwarfs, 40, 50 248
	minimum mass of an unstable region is of the order	cooling age relative to that of other white dwarfs
	of the density times the cube of the minimum	248
	linear size, 533	aboratory cross sections for nuclear reactions and
	Jeans, J. H., 531	center of mass cross section factor and its
	Jet Propulsion Lab, Cal Tech, 522	relationship to a laboratory cross section
	Johnson, H. L., & Sandage, A. K., 809	273–274
	Joss, Paul C., & Kappaport, Saul A., 255	compound nucleus, its size, 273
		Coulomb barrier penetration probability, 265,
	Kamiokande and Super-Kamiokande neutrino	272–273
	detectors, 680-681, 687	experimental cross section factors, 271-275
	located in Mozumi mine of the Kamiokande	extrapolation to conditions in stars, 271-275
	Mining and Smelting Company in central Honchu, Japan, 680	formal reaction cross section as a sum of partial waves, 272
	detector fluid, H ₂ O, 680	reaction rates as averages over Maxwell-Boltzm
	reaction: atomic electrons scattered by neutrinos	velocity distributions, 274-275
	produce Cherenkov radiation detected by	laboratory cross sections for pp-chain reactions an
	photomultipliers, 680	extrapolation to stellar conditions, 275-280
	Kamiokande neutrino experiment, 38, 680–681 Kamionkowski, & Bahcall, J. N., 269	characteristics of pp-chain reactions, Table 6.8. 276
	KamLAND liquid scintillator antineutrino detector, 687–688	electron capture on ⁷ Be under stellar conditions 277–280
	located at site of first Kamiokande detector, 680	lifetimes for particles in the pp chains, Table 6.8
	detects antineutrinos from nuclear reactors,	277
	687	Laboratory for Nuclear Science, MIT, 522
	reaction: proton plus antineutrino makes neutron	Lagrange multipliers, 92, 159, 170, 250
	plus positron, 687	Landau, L., 12
	squared antineutrino-mass difference 10^{-4} (1) ²	Lane, H., 191
	$\sim 0.79 \times 10^{-7}$ (eV) ² and mixing angle satisfies	Large Magellanic Cloud (LMC), 7, 12, 13
	$\sin^{-}(2\theta) \sim 0.82,088$	Larson, J.B., 535–537
	Van de Kanip, r., & WOIII, M. D., 39 Karzas, W. L. & Latter, P. 225, 227	culminate in the formation of a control core in
	fits to Karzas-Latter Gaunt factors Figs 771 &	hydrostatic equilibrium which accretes, three
	7.7.2 336 & 337	a standing shock matter from a nearly free
	Kato, M., & Iben, J. Jr. 843	falling envelope 536
	Kayser, B., 711	Leighton, R. B., 96
	Keller-Meverott opacities, 381–384	lepton mass density can exceed baryon mass dens
	Keller, G., & Meyerott, R. E., 380	131, 134–135, 149
	Kellogg Radiation Lab, Cal Tech, 522	Li7 at Solar surface is 90 times larger than in the
	Kelvin-Helmholtz (gravitational contraction)	interstellar medium
	timescale, 85	Li7 abundance at surface of Solar model A
	Kelvin, Lord James Thomson. 191	(Z = 0.01), which neglects diffusion, is 76 ti
		-

871	I	ndex
	Li7 abundance at surface of Solar model B	local energy-generation characteristics versus radius
	(Z = 0.02), which also neglects diffusion, is 18 times larger than observed, 662 diffusion required to understand the Li7 abundance	in nuclear burning regions in a 5 M_{\odot} model at the start of the core helium-burning phase, Fig. 11.2.58, 817
	at the Solar surface, 662 Li abundance at surfaces of Capella A and B, 820, 844 lifetime and maximum convective core mass versus	local rates of work done by gravity and by compression are not equal, but global rates are, 446, 455–456
	mass for main sequence models, Fig. 11.4.1, 837	local thermodynamic equilibrium, 32-33
	lifetimes of stellar evolutionary phases, 85, 717, 765,	Looney, L. Mundy, L. G., & Welch, W. J., 538
	804, 821	long period variable (LPV), 8-10
	along tracks in the HR diagram, $1 M_{\odot}$, Fig. 11.1.1,	lower and upper triangular matrices, 503-506
	717, Fig. 11.1.51, 765, 5 M_{\odot} , Fig. 11.2.1, 769, Fig. 11.2.42, 804, 25 M_{\odot} , Fig. 11.3.1, 821	low mass models in adiabatic equilibrium are index N = 3/2 polytropes, 224–231
	gravitational contraction phase, 85 main sequence phase, 85	central temperature versus model radius, Table 5.6.1, 228
	lifetimes of stars	degree of electron degeneracy is constant through a model of given radius, 226
	HB and clump stars, 6 main sequence stars in globular clusters, 5	(when) electrons are degenerate, ρ_c increases and T_c decreases as radius decreases, 227
	planetary nebulae, 9 white dwarfs 9–10	electron entropy vanishes at a minimum radius, 230–231
	lifting of electron degeneracy in the helium core of a low mass red giant star 49	(when) electrons are not degenerate, ρ_c and T_c increase as radius decreases, 227
	linear equations, solution of, 500–506 Gaussian elimination with pivoting, 500–504	entropy constant through model at any given radius, 228–230
	LU matrix decomposition, 504–506 lower and upper triangular matrices, 503–506	entropy decreases as model radius decreases, 228 for given degree of electron degeneracy, model
	line breadth, natural, 341, 347	radius and mass are related by $R \propto M^{-1/3}$, 227
	line broadening, 341, 345–347 collisional, 347	ion entropy vanishes at zero temperature, 230–231 maximum central temperature occurs, 227–228, Table 5.6.1, 228
	Doppler, 345–347 natural, 341, 347	minimum radius occurs at zero internal temperature. Table 5.6.1, 228
	lithium surface abundances, theory and fact, 768, 820, 844	model characteristics vs degeneracy for (1/9) M_{\odot} model, Table 5.6.1, 228
	the case of Capella A and B 820 844	model variations with decreasing radius
	LMC (Large Magellanic Cloud), 7, 12, 13	encapsulate the essence of the evolution of most
	LMXB (low mass X-ray binary), 20–23 LMXB burster, 20–21	stars from birth to old age as a white dwarf, including the fact that the entropy decreases ineverably with time 227–231
	local energy-generation characteristics in a 5 M_{\odot} model approaching the red giant branch,	low mass main sequence stars are the major sources of ³ He in the Universe, 646
	Figs. 11.2.53–11.2.54, 815 rates of gravothermal energy generation and of work done by gravity and their ingradients vs	low mass stars are major contributors to ³ He, ¹³ C, and ¹⁴ N in the Universe, 767–768
	mass, Fig. 11.2.53, 813	low mass stars destroy ² He, ⁷ Li, and ¹² C, 767–768
	differential contributions to luminosity versus radius, Fig. 11.2.54, 813	low mass stars in young associations in the Hayashi band, 538–539
	local energy-generation characteristics in a 5 M_{\odot} model ascending the red giant branch,	low mass X-ray binaries (LMXBs), properties and formation processes, 20–23
	Figs. 11.2.55–11.2.56, 814–815	LPV (long period variable), 8-10
	rates of gravothermal energy generation and of work done by gravity and their ingredients versus	LU decomposition, solution of linear equations, 504–506
	mass, Fig. 11.2.55, 814	LU matrix decomposition, 504–506
	radius, Fig. 11.2.56, 815	sequence models, Fig. 11.4.2, 838

Cambridge University Press & Assessment 978-1-107-01656-9 — Stellar Evolution Physics Icko Iben Index More Information

	luex
luminosity/mass relationship for homogeneous models in radiative equilibrium, 70–71	mass and length scales for the stability of an isothermal gas against gravitational collaps
diagram) 38-40 45-50 51-53	mass density when $n(a^{\pm})$ the number density of
evolutionary models $45-50$ Fig 2.4.1.46	electron-positron pairs greatly exceeds $n(io$
real stars, 38–40, 51–53, Fig. 2.2.1, 40 luminosity versus mass for polytropic models,	the number density of heavy ions, 131, 134 149
213–215 global, 213–215	masses of stars and stellar cores, 8, 9, 12, 13, 15, 21, 24, 43, Fig. 2.3.1, 43
local, 215–222	black hole, 20, 256
Lynden-Bell, D., & Wood, R., 732-733, 808	black hole precursor, 20, 256
	Chandrasekhar mass, 8, 24, 27
M67, open cluster in the Galactic disk, 10, 787.	CO-core of AGB star, 8, 9
808–809	neutron star, 12, 20, 21, 24, 255
the existence of a gap in the distribution of stars on	ONe-core of AGB star, 8, 15
the upper main sequence in the HR diagram	type II SN precursor, 8, 13
demonstrates the short lifetime of the overall	white dwarf, 8, 9, Fig. 2.3.1, 43
contraction phase relative to the preceding main	white dwarf precursor, 8
sequence phase and the following thick shell	Massey, H. S. W., & Smith, R. A., 419
hydrogen-burning phase, 787, 808–809	mass loss from single stars and stars in wide bina 6, 8–9, 13–14, 19–21
Mageilanic Clouds, 5, $7-10$, 12, 15	from bright HMXBs via a radiative wind, 20
AGB stars in, 7, 9	from low mass main sequence stars via a mag
Cepheids in, /	stellar wind, 15, 32, 37
Crab nebula in, 12	from massive main sequence stars via a radiati
globular cluster III, 8	driven wind, 13
LP VS III, 10 SN 1087a in 12	from massive stars during a type II supernova
magnetic activity at stellar surface 17, 10, 36	explosion, 8
Solar-like spots as indicators 19 36	from red giants via a stochastic, evaporative w
VAC stars 7 9	from TPAGB stars in a superwind, 8
magnetic breaking of angular momentum, 37, 534–535	from white dwarfs in a type Ia supernova explo 26–27
magnetic energy as molecular cloud support, 534	from WR stars, 14
magnetic stellar wind (MSW), 15, 19, 22–23, 37, 840 the result of a coupling between a global magnetic	mass loss from stars in close binaries, 16–18, 21- 24–25
field and the charged particles in a stellar wind	in a common envelope event, 16-18, 21-22, 24
which carries away angular momentum, 15, 19,	in a nova outburst, 15
22–23, 37, 840 main sequence band in the HR diagram 3–4	mass loss from the surface during hydrogen-burn phases, 6, 840–844
Fig. 2.2.1 40	red giant branch mass loss rates, 766-841
main sequence band in the ML diagram, Fig. 2.3.1, 43	Reimers giant branch mass-loss rate, 766
main sequence fitting, 5, 11	Solar mass-loss rate, 32, 840
main sequence lifetime, 85, 842	TPAGB stars, 9
main sequence phase for a low mass model has two	typical mass loss along the red giant branch is $\sim 0.1-0.2 M_{\odot}$ 6.841
hydrogen burns first at the model center, then in a	WR stars, 13–14
shell above an isothermal core. 725, 727	mass-loss rates due to a radiative wind may be
during both phases, the gravothermal	approximated by equating the momentum in
energy-generation rate is much smaller than the	radiation field to the wind momentum, 841-
nuclear burning energy-generation rate, e.g., Fig. 11.1.17, 729	mass-loss rate is estimated to be proportional luminosity times $\sqrt{R/M}$ 841
main sequence (MS) stars 3_4 Fig 2.2.1 40	mass lost by stars of 5 and 25 M_{\odot} during the
Fig 2 3 1 43 44-47 50 52-53	sequence phase is estimated to be of the ord
main sequence stars of all masses are major sources of	10% to 20% of the initial mass 842
13 C in the Universe. 648–649, 664	mass and luminosity for stars in binaries
	mass and rammosity for stars in omaries,

/3		ndex
mass-luminosity (M for real stars, Fig	AL) relationships, 40–45 g. 2.3.1, 43	methods for solving quasistatic equations, 436, 459–462, 477–493
power-law appro	ximation for MS stars, 44	classical fitting technique, 459-462
for central stars of	of planetary nebulae, 50	implicit relaxation technique, 477-493
mass-luminosity re	lationship for homogeneous model	Mikheyev, S. P., & Smirnov, A. Yu, 690
stars in which	energy is transported by radiation,	see MSW effect
69–71		Miller, J. C. P., 199
mass-luminosity re	lationship for real main sequence	million nulsers repidly spinning neutron stars
stars, 44	steines in the mass and flavor	beaming energy at radio wavelengths 12, 20, 24
representation		53
mass-squared diffe	rences and mixing angles for	LMXB precursors, 20
neutrinos, 687	-688, 711	Milne, E. A., 86
cosmic ray muor	and tau neutrinos, 687	Mira, a long period radially pulsating AGB star, 51, 53
reactor antineutr	inos and antimuons, 687–688	Mirfak, core helium-burning star, 52
three neutrinos,	Table 10.10.1, 711	MIT (Massachusetts Institute of Technology),
mass transfer in bir	naries, 14–28	522–523
mass transfer onto	white dwarf, 14–15, 20–21	mixing-length algorithm for convection, $75-78$
matrix building blo	ck relating isotopes connected by	ML (mass-luminosity) relationships, 44, Fig. 2.3.1, 43
nuclear reaction	ons, Fig. 8.8.1, 495	accreting through an accretion shock from an
matrix decompositi	on, 504–506	envelope in free fall, 535–538
Mana A W 220	Tree-free absorption, 319–325	models in adiabatic equilibrium, 224–231
Maue, A. w., 520	warf mass 225 227 240 241	Mohr, P. J., & Taylor, B. N., CODATA values of
estimated using	N = 3 polytropes 235, 237	fundamental constants, 96, 158, 330
estimated using	r = 5 polyhopes, $255-257$	de Moivre, A., 92
Maxwell-Boltzman	n distribution, 83, 155	mole (gram molecular weight),96
Maxwell-Boltzman	in distribution function, 83,	molecular clouds in spiral arms, typical
154-156		densities and temperatures, 531
derivation assum	ing non interacting particles and	D binding aparent minus excitation aparent 177
using Lagrang	e multipliers, 154–155	K dissociation parameter 175
derivation assum	ing interactions and detailed	molecular weight for
balance, 156		completely ionized matter, 60
Maxwell, J. C., 83,	154, 298	electrons, 72, 130
Maxwell-Boltzman	in statistics, 154–155, 158–165,	ions, 101, 188
for pure partially	vionized hydrogen 158–165	mixture of partially ionized hydrogen and helium
for an arbitrary r	nix of partially ionized particles	plus a hypothetical metal ion in a stellar
170–171	in or partially follized particles,	envelope, 174–176
for pure, partially	y ionized helium, 171–173	ionized medium 22, 60
Maxwell, J.C., 83,	154, 298	for heavy ions and electrons 60
Maxwell's equation	ns of electrodynamics, 386–389	for electrons 72
applied to find th	e frequency of plasma waves,	Morgan I A. 543
386–388		graphics package, WIP (Work in Progress), 543
plane wave solut	ions in free space, 89	Morse, P. M., 381
McCann, G. D., 52	2	Motz, L., 389
mean free path of p	hoton, 69, 331	Mouschovias, T. Ch. & Spitzer, L. J, Jr., 539
mergers of helium	white dwarfs, sdB and sdO stars,	Mouschovias, T. Ch., 534-535
25–26		MS (main sequence) stars, 3-4, 40, 43-47, 50,
mergers of massive	white dwarfs, type Ia supernovae,	52–53
ZJ-Zð Mestel I 524		MSW (magnetic stellar wind), 15, 19, 22–23, 37
metal-poor (popula	tion II) stars 10-11	carries away angular momentum because of a
metal-rich (populat	ion I) stars, 10–11	wind and a global magnetic field which is
meteorites compos	sition of 35	anchored in the star, 37, 840
meteornes, compos	SHIOH 01, 55	anchored in the star, $37, 640$

8/4		ndex
	MSW (Mikheyev-Smirnov-Wolfenstein) effect, 689–699	experimental, 428–429 theoretical, 426–429
	mass matrix for neutrinos in the mass and flavor representations, 690–694	free–free absorption and a lower limit on the <i>I</i> Rosseland mean opacity, 430–431
	Hamiltonian for interaction between electron	H^- ionization potential, 419
	neutrinos and electrons, 690, 694, 695	H ⁻ opacity in photospheres of cool stars, 419
	and all electrons, 691	ionization potentials of elements of low ioniza potential, Table 7.16.1, 420
	time development of flavor states, 693–699	low ionization potential elements donate elect
	Wolfenstein 695–696	419, 430, Figs. 7.16.1–7.16.4, 422–424
	solution strategy, after Rosen and Gelb, 696–697	potential 419-422
	general solution, 699	solutions of Saha equations, 421–425
	numerical solutions for neutrinos originating at the	Rosseland mean H^- opacity, 431–432,
	Sun's center, 699–703	vs temperature when density $= 10^{-6}$ g cm
	characteristics at the Sun's surface of neutrinos	Table 7.16.2, 432
	originating at the Sun's center, Table 10.7.1, 702, 600–703	see also H ⁻ and H-minus
	numerical solutions for neutrinos produced in	Nernst's theorem, 231
	realistic Solar models, 703–709	neutrino-antineutrino pairs, 128
	all neutrinos born in a given spherical shell in the	neutrino-electron scattering, 680
	Sun and reaching the Earth leave the Sun in the	neutrino flavor vs neutrino type, 684
	same flavor state mixture, 703–704	neutrino flavors, masses, and oscillations, 38
	Eig 10.8.1.704 for Solar model A and	neutrino fluxes from a Solar model with $Z = 0.0$
	Fig. 10.8.1, 704, for Solar model B analytical	$Y \sim 0.275$ agree with those interpolated from
	approximation, 705	Solar models $A(Z = 0.01)$ and $B(Z = 0.02)$
	characteristics of emergent high energy neutrinos as	Table 11.1.1, 723
	functions of spherical shell of origin,	neutrinos from the Sun 38, 637, 649–652, 664–
	Table 10.8.1, 707	characteristics of emergent neutrinos created a
	characteristics of emergent low energy neutrinos as	Solar center, Table 10.7.1, 702
	Table 10.8.2, 708	neutrino fluxes at Earth from Solar model A v
	MT Serpentis in Abell 41, the precursor of a CV, 17	position of origin in Sun, Fig. 10.8.1, 704 neutrino fluxes at Earth from Solar model B v
		position of origin in Sun, Fig. 10.8.2, 705
	Nakamura, K., 711	for Sun 650
	M_{\odot} Solar model 649	$L_{\nu} \sim 5 \times L_{CN}$ in model A. Fig. 10.1.9, 652
	NASA (National Aeronautics and Space	$L_{\nu} \sim L_{\rm CN}$ in model B, Fig. 10.2.9, 665
	Administration), 522	neutrino oscillations in vacuum, 38, 682-686
	National Aeronautics and Space Administration	eigenstates are linear combinations of mass
	(NASA), 522	eigenstates, 637, 683
	National Center for Atmospheric Research (NCAR), Boulder, Colorado, 523	683
	National Science Foundation (NSF), 523–524	traction of time that a neutrino born in a given
	natural cubic spline, algorithm for, 404–410	angle 684-685
	Naur P & Osterbrock D F 389	mass and flavor eigenstates. 38, 683
	NCAR (National Center for Atmospheric Research),	oscillation time and length are proportional to
	Boulder, Colorado, 523	energy divided by the difference in squared
	nearby stars, properties of, 38-45	masses of neutrino types, 685–686
	near and bright stars in the HR diagram, Fig. 2.2.1, 40	oscillation amplitude is given by $\sin^2(2\theta)$, wh
	nearest neighbor concept, 104, 114, 238	is the mixing angle, 685
	negative hydrogen ion (H-minus), absorption of photons by 419–433	oscillation length much larger than normal
	photons by, 417–435	aboratory unitensions, explaining why evid

875	Index	
	wave functions for neutrinos born in given flavor eigenstates, 683–684	energy-generation rate as a power law, local rate $\propto \rho^{1+k} T^s$, 213
	neutrinos, escape from stars except under highly	in homogeneous models, central concentration is

cross section with matter, 260 energy-loss via neutrino-antineutrino pairs, 128 by plasma process, 726-727, 761-762 mean free paths, 135 neutrinos from SN 1987a, 13 neutron-capture nucleosynthesis, 9 neutron-rich isotopes, 9 neutron sources, (α, n) , reactions on ¹³C and ²²Ne, 9 neutron-star binary, PSR 1913+16, 24 neutron stars, end products of the evolution of stars more massive than $\sim 10 M_{\odot}$, 8, 12, 13, 20, 24, 47, 248, 256 binding energy, 12-13, 237 mass, 12, 20, 21, 255-256 radius, 12, 248-249 rotation speed, 12, 20, 24, 53 neutron stars (NSs), stars of Solar mass or larger in which degenerate baryons are the main source of pressure, 192-193, 248-256 abundances of neutrons, protons, and electrons, 250-254 binding energy, 13, 237 Fermi momentum, neutron-proton ratio, 253 neutron-proton ratio, and nearest neighbor separation as functions of mass density, Table 5.9.1, 253 maximum baryonic mass at least as large as 2 M_{\odot} rules out hyperonic and strongly interacting strange quarks as major constituents of neutron stars, 255-256 radius and the necessity of taking general relativistic effects into account, 249 repulsive nuclear forces are the most likely agents for preventing collapse to a black hole of neutron stars as massive as 2 M_{\odot} , 254–256 Newton, Isaac, 31, 59 Newton's gravitational constant G., 31, 58 NGC 188, oldest disk cluster, 10

unusual conditions, 128, 135, 260

massive stars, 135

contribution to pressure in collapsing cores of

NGC 2264, 538, 556

- NGC 7000/IC 5070, 538, 556
- Nishina, Y., 382
- non relativistic electron gas, properties of, Table 4.7.1, 110-111
- NOT (Naur, Osterbrock, Tayler) criterion for a convective core, 389, 392-394
- NS (neutron star), see neutron star
- NSF (National Science Foundation), 523-524
- nova outbursts in CVs, 15, 20-21
- nuclear energy-generation rates in polytropes, 213-215, Table 5.3.1, 211

in homogeneous models, central concentration is

- weakly dependent on N and strongly dependent on s, 214-215, Table 5.3.1, 211 mass fraction active in nuclear energy generation,
- 214
- nuclear energy-generation rates in stellar interiors, 80-86
- nuclear energy production in the convective core of a ZAMS model relative to the total nuclear energy production in the model increases with the mass of the model, 629

nuclear reaction rates as averages over Maxwell-Boltzmann velocity distributions, 82-84, 274, 275 nuclear reaction rates, charged particles,

- 80-86 center of mass cross section factor, 83
 - Coulomb barrier, 82
 - cross section for reaction, 82-83
 - differential reaction rate, 82
 - energetics, 80-81
 - integral over particle distributions, 83-84 sensitivity of reaction rate to temperature and
- density, 82 wave function, zero separation, 82 nuclear reactor-produced antineutrinos mix with muon antineutrinos, measured by the KamLAND
 - liquid scintillator, 687-688
- nuclear transformations and composition changes, 5, 9.10
 - carbon production in TPAGB stars, 9-10 s-process element production in TPAGB stars, 9 - 10
- nuclear transformation equations, 493-499 abundances of isotopes in local equilibrium, 498-499
 - equations for changes due to creation and destruction of isotopes, 495-496
 - linearization of equations and solution by iteration, 496-497

matrix building block connecting isotopes, Fig. 8.8.1, 495

number abundances of elements at the surface of an evolving 5 M_{\odot} model, Table 11.2.2, 818 numerical integration algorithms, 462-476

occupation number for electrons, Bose-Einstein statistics, 151 Fermi-Dirac statistics, 93, 101 Maxwell-Boltzmann statistics, 155 occupation number for photons: number per unit cell in phase space, 151, 342 occupation number for positrons, Fermi-Dirac statistics, 129

876

Index

occupation probability, Bose-Einstein statistics, 149-151 Fermi-Dirac statistics, 91-92 Maxwell-Boltzmann statistics, 154-156 Office of Naval Research (ONR), 522 OH/IR sources, 8-9 ONe (oxygen-neon) cores of AGB stars, 7-8, 15, 51 one zone models of low mass stars, 237-242, 242-245 average temperature depends quadratically on inverse of average distance r between adjacent particles, 243 during pre main sequence evolution, mean density and temperature increase, 243 $E_{\text{bind}} = \text{gravitational binding energy}, 243$ $E_{\text{kinetic}}(r, T) = \text{ion and electron kinetic energies},$ 242-243 internal temperature vs distance between adjacent particles from $E_{\text{kinetic}} = E_{\text{bind}}/2, 243$ maximum mean temperature larger for larger model mass and molecular weight, 244 mean temperature first increases as radius shrinks, reaches a maximum, and then decreases as radius shrinks further, 243-244 mean temperature is quadratic in $\lambda_{\text{Compton}}/r$, 245 one zone models of neutron stars, 248-254 composition, 250-254, Table 5.9.1, 253 neutrons in interior, 252-254 electrons and protons near surface, 251 density of nuclear matter, 254 equilibrium abundances of neutrons, protons, and electrons, 250-254, Table 5.9.1, 253 general relativistic effect on gravitational acceleration, 249 masses of observed neutron stars, 255-256 maximum observed gravitational mass exceeds Chandrasekar mass, 255 neutron-proton ratio, maximum, 253 neutron-proton ratio vs density, Table 5.9.1, 253 NS-WD radius ratio comparable to electron-neutron mass ratio, 248-249 one zone models of stars, 237-256 one zone models of white dwarfs, 237-242 characterized by average distance r between adjacent electrons, 238 cooling time scale, 247-248 degenerate electrons non relativistic, 238-240 electron Fermi momentum and energy versus r, 238 electron momentum and kinetic energy versus r, 238-239 estimate of r follows from electron kinetic energy = -gravitational binding energy/2 and is found to be comparable to the electron Compton wavelength, 239-240 final mass-radius relationship, $R \propto M^{-1/3}$, 192,

mean temperature is quadratic in r_{final}/r where $r_{\rm final} \propto M^{-2/3}, 245-246$ model mass approximates Chandrasekhar mass as rfinal goes to zero, 241 relativistically degenerate electrons, 240-242 white dwarf cools due primarily to the release of ion thermal energy rather than to the release of gravitational binding energy, 245-247 white dwarf shrinks because it cools, 246-247 ONR (Office of Naval Research), 522 opacities, 71-73 bound-free transitions, 73 electron scattering, 71-72 free-free transitions, 72-73 opacities, analytical approximations to, 380-388, 392-393 Keller-Meyerott, 381-382, 390 metal-free, high temperatures: fits to Keller-Meyerott (1955), Cox-Stewart (1970), and Rogers-Iglesias (1992) opacity tables, 382-384 metal-rich, intermediate to high temperatures: fits to Cox-Stewart tabular opacities, 384-388 opacity associated with K-shell absorption, 319 opacity, bare bones example, Fig. 7.11.31, 379 opacity due to grains, 536 opacity vs ρ and T at center of MS model, 390, 392-393 OPAL (opacity project at the Lawrence Livermore National Laboratory) opacities, 415 opaque hydrostatic protostellar core, 535-536 open clusters, 10 Ophiuchus dark clouds, 538, 556 Oppenheimer, J. R., 12, 254 Oppenheimer, J. R., & Volkov, G. R., 12, 254 orbital angular momentum conservation and mass transfer in close binaries, 15-18 orbital binding energy as source of energy for common envelope ejection, 16-18 orbital expansion as a consequence of mass loss from a binary system of the envelope of the massive component undergoing a type II supernova explosion, 25 orbital shrinkage in close binaries, 15-19, 21-23, 25, 37 due to angular momentum loss by GWR, 15, 22-23.25 due to angular momentum loss by a MSW, 15, 19, 22 - 23.37due to frictional transfer of orbital energy to escaping matter in a common envelope event, 16 - 18.25Orion, 51, 538, 556 Orion complex, 51, 538, 556 Orion the Hunter (constellation), 51 Ortega, J. M., 523

240

Cambridge University Press & Assessment 978-1-107-01656-9 — Stellar Evolution Physics Icko Iben Index More Information

377		ndex
Oi	tiz, C. E., Garcia, A., Waltz, R. A., Battacharya, M.,	particle diffusion in radiative zones, 516–519
	& Komives, A. K., 680, 708	abundance-gradient-induced diffusion, 516–517
OS	cillations between neutrino flavors are expected to occur if neutrinos have intrinsic masses and/or	diffusion and nuclear burning in main sequence stars, 517
	effective masses due to interactions with	diffusion and nuclear burning in white dwarfs, 5
	electrons, 38, 637, 682-689	gravity induced diffusion, 518
	vacuum mixing angle, 683	rotation-induced diffusion, 517-518
	fraction of time a neutrino born in flavor state 1 is found in flavor state 1 is $P_1 = 0.5 \sin^2 \theta$, where	particle numbers in and average separations betwee adjacent particles in stellar interiors, 58
	θ is the mixing angle, and the fraction of time it	partition functions (Zustand Summe), 160-165,
	is found in flavor state 2 is given by	170–171, 361
	$P_2 = 1 - P_1, 684-685$	for partially ionized helium, 170-171
	analogy with chameleons, 685	for partially ionized hydrogen, 160-165, column
	time scale for oscillations between flavor states	in Table 4.13.1, 162
	directly proportional neutrino energy and	influence of electron screening on, 162–165
	inversely proportional to differences in squares	in general, 170–171
	of mass eigenvalues, 682, 685-686	Pauli exclusion principle, 6, 63, 64, 71, 142, 149
Ös	sel, F., Psaltis, D., Ransom, S., Demorest, P., &	Pauli, W., 63, 71
	Alfor, M., 256	peculiar (greater than average) space velocities of
OV	erall contraction phase, 787–796, 826–830	HMXBs, LMXBs, etc., due to recoil of remna
	consequences for the distribution of stars in the	system formed during supernova explosion of
	open cluster M67, 808–809	precursor of the relativistic remnant compone
	in a 5 M_{\odot} model, 787–796	20
	in a 25 M_{\odot} model, 826–830	Penston, M. V., 535
		perfect gas equation of state, 59
De	czwieki B 50	period-luminosity relationship for Cepheids, 11
I a Pa	czyński. I us mass-luminosity relationshin for	personal computer, 524
1 0	nlanetary nebulae 50	perturbations in an initially homogeneous medium
na	ir annihilation electrons and positrons 128, 130	scales for unstable perturbations, 531-534
pa	primarily into photons, 128, 130	perturbations in the early Universe lead to large sc
	secondarily into neutrino-antineutrino pairs, 128	structure, protogalaxies, giant molecular clou protostellar clouds, and protostars, 529
pa	ir production and annihilation, 128, 130	perturbation theory in quantum mechanics, first or
	production of electron-positron pairs by photons	303–307
	interacting with charged particles, 125, 130	Fermi's golden rule for radiative
	annihilation of algorran positron pairs 128, 120	transitions between matter eigenstates, 306
De	$11_0 = \frac{1}{2} \frac{1}{$	PG 1159 stars, white dwarfs with helium-rich
I a Da	nnekoek Antonie (Anton) /10	surfaces, 4
Pa	rke S I 690	phase space, 89–91
na	rsec (nc for short) = 3.26 light years 4	smallest statistical cell in, 63, 91
pa	rtially ionized hydrogen, thermodynamic properties	specification of states in, 89, 151
pu	of, 165–170	volume in, 91, 151
	creation-destruction potentials, 167, 168	photoionization, 312-319
	gravothermal energy-generation rates, 167–170	photon-electron interaction Hamiltonian, 300-302
	opacity due to bound-free and bound-bound	photon-matter interaction processes, 298-434
	transitions leads to a large radiative gradient	bound-bound transitions, 337-347
	which, coupled with a small adiabatic gradient,	bound-free transitions, 312-319
	promotes convection in the envelopes of low	cross section for ejection of K-shell electron,
	mass main sequence stars and of red giants and	314–317
	AGB stars, 167	plane wave approximation, 314–317
	pressure and energy density versus temperature,	Born approximation, 316
	166	Coulomb-distorted plane wave result, 316
	specific heats and the adiabatic	cross section when there are two electrons in
	temperature-pressure gradient, 165–167	K shell, 317
pa	rticle abundance changes and gravothermal	cross section for ejection of an L-shell electro
	energy-generation rate, 441–445	317-319

878		ndex
	nhatan mattar interaction processes (court)	planatacimals in a primitiva Salar disk. 25
	opacity associated with electron ejection, 319	plane waves for electrons, Coulomb-distorted and
	Doppler line broadening, 346–347	effects on free–free opacity, Fig. 7.11.30,
	electrons and ions participate in absorption	effects on Rosseland mean opacity, Fig. 7.11.31,
	if Coulomb distorted plane waves are chosen, the	plasma cutoff frequency and opacity, 385–388
	if plane waves are undistorted, the transition is of	plasma frequency in an folized incuratin, 387–388 plasma process and the generation of neutrino antineutrino pairs 47, 49, 738, 747, 762
	Hamiltonian has two components: the interaction between an electron and the electrostatic	in the electron-degenerate helium cores of low m stars on the first red giant branch, 49, 738, 747
	interaction between an electron and an ion, 320–321	in the electron-degenerate CO cores of intermed mass AGB stars, 47
	second order perturbation theory in quantum mechanics and transitions through	Pleiades disk cluster, 10 PNe (planetary nebulae), 7, 9, 17, 50, 245
	intermediate states, 321–325	Poincaré's last theorem, 524
	derivation of the transition probability by solution of the Schrödinger equation leads	Poisson's differential equation connecting the gravitational potential with the density, 532
	to a variant of Fermi's golden rule in which a single matrix element is replaced by a sum of products of matrix elements divided by	Poisson's differential equation for the electrical potential about a charged particle in a partiall ionized medium, 180–181, 184–185
	the difference between the energy of an intermediate state and the energy of the	polarization of the entire aggregate of charged particles, 185
	initial state, 325–331	Pollux, low mass red giant, 52, 53
	probability, 321, 325	polytropes of index $N = 3$ and the Chandrasekhar mass, 235–237
	the conservation of energy, 321–323	polytropes, self-gravitating spheres in which the matter density $\rho(r)$ varies only with distance from the centre 101–256
	electron, 324–325 matrix element for the Coulomb scattering of an	a differential equation for the gravitational poter $\phi(r)$ can be constructed 193–194
	electron, 323–324 natural line breadth, 341, 347	by assuming that pressure depends only on the density according to $P = K\rho^{1+1/N}$, where ρ
	photon mean free path, definition of, 69, 331 Rosseland mean opacity, 299, 331, 350–380	and N are constants, and noting that the press gradient equals the density times the gradient
	spontaneous emission between bound atomic states, 309–310, 337–341, 343–344	the potential, a differential equation involving only N can be constructed and solved for a
	stimulated emission, 310, 331, 341–344, 349–350 photon mean free path, definition of, 69, 331	dimensionless quantity $u = \phi(r)/\phi(0)$, 194–196
	mechanical formulations, 300–301 photospheric boundary condition, 457–459, 460	for any given choice of N, specification of mod mass M and radius R determines K and the i of physical variables such as $\rho(r)$, $P(r)$, $M(r)$
	Pilachowski, C. A., & Sowell, A. J., 820	<i>g</i> (<i>r</i>), 197
	pion condensates in neutron stars, 12 pivoting to stabilize the solution of linear equations,	relevance of polytropes to real stars depends on with $N = 3/2$ and $N = 3$ models being
	500	particularly relevant, 195
	Planck, M., 63, 89, 91	polytrope solutions, 197–209
	Planck's constant $h =$ size of the smallest cell in position-momentum phase space, 63, 91	analytic solutions, $197-199$, $207-209$ for $N = 0$, 198
	planetary nebulae (PNe), 7, 9, 17, 50, 245	for $N = 1, 198-199$
	Infetime vs mass of central star, 950, 245 MT Serpentis 17	for $N = 5, 207-209$
	wit ocipenus, 1/	omuning energy vs in, 207

879		index
879	dimensionless differential equation depending only on <i>N</i> , variables $u = \phi(r)/\phi_c$ and $z/z_s = r/R$, 195–196 gravitational binding energy vs N, 207 index $N = 3/2$ polytropes, properties, 199–202, Table 5.2.1, 200, Figs. 5.2.1 and 5.2.2, 201 index $N = 3$ polytropes and the Chandrasekhar limiting mass, 202–205, Table 5.2.2, 203–204, Fig. 5.2.3, 204, Fig. 5.2.4, 205 mass-radius relationships, 231–235 numerical solutions: Mathematical Tables of British Association for the Advancement of Science, Volume II, 199, 202 properties of $N = 3/2$ polytropes, 199–202, Table 5.2.1, 200, Table 5.7.1, 235 properties of $N = 3/2$ polytropes, Table 5.2.2, 203–204 structure variables vs mass, for $N = 1.5$, Fig. 5.2.2, 201, for $N = 3.0$, Fig. 5.2.4, 205 structure variables vs radius, for $N = 1.5$, Fig. 5.2.1, 201, for $N = 3.0$, Fig. 5.2.3, 204 polytrope properties vs N, 206, Table 5.2.3, 206, Fig. 5.2.3, 206, Table 5.3.1, 211 potential at center vs potential at surface, 198 polytrope properties, given an EOS and a law of nuclear energy generation 210–215 mass-luminosity relationship, 213–215 power law energy-generation rate: effective mass of nuclear source, 214–215 pressure = perfect gas plus radiation: theorems regarding interior temperatures and pressures, 210–212 properties as functions of index <i>N</i> , Table 5.3.1, 211	polytropes of index $N = 3/2$ with pp-chain nuclear reactions taken into account can be used to explore the characteristics of stars of small enough mass that they may be expected to be convective throughout. For every choice of model radius, one can determine the luminosi and therefore the surface temperature of the model, as described in Table 6.12.4 for a mod of mass $M = M_{\odot}/9$, which is very close to th mass of each member of the binary pair L726 A & B. The luminosities and surface temperatures of the real stars, when compared with the models, provide estimates of the inter propeties of the stars, 295–296 Pontecorvo, B., 687 Popper, D. M., 42, Table 2.3.1, 42, Table 2.3.2, 43, Table 2.3.3, 44 population I stars, 10–11 positron number density, 128–149 Positron number distribution, 128–149 Poynting, J.H., 31 pp-chain energy-generation rate dominates over th CN-cycle energy-generation rate in a 1 M_{\odot} model, 49, 530, 592, Fig. 9.3.24, 592 pp-chain nuclear reactions described qualitatively, 81 pp-chain nuclear reactions described in detail, 261–283 characteristics of reactions, Table 6.8.1, 276 electron-capture rate of ⁷ Be, 277–280 equilibrium abundances and energy-generation rates, 280–283 particle lifetimes vs temperature, Table 6.8.2, 27
	properties as functions of index <i>N</i> , Table 5.3.1, 211 polytrope thermal properties, given an EOS, 210–213 central temperature vs mass and radius, 212 gas over radiation pressure, 210–212	equilibrium abundances and energy-generation rates, 280–283 particle lifetimes vs temperature, Table 6.8.2, 27 pp reaction, diproton into deuteron and two lept pp-chain initiator, 261–271 primary contributors to luminosity in main
	thermal properties, 210–212 polytropic index and ZAMS models, 222–224, Table 5.5.1, 223	sequence stars less massive than $\sim 2M_{\odot}$, 258 pp reaction, qualitative description of physics of an estimate of rate, 82–84 pp-reaction rate, calculation of, 260–271
	polytropes with the mass and radius of real ZAMS stars and with CN-cycle and pp-reaction energy-generation rates. Insisting that the average nuclear burning energy of a model equals that of the realistic prototype leads to an estimate of the polytropic index <i>N</i> best representing the prototype, 291–296 $M = M_{\odot}, R = R_{\odot}$, Table 6.12.1, $N = 3.22$ for $L = L_{\odot}, 291–293$ $M = M_{\odot}, R = R_{\odot}$, Table 6.12.1, $N = 3.15$ for	center of mass cross section factor for pp reaction 268–269 deuteron wave function, 264–265 properties of, Table 6.4.1, 265 diproton into deuteron and two leptons, 260–26 diproton-deuteron overlap integral, 266–267 diproton wave function, 266 energetics, 260–261 evaluation of overlap integral, 266–268
	$L = 0.75L_{\odot}, 295-294$ $M = 3M_{\odot}, R = 1.75R_{\odot}, \text{ Table 6.12.3}, N = 3.12$ for $L = 94L_{\odot}, 294$ $M = 9M_{\odot}R = 3.5R_{\odot}, \text{ Table 6.12.2}, N = 2.85$ for $L = 4500L_{\odot}, 293$	proton lifetime vs temperature and density, 269–271, Table 6.6.1, 271 reaction probability from weak interaction theor 261–262

880 Index pp-reaction rate, calculation of (cont.) protostellar clouds, 529 made in giant molecular clouds, 529 reaction rate as average over Maxwell-Boltzmann velocity distribution, 269-271 evolve into opaque, quasistatic cores accreting from dynamically collapsing envelope, 529 temperature near the Sun's center, 271 weak coupling constant from ⁶He beta decay, PSR 1913+16, neutron-star binary, 24 properties of realistic ZAMS models, Table 7.13.1, 262 - 264Pranzo, N., Vangioni-Flam, E., & Casse, M., 433 395 pre-main sequence quasistatic evolution of a 1 M_{\odot} pulsars, rapidly spinning neutron stars radiating energy in a beam, 12, 20, 24, 53 model with deuterium burning, 539-572 construction of an initial model assuming that pulsational instability strip, 6, 7, 10 $\epsilon_{\rm grav} \propto T$, 539–540 initial abundances, Table 9.2.1, 542 quadratic interpolation, 401-404 input physics and initial abundances for quasistatic approximation: bulk acceleration is evolutionary calculations, 540-543 neglected in balancing the pressure gradient with Press, W. H., Flannery, B. P., Teukolsky, S. A., & the gravitational force and the bulk kinetic Vetterlin, W. T., 506 energy is ignored in the equation for the pressure as modified by electron screening, conservation of energy, 435, 453-454 182 - 189quasistatic equations in spherical symmetry, in the Debye-Hückel approximation when electrons 453-457 are not degenerate, 182-184 quasistatic evolution, 32 in the Debye-Hückel approximation when electrons quasistatic evolution equations in spherical symmetry, are partially degenerate, same as above but with 453-457 a modified screening radius, 184-186 four first order differential equations in one when electrons are highly degenerate, 187-189 dimension expressing conservation of mass, pressure-balance equation, 58, 194 momentum, and energy and relating the energy pressure-gradient and gravitational forces differ when flux to the temperature gradient, 453-454 bulk acceleration is taken into account, 439 quasistatic evolution of population I models through pressure-gradient and gravitational force balance in a gravitationally contracting phases to the zero age spherical star in the quasistatic approximation, main sequence, 539-635 58, 194 a 1 M_☉ model, 539-597 pressure per particle for electrons, 141-142 a 5 M_☉ model, 597–621 pressure per particle for positrons, 141-142 a 25 M_☉ model, 622–635 primitive Solar nebula, abundances in, 35 quiescent helium burning in a convective core, 49-50 probability of absorption of photon versus absorption cross section, 312 probability of the most probable distribution, in radiation constant a, 64 statistical mechanics, 156-157 radiation in thermodynamic equilibrium is called relationship to entropy in thermodynamics, black body radiation and energy density and 156 - 157pressure are functions of the temperature, 64-65 probability of state occupancy, 92, 151, 155, 158 radiative absorption probability, dipole Procyon, MS star, 52 approximation, 337-341 progress in understanding stellar structure and radiative core growth during the gravitational evolution has been tied to the growth in the speed contraction phase changes the character of and capacity of electronic computers, 395 evolution in the HR diagram, a 1 M_{\odot} example, protostar: a quasistatic core accreting from a 563-572 protostellar cloud, 529 during the fully convective phase, $dR/dt \propto -LR^2$ found in interstellar clouds, 529 and $L \propto R^2$, so the model shrinks because it phase of accretion ends prior to ignition of shines and dims because it shrinks, 565 hydrogen, 529 during the phase of radiative core growth, the T-Tauri stars are real analogues, 529 binding energy must increase to supply L, the protostar model: hydrostatic core, accretion shock, virial theorem demands that interior temperatures envelope in free fall, 538 increase at half the rate that the binding energy accretion rate measured by envelope mass divided increases, larger temperatures mean smaller by the free fall time, 538 opacities, a mass-luminosity theorem states that final result: a fully convective quasistatic star in the $L \propto 1/\kappa$, so L increases as R decreases and/or Hayashi band, 538-539 the central concentration increases, 565

881	I	ndex
	from the time dependences of radius, central concentration, and radiative core mass, it is	red giant branch, total binding energy and core binding energy, 764–765
	evident that both processes take place: R	red giant branch models have four parts, 745–746
	decreases and the central concentration	hot, compact white-dwarf like core
	increases, Fig. 9.2.16, 564	very narrow hydrogen-burning shell
	radiative cores prevail in low mass main sequence	very extended and cool convective envelope
	models relying for their luminosity primarily on	transition region of very rapid changes between
	the full set of pp-chain reactions, Table 7.13.1,	H-burning shell and base of convective envel
	395	red supergiants 4 40
	radiative decay probability, dipole approximation,	reduced mass, two particle system 82
	337–341	Regulus a main sequence star 40, 52, 830
	radiative diffusion, 69–70	Regulas, a main sequence star, 40, 52, 859
	radiative emission vs absorption probabilites, 307-312	Reiniers, D., 700 Reimers mass loss rate for rad giants 766, 767, 9
	relationship between cross section and transition	Remiers mass-loss rate for red grants, 700–707, 84
	probability, 312	relationship between photon absorption cross sect
	radiative temperature-pressure gradient V _{rad} , 74, 389,	and photon absorption probability, 511–512
	742, 754	relativistic particles, relations between energy and
	decrease outward in the ratio of the energy flux to	and an array 00
	the gravitational acceleration is the primary	and energy, 90
	reason for the finite size of a convective core, 398	ratio of gas pressure to total pressure in the extr
	ingredients of, 742-744	relativistic minit, 155
	variation through a convective core, 389-398	equations 477 403
	radiative to convective flow transition at the	choose initial set of variables from model
	photosphere of a 1 M_{\odot} model in the Hayashi	constructed with classical fitting technique A
	band, Fig. 9.2.12, 561	break model into zones, define some state varia
	radiative transition probability between matter eigenstates, 307–312	at zone centers and some at zone boundaries,
	radiative transport in stellar interiors, 69-71	in the central sphere, replace differential equation
	radiative wind, 12–14, 20, 24, 53	base middle and edge of the sphere 478-47
	massive main-sequence stars, 13, 14	define each variable as an initial value plus a
	Wolf-Rayet stars of types WN and WC, 13–14	perturbation, construct equations connecting
	radio pulsars, 12, 20, 24, 53	perturbations at the base, middle, and edge of
	radius vs mass for low mass white dwarfs, 232–235,	central sphere, 480–484
	238–240	move outward through the model star, one shell
	N = 3/2 polytropes, 232–235	time, constructing finite difference equations
	one zone models, 238–240	relating variables in adjacent zones in a way
	realistic models, 234–235, Table 5.7.1, 235	which reproduces the initial differential
	rates at which gravity and compression forces do	equations in the limit of vanishing zone size,
	work unter locarly, but are the same globally, $445-446$, $454-457$, $654-655$	484-486
	ratio of radiation to gas pressure versus stellar mass	in every shell, define each variable as an initial
	64–65	value plus a perturbation and construct equat
	R CrB stars (H-deficient surfaces). 4	486_488
	realistic ZAMS models, properties of. Table 7.13.1.	determine treatment of gravitational
	395	energy-generation rate which involves time
	red giant (RG) stars, Fig. 2.2.1, 40, 50-51	derivatives, 488–490
	red giant branch, 40, 50–51	move outward through the model constructing
	red giant branch, core-halo structure, 749–751	equations which relate 4 perturbations in each
	red giant branch evolution, 745–751,	shell to just 2 other perturbations. 490–491
	Figs. 11.1.32–11.1.38, 745–750	produce equations for perturbations in the last
	evolution in the HR diagram is essentially the	interior shell, construct relations between
	inverse of evolution during the Hayashi branch	perturbations in the two surface variables and
	phase, 739	two perturbations in the last interior shell, an
	red giant branch, response of core to hydrogen	finally obtain explicit values for the four

> 882 Index relaxation technique for solving stellar evolution Rosseland mean opacity, weighting function for, 347 - 350equations (cont.) progress backward through model to find all other Rosseland, S., 347 rotational angular momentum loss from Sun, 37 perturbations, 472-480 repeat the entire process until all equations are mechanism involves interaction between wind, solved to the desired accuracy, 492-493 magnetic field, and Solar rotation, 37 the best choices for initial estimates of structure rotational breakup velocity for a neutron star, 12 variables for the next time step at time $t + \delta t$ are rotation rate of Sun, 32, 36 the structure variables at time t, even though the RR-Lyra, eponymous radially pulsating variable HB energy balance may be severely violated during star, 6 the first iteration, 493 RR-Lyrae stars, acoustically pulsating, on HB, resolution of the Solar neutrino problem, 639, burning helium in core, hydrogen in shell, 4, 6 RS Canum Venaticorum (RS CVn) stars, first red 710-711 rezoning in the neighborhood of a convective-radiative giant branch stars, 26, 40, 50, 52 boundary can cause discontinuities, 565 RY Agr. Algol system, 26 ρ -Ophiuchi association, 538, 556 Runge, C. D., 473, 475, 476 Rigel, core helium-burning shell hydrogen-burning Runge-Kutta integration algorithms, 473-476, 700, star in the core helium-burning band in the HR Table 8.6.1, 475 diagram, 40, 50-53, Fig. 2.2.1, 40 Russell, H. N., 34-38, Table 2.1.1, 35 Ritter, A., 191 Russell, H. N., Dugan, R. S., & Stewart, J. Q., 39 Ritz. H., 419 Roche lobes in binary star systems, qualitative description, 15-16, 42 Sackmann, I.-J., Smith, R. L., & Despain, K. H., 510 overflow and mass transfer, 16-21 Sadler, D. H., 199 Rogers, F. J., & Iglesias, C. A., 381, 415, 541 SAGE, Soviet-American gallium experiment, 678, 680, 688, 689, 710 role of cosmic rays in triggering the collapse of Saha equations and occupation probabilities of molecular clouds, 534 ionization states, 158-165, 170-173 Rosen, S. P., & Gelb, J. M., 690, 696 for an arbitrary mix of partially ionized particles, Rosseland mean opacity, basic definition of, 331, 334, 347-350 170 - 171Rosseland mean opacity is the reciprocal of the mean for pure helium, 171-173 free path of an average photon times the density, for pure hydrogen, 158-165 in stellar envelopes, 174-179 331.348 Rosseland mean opacity, sample calculations of, partition (Zustand) functions in, 160, 163-164, 171 Saha, M. N., 160 350 - 380Salpeter birthrate function, 85 hydrogen and helium completely ionized, oxygen Salpeter, E. E., 269, 287, 290 with up to two bound electrons, 351-361 $\rho = 1 \text{ g cm}^{-3}, T = 10^7 - 10^6 \text{ K}, 354\text{--}361,$ Scenario approach to binary star evolution, 15-17 Schiff, L. I., 298, 322 Fig. 7.11.1, 355, Fig. 7.11.2, 357, Schmutz, W., Hamann, W. R., & Wessolowski, U, 842 Fig. 7.11.3, 357, Figs. 7.11.4-7.11.6, 359-360 Schönberg-Chandrasekhar limit, 732, 808, 828 hydrogen, helium, and oxygen in all ionization Schönberg, M., & Chandrasekhar, S., 732, 808, 828 states, 361-377 Schrödinger equation and solution in second order $\rho = 0.01 \text{ g cm}^{-3}, T = 10^4 - 1.5 \times 10^6 \text{ K},$ perturbation theory, 321-322 363-371, Figs. 7.11.7-7.11.8, 363-364, Schrödinger equation, plane wave solutions for free Figs. 7.11.9-7.11.17, 365-369 particles, 89 $\rho = 10^{-4} \text{ g cm}^{-3}, T = 10^4 - 3 \times 10^6 \text{ K},$ Schrödinger equation, solution for two unbound 371-376, Figs. 76.11.18-7.11.19, 370-371, charged particles, 82 Figs. 7.11.20-7.11.27, 372-375 Schwarzschild criterion for convection, 74 Schwarzschild, K., 74 $\rho = 1 \text{ g cm}^{-6}, T = 10^4 - 3 \times 10^6 \text{ K}, 376 - 377,$ Figs. 7.11.28-7.11.29, 376-377 Schwarzschild, M., xiii, 395, 521 effect of using Coulomb-distorted plane waves. sdO and sdB stars, 4, 17, 20 377-379, Figs. 7.11.30-7.11.31, 378-379 Sears, D., 522 when only free-free absorption is important, 331 seasonal variation in observed neutrino flux due to Rosseland mean opacity for free-free absorption, variation in Sun-Earth distance, 680 Seaton, M. J., 415

883	Index	
883	second-order perturbation theory for a quantum mechanical system, $321-322$ seed nucleus for s-process nucleosynthesis, Fe56, 9 sequences in the HR diagram, 4, 50–53, Fig. 2.2.1, 40 core hydrogen-burning, main sequence band, Sun, Procyon, Sirius A, Vega, Algol A, Spica B, Spica A, 52 shell hydrogen-burning, first red giant banch band, Pollux, Aldebaran, 53 core helium-burning (shell hydrogen-burning) band, RS Cvn, Capella A and B, Rigel, Deneb, 52, 53 double shell source, asymptotic giant branch band, Mira, Antares, Betelgeuse, 53 white dwarf cooling sequence, Sirius B, Eridani B, L870–2 A, B, 50, 52, 53, Fig. 2.2.1, 40 semiclassical Kramers approximation and Gaunt factors, $331-337$ semiconvection in a 25 M_{\odot} main sequence model, 822-823, Figs. 11.3.5 & 11.3.6, 824–826, Figs. 11.3.8–11.3.10, 827–828, 832, Figs. 11.3.14 & 11.3.15, 832–833, 843 and the Schwarzschild criterion for convection, 823 semiconvective zone is defined as a region in which the composition profile is such that the adiabatic and radiative temperature-pressure gradients are identical, 822–823 Shapiro, Irwin I, 255 Shapiro, S. L., & Teukolsky, S. A., 254 Shaw, R. A., Payne, H. E., & Hays, J. J. E., 543 shell hydrogen-burning stars, 50, 52, 53 Shu, F. H., 537, 538 Silent 700 data terminal, 523 Simpson's rule for solving first order differential equations, $dy/dx = f(x)$, 462–465	Solar model A with metallicity $Z = 0.01$, construction and properties of, 639–658 abundances of CN-cycle isotopes versus mass, Fig. 10.1.6, 648 abundances of pp-chain isotopes versus mass, Fig. 10.1.5, 647 differential and integral mass distributions wrt radius, Fig. 10.1.8, 651 discontinuities, glitches, in evolutionary tracks (Fig. 10.1.1, 641, and Fig. 10.1.2, 643) are due to discontinuities in input physics and rezoning, 641–643 effective polytropic index is $N = 3.24 \pm 0.07$, 657 energy-generation rates by pp-chain and CN-cycle reactions and neutrino energy-loss rate versus radius, Fig. 10.1.9, 652 for a given opacity law, the age of a a model of Solar luminosity depends on the initial helium abundance, 639–640; Table 10.1.1, 640 for a given age, luminosity, and metallicity, the initial helium abundance depends on the choice of opacity, 640 for a given age, luminosity, metallicity, and choice of opacity, radius is determined by the choice of mixing length to scale height ratio, 642–643 global rate at which gravity does work equals global rate at which work is is done by compression, 654 gravitational work supplies the energy for contraction, 654 gravothermal energy-generation rate and its ingredients vs mass and radius, Figs. 10.1.11 & 10.1.12, 653 & 654 in convective envelope, the ⁷ Li abundance is 16% smaller than in initial model, 646–647 layers in which nuclear reactions occur contract an
	Shapiro, Rwin E, 255 Shapiro, S. L., & Teukolsky, S. A., 254 Shaw, R. A., Payne, H. E., & Hays, J. J. E., 543 shell hydrogen-burning stars, 50, 52, 53 Shu, F. H., 537, 538 Silent 700 data terminal, 523 Simpson's rule for solving first order differential equations, $dy/dx = f(x)$, 462–465 single stars, qualitative description of evolution, 3–14	 gravitational work supplies the energy for contraction, 654 gravothermal energy-generation rate and its ingredients vs mass and radius, Figs. 10.1.11 & 10.1.12, 653 & 654 in convective envelope, the ⁷Li abundance is 16% smaller than in initial model, 646–647 layers in which nuclear reactions occur contract an heat, outer layers expand and heat, 655.
	 Single Zone models, same as one Zone models, 237–248 Sirius A, MS star, 40, 43, 52, 53 Sirius B, white dwarf, 40, 43, 52, 53 cooling age relative to that of other white dwarfs, 247–248 Small Magellanic Cloud (SMC), 7–9 SMC (Small Magellanic Cloud), 7–9 	Fig. 10.1.10, 653 logarithmic increments in structure variables durin the last time step, Fig. 10.1.10, 653 model A characteristics are given in the last row of Table 10.1.2, 644 OPAL opacities produce Solar model A with Y = 0.237, 643-644 ppschain CN-cycle, and gravothermal
	 Smith, S. J., & Burch, D. S., 428 smoothness of variations during convective core growth may be enhanced by zoning in advance of an evolutionary calculation, 627 SN 1054, 12 SN 1987a, 12–13 neutrinos from, 13 Solar abundances, determined by fitting to results of Solar neutrino experiments, 618, 682 Solar helium/hydrogen ratio vs metallicity, 638 	energy-generation rates vs mass, Fig. 10.1.7, 650 quasistatic approximation accurate to 1.5 parts in 10^{30} , 658 radial and mass thicknesses of convective envelope are $0.24R_{\odot}$ and $0.012M_{\odot}$, respectively, 645 reduction by nuclear transformations in particle number abundances triggers contraction and compressional energy release, 655–657 structure variables versus mass and radius for

Cambridge University Press & Assessment 978-1-107-01656-9 — Stellar Evolution Physics Icko Iben Index More Information

884	I	ndex
	Solar model A with metallicity $Z = 0.01$,	model B, Fig. 10.3.4, 670
	construction and properties of (cont.)	CN-cycle reaction contributions to luminosity vs
	work done locally by gravity is communicated by	radius
	pressure-gradient forces and appears locally	model A, Fig. 10.3.5, 671
	elsewhere as compressional work, Figs. 10.1.11	model B, Fig. 10.3.6, 672
	& 10.1.12, 653 & 654	CN0-bicycle reaction contributions to luminosity ve
	Solar model B with metallicity $Z = 0.02$,	radius
	construction and properties of, 658–668	model A, Fig. $10.3.7, 6/2$
	Eig 10.2.6.662	model B, Fig. 10.3.8, 6/3
	abundances of pp chain isotopes vs mass	no flavor mixing
	Fig. 10.2.5.663	model A Fig 10.3.9 674
	age versus initial V for models of Solar luminosity	model B. Fig. 10.3.10, 674
	when OPAL onacities are used Fig. 10.2.1	contributions to neutrino luminosity versus radius
	Table 10.2.1. 659	flavor mixing
	differential and integral mass distributions wrt	model A Fig $10.81,704$
	radius, Fig. 10.2.8, 665	model B Fig 10.8.2 705
	effective polytropic index is $N \sim 3.32 \pm 0.01$. 668	electron density versus radial distance from center.
	energy-generation rates by pp-chain and CN-cycle	models A and B. Fig. 10.8.3, 706
	reactions and neutrino energy-loss rate vs radius,	probability that emergent neutrino expresses the
	Fig. 10.2.9, 665	elecron flavor as a function of point of origin and
	evolution of model B in the HR diagram,	energy, Fig. 10.8.4, 709
	Fig. 10.2.2, 660	Solar model neutrino fluxes at the Earth, no flavor
	gravothermal energy-generation rate and its	changes, 673–676
	ingredients vs mass and radius, Figs. 10.2.11 &	model A with $Z = 0.01$, Table 10.4.1, 675
	10.2.12, 666 & 667	model B with $Z = 0.02$, Table 10.4.2, 676
	in convective envelope, the ⁷ Li abundance is 5	models A and B, Table 10.4.3, 676
	times smaller than in initial model, 662	model with $Z = 0.015$, Table 11.1.1, 723
	layers in which nuclear reactions occur contract and	Solar model neutrino fluxes at the Earth versus point
	heat, outer layers expand and heat, 666-667,	of origin in Sun, no flavor changes, 703-705
	Figs. 10.2.10 & 10.2.11, 666	model A with $Z = 0.01$, Fig. 10.8.1, 704
	logarithmic increments in structure variables during	model B with $Z = 0.02$, Fig. 10.8.2, 705
	last time step, Fig. 10.2.10, 666	Solar neutrino problem, 38, 637, 673–682, 710–711
	mass and radial thickness of convective envelope	Solar neutrino theoretical detection rate, no flavor
	are $0.020 M_{\odot}$ and $0.27 R_{\odot}$, respectively,	changes, 6/6, 6/9
	Table 10.2.3, 002	Homestake mine experiment, theoretical detection
	model B while $I = 0.290$ has Solar age, 000	rate for models A and B, 6//
	Table 10.2.2, 660	gainum experiments, theoretical detection rates for
	n chain CN cycle and gravothermal	Solar structure and neutrino physics 627, 711
	energy-generation rates vs mass Fig 10.2.7 664	solution of differential equation $dy/dx = f(x, y)$
	structure variables versus mass and radius for	solution of differential equation $uy/ux = f(x, y)$, 465-476
	model B Figs 10.2.3 & 10.2.4 661	solution good to second order in step size 465-468
	Solar model for $Z = 0.015$ achieved when	family of second order algorithms 466–468
	Y = 0.272, 723	family of third order solutions 468–473
	Solar models A and B compared. Table 10.2.3, 662.	Runge-Kutta fourth order algorithms, 473–436
	668–673	Table 8.6.1, 475
	pp-chain contributions to luminosity versus radius	solution which resembles Simpson's rule, 472
	model A. Fig. 10.3.1, 669	application to stellar structure, 476
	model B, Fig. 10.3.2, 669	solution of linear equations, 500–506
	pp-reaction produces less than 10% of total energy.	Gaussian elimination with pivoting. 500–504
	668	lower and upper (LU) triangular matrices, 504–506
	³ He reacts primarily with ³ He rather than with	LU matrix decomposition, 503–506
	⁴ He, 668	Sommerfeld, A., 320, 335
	⁷ Be and ⁸ B contributions to luminosity vs radius	sound speed in stellar interiors, 76, 179
	model A Eig 10.2.2 670	

885		ndex
885	 spasmotic accretion onto a protostellar core is due to the quasiperiodic formation and dissipation of magnetic shocks, 535. spatial zoning considerations and choice of time step size, 519–521. bumps in the rate of gravothermal energy release accompany zoning changes, and these may be minimized by restricting changes to once every three or so time steps, 520–521. in general, insist that no structure or composition variable change by more than 5–10% from one zone to the next or over a time step, 519. in a region where the luminosity changes sign or a convective-radiative boundary occurs, preselect the number of zones to be present over a predetermined region centered on the location of the sign change or of the boundary, and ignore the restrictions on changes in variables between zones, 519–520. in a nuclear burning shell, restrict the change in composition variables and energy-generation rates across a zone to be less than 5–10% of the maximum values of these quantities and insist on a time step such that the luminosity of the shell change by no more than 5–10% per step, 519 two adjacent zones should be merged if changes in variables arcoss the merged zone satisfy restrictions on zone size in force, but care must be taken to ensure that composition variables are defined in such a way as to conserve numbers, 520. the total time for a given evolutionary calculation equals the number of time steps N times the number of iterations I per time step times the calculation time per iteration. Usually I becomes smaller as N becomes larger, but can become no smaller than 1, 521. 	s-process (slow neutron capture) nucleosynthesis TPAGB stars, 9–10, 52 Stahler, S. W., Shu, F. H., & Taam, R. E., 538 propose a protostar model consisting of an opa quasistatic core, a standing accretion shock, an envelope in near free fall which transfers matter through the shock to the core at the ra $10^{-5} M_{\odot} \text{ yr}^{-1}$, 538 star, defined as an isolated, optically visible object quasistatic equilibrium with a well defined photosphere and a luminosity produced by energy liberated in its interior, 531 star formation, pre main sequence evolution, and zero age main sequence (ZAMS), 529–636 stars in the Hayashi band are completely convecti- below photosphere, 529, Fig. 9.2.12, 561 static electric field in stars statistical mechanics, thermodynamics, and equat of state, 88–190 statistical counting algorithms, foundations, 88–9 Bose-Einstein statistics, 149–159 Fermi-Dirac statistics, 91–97 Maxwell-Boltzmann statistics, 154–155 Stefan-Boltzmann constant σ , 33, 72, 152 stellar envelopes, thermodynamic properties of H-rich, He-rich matter, 174–179 stellar evolution as a discipline asks: how do glob properties of model stars respond to changes interior composition and loss of energy by photons and neutrinos?, 435 stellar structure as a discipline asks: given composition as a function of mass, what is the interior structure in the static approximation 435
	optimum can be found only by experimentation, 521 specific entropy, 447–448 specific heats for partially ionized hydrogen, 165–170	step function, 317 stimulated emission of photons, 331, 341–344, 34 Stirling, J., 92 Stirling's approximation for factorials, 92–93 Stobbe M. 316, 317
	 specific heats for partially ionized hydrogen, 165–170 specific heats in stellar envelopes, 174–179 specular reflections and equations of state, 97–98 Spica A and B, main sequence stars, 52–53 Spitzer, L. J., 534 spline interpolation, bicubic, 410–415 spline interpolation, cubic, 404–410 spline, natural cubic, algorithm for, 409–410 spontaneous emission between bound atomic states, 337–341 s-process elements and carbon in the Universe as a consequence of production and dredge-up in TPAGB stars was first demonstrated by model calculations in the 1970s, 523–524 	Stobbe, M., 316, 317 strange matter in neutron stars, 12 Strömgren, B., 381, 395 structure variables vs mass in 1 M_{\odot} models near middle and end of the subgiant branch phase Fig. 11.1.21, 732 structure variables in a 5 M_{\odot} model evolving three the Hertzsprung gap to the middle of the red giant branch, Figs. 11.2.48–11.2.52, 809–81 in the Hertzsprung gap, midway between the m sequence and the red giant branch, Fig. 11.2 809 nearing the giant branch, about to develop a convective envelope, Fig. 11.2.49, 810

Cambridge University Press & Assessment 978-1-107-01656-9 — Stellar Evolution Physics Icko Iben Index More Information

886		ndex
	structure variables in a 5 M_{\odot} model evolving through	Sunspots and Solar cycle, 36
	the Hertzsprung gap to the middle of the red	rotation rate, 36
	giant branch, Figs. 11.2.48–11.2.52 (cont.)	rotational angular momentum loss, 37
	ascending the red giant branch with a deepening	loss rate, 37
	convective envelope, Fig. 11.2.50, 810	mechanism coupling between charged particle
	ascending the red giant branch with a still deeper	wind and the magnetic field, 37
	convective envelope, Fig. 11.2.51, 811	shape, spherical to naked eye, 31–32
	approaching the tip of the red giant branch,	Sun-Earth distance, 31
	Fig. 11.2.52, 811	Sunspots, 11 year Solar cycle, 36
	structure characteristics vs mass of a 5 M_{\odot} model at	surface temperature, 33
	the start of the core helium-burning phase,	surface element abundances, 34–35, Table 2.1.1,
	Fig. 11.2.57, 816	35
	Strumia, A., & Vissani, F., 711	wind mass-loss, 32–37
	subdwarf O (sdO) stars, 4, 17, 26	He/H ratio in wind, 37
	subdwarf B (sdB) stars, 4, 17, 26	loss rate, 32
	subgiant branch evolution, 18–29, 738–739	mechanism, 37
	subgiant structure, 746–751	velocity of wind, 37
	subgiant to red giant branch transition occurs abruptly	Sun's photosphere, 32–37
	in the HR diagram from horizontal to primarily	acoustical oscillations, 38
	upward as envelope convection extends inward	abundances, 34–35, Table 2.1.1, 35
	and the H opacity near the surface controls the	Alfvén waves, 37
	direction of evolution, 739	black body approximation, 32–33
	subgrant versus red grant with respect to gravothermal	dipolar magnetic field, 36–37
	energetics outside of the hydrogen-exhausted	dynamo action, 36–37
	core, 703	granulation, 36, 38
	Sudgrants defined, 18	magnetic activity, 36–37
	Suddury Neutrino Observatory (SNO) neavy water	magnetic dynamo, 36–37
	Cresishton mine in Optoria 681, 682	magnetic field, 36–37
	creignion nine in Olitario, $081-082$	Solar activity cycle, 36
	active agent, $D_2O \equiv$ heavy water, 0.81	Solar wind particles, 37
	(ES) $u + d > u + u + a^{-}$ (CC)	Sunspots, 36
	(E3), $v_e + a \rightarrow p + p + e$ (CC), $v_e + d \rightarrow n + n + v_e$ (NC) 681	turbulent convection, 36
	$v_X + u \rightarrow p + p + v_X$ (NC), 001 threshold for detection evolution pp and ⁷ Be	wind mass loss, 32, 37
	neutrinos 681	superadiabatic temperature gradient, /8
	comparison of observed fluxes with fluxes of ${}^{8}B$	supercritical cores in giant molecular clouds and c
	neutrinos produced by Solar models A and B	collapse, 555
	suggests $Z = 0.0166$ and $Y = 0.279.682$	superinuidity in neutron stars, 12
	only one third of neutrinos emitted by ${}^{8}B$ arrive at	supergrams, 4
	Earth with the electron flavor, 681	SN 1054 12
	Sugimoto D. 485	SN 1054, 12 SN 1097a 12 12
	Sugimoto, D., Nomoto, K., & Eriguchi, Y. 485	SIN 1907a, 12, 15 tune Ia (SNIa) from binary white dwarf margar
	Sun-Earth distance, 31	26 28 53
	Sun's properties 30–38	20-20, 55 tune II (SNII) from massive stors 8, 12, 12, 27
	age 31	52 type II (SINII) IIOIII IIIassive stars, 8, 12–13, 27,
	corona properties of 37–38	frequency 13 26
	Alfvén waves and the Solar wind 37	superwind mass loss during TPAGE phase 8, 0, 4
	dipolar magnetic field 36_37	52 245 524
	Solar cycle 26	ampirical evidence for 8 0
	global properties mass radius luminosity 31	mass loss rate 8 10
	magnetic field 36–37	mashanism 8, 48
	magnetic field, 50–57	unculalisili, 0, 40
	mass 1088 fate, 30	surface boundary condition for stellar models,
	abundances 24, 25, Table 2, 1, 1, 25	45/-439
	abuildances, 34–35, Table 2.1.1, 35	surface temperature of Sun, 33
	granules, 30	Sweigart, A. V., & Gross, P. G., 767
	magnetic field, 30–37	synchrotron radiation from pulsars, 12

887

Cambridge University Press & Assessment 978-1-107-01656-9 - Stellar Evolution Physics Icko Iben Index More Information

Tassis, K., & Mouschovias, T. Ch., 535 thermodynamical properties of partially ionized hydrogen, 165-170 Taurus-Auriga complex, 538, 556 thermodynamical properties of the radiation field, see Taurus the Bull (constellation), 51 black body radiation Tayler, R., 389 thermonuclear flashes in TPAGB stars, 7-8 Taylor series expansions, 463, 465, 466, 468-470, 474 thermonuclear outbursts in LMXBs, 20-21 technicium, all isotopes of which are beta unstable, is thermonuclear runaways, 7-8, 15-20, 20-21 an s-process element formed in TPAGB stars, in cataclysmic variables, leading to novae, 4,9 15.20 temperature-pressure gradients, 74, 75, 78 in LMXBs, leading to X-ray bursts, 20-21 temperature maximum occurring during the evolution in TPAGB stars, initiating thermal pulses, 7-8 of a star, 227, Table 5.6.1, 228, 242-245 thick shell hydrogen-burning phase, 717-719, temperatures in 1 M_{\odot} red giant models, Fig. 11.1.34, Fig. 11.1.2, 718, Fig. 11.1.27, 740, 794-804, 747 Fig. 11.2.32, 795, 828 the temperature at the center of the hydrogen-burning shell increases linearly with 740, 717-719, 795-803 the mass at which the shell is located, 746, in a 5 M_☉ model, Fig. 11.2.32, 795, 794-804 Fig. 11.1.34, 747 the temperature gradient between the hydrogen-burning shell and the base of the convective envelope is huge compared with the gradients in the electron-degenerate core and in the convective envelope, Fig. 11.1.34, 747 overall contraction phase increases with the maximum temperature is not at the center, a result of energy loss due to neutrino-antineutrino pairs produced by the plasma process, discussed in Chapter 15 of Volume 2, with the result that helium is ignited at a position midway in the helium core, see the temperature spike in 808-809 Fig. 11.1.34, 747

- temperatures in the interiors of main sequence stars versus stellar mass, radius, and composition, 59-60,65
- terrestial nuclear reactors and antineutrino oscillations, 637-638, 687-688
- mixing of electron and muon antineutrinos measured by the KamLAND liquid scintillator, 687-688
- thermal energy-generation rate, 441
- thermally pulsing AGB (TPAGB) evolution, 7-8, 48
- thermal pulse cycle in TPAGB stars, 48
- thermodynamical equilibrium, local, 32, 33

thermodynamics laws,

- first law, 95, 182, 224-225, 228
- second law, 182, in spite of which entropy decreases with time in an evolving stellar model, 228
- the first and second laws may be used to show that the contribution to the pressure due to Coulomb interactions is one third of the interaction energy per unit volume, 182-184
- third law, entropy vanishes at zero temperature, 231 thermodynamical properties of matter in stellar envelopes, 174-179
- particles considered, H_2 , H, H^+ , H^- , He, He^+ , He^{++} , M, and M^+ , 174

Index

in a 1 M_☉ model, Fig. 11.1.2, 718, Fig. 11.1.27, does not occur in a 25 M_{\odot} model because the mass over which hydrogen vanishes is over twice the relevant Schönberg-Chandrasekhar mass, 828 the duration of the thick shell burning phase relative to the duration of the immediately preceding decreasing model mass, making the likelihood of a gap in the distribution of stars on the upper main sequence in an open cluster more evident in older clusters, as exemplified by the prominent gap in the 5×10^9 yr old cluster M67, 10, 787, Thomson cross section for scattering of photons, 72, 315, 327 Thomson, J. J., discover of electron, 72 Thorsett, S. E., & Chakabaraty, D., 255 tidal torques and tidal captures of main sequence stars by neutron stars in globular clusters, 22 time scale for radiative diffusion, 70 time scales for evolution in the HR diagram prior to the ZAMS phase, Fig. 9.2.11, 557, Figs. 9.4.1 &

9.4.1a, 599-600, Fig. 9.5.1, 623 analytical estimates for models in the Hayashi band, 557-558, 601-602

- time scales of relevance for mixing in convective zones, 70, 398-399, 507-508
 - comparative time scales, Table 8.10.1, 508

mixing times in convective cores large compared with life times of beta-unstable isotopes, 398-399

- mixing times in convective cores small compared with nuclear-burning time scales, 78
- mixing times in convective envelopes large compared with radiative diffusion times, 78 time scales for various processes, 533-558
- cooling by grains, 536 deuterium burning, 556
 - free-fall collapse, 533, 536
 - heating by compression, 536

888 Index time scales for various processes (cont.) than that of the pp-chain energy-generation rate, evolution during the gravitational contraction 284 phase, 556-558, Fig. 9.2.11, 557, 599-600, transition zone in a red giant between the Fig. 9.4.1, 599, 622-627, Fig. 9.5.1, 623 hydrogen-burning shell and the base of the convective envelope, 745-747, 749-750, Table time step choices based on zoning requirements, 11.1.2.754 519-521 analytical approximation, 754-758 time variations of properties of a 1 M_{\odot} model during triple alpha reactions, qualitative description, 46 late main sequence, subgiant, and red giant T-Tauri stars, 529, 538-539, 556 branch phases, 728-754 turbulent convection, 36, 73-74 hydrogen abundance profiles as a function of mass, turbulent pressure due to hydrodynamic waves as Fig. 11.1.28, 741 support for molecular clouds, 534 mass thickness and location in mass of the TW Dra, Algol system, 26 hydrogen-burning shell, hydrogen abundance at shell center, and mass at the base of the convective envelope, Fig. 11.1.27, 740 uncertainty (Heisenberg) principle, 62-64 opacity components and electron Fermi energy at unit cell in position-momentum phase space, 63, 91 the model center, Fig. 11.1.24, 735 University of California, Santa Cruz, 523 University of Colorado, Boulder, 522-523 state variables at the center of the hydrogen-burning University of Illinois Research Board, 523 shell, Fig. 11.1.23, 734 University of Illinois, Urbana-Champaign, 521, 523 state variables at the model center, Fig. 11.1.22, 733 UU Sge, sdO+0.7 M_{\odot} MS star in the planetary time variations of characteristics of a 5 M_{\odot} red giant nebula Abell 63, 17 branch model: the mass at the base of the UX Ari, Algol precursor, 19, 26 convective envelope, the mass of the convective core, and surface abundances of various isotopes, Fig. 11.2.59, 817 V 471 Taurus in Hyades supercluster, CV precursor, time variations of global and internal characteristics 17 of a 5 M_{\odot} model during the transition from core VAC (very active chromosphere) stars, 17, 19 to shell hydrogen burning, Figs. 11.2.31-11.2.33, Vardya, M. S., H2 molecular dissociation parameter 795-796 and binding energy minus excitation energy, 175 nuclear burning, gravothermal, and surface Vega, main sequence star, 52 luminosities, mass of convective core, and velocity of light c, 154 central hydrogen abundance, Fig. 11.2.31, 795 velocity of sound, 76, 179 mass boundaries of the hydrogen-burning zone, vertical evolution in the HR diagram during the the Fig. 11.2.32, 795 early pre-main sequence phase, 556-572 global thermal, radiative, gravitational binding, and visual binaries (Table 2.2.3), 41 virial theorems for homogeneous stars supported by net binding energies, Fig. 11.2.33, 796 TPAGB (thermally pulsing AGB) stars, 7, 8, 48, 50 gas and radiation pressure, 65-68 binding energy equals gas kinetic energy, 66 tracks in the HR diagram of theoretical models of binding energy equals half of the gravitational mass 1, 5, and 25 $M_{\odot},$ 45–51, Fig. 2.4.1, 46 binding energy, 67 transformation of particle numbers is ultimately virtual states in second order quantum-mechanical responsible for changes in structure variables perturbation theory, 321 during nuclear burning phases, 759, 819, 825 Volkov, G. R., 12 transition from a convective to a radiative interior of a gravitationally contracting 1 M_{\odot} model, 563-573 Wagstaff, S. S., Poincarè's last theorem calculations transition from core hydrogen burning to shell 524 hydrogen burning in a 5 M_{\odot} model, 794–796 Wallerstein, G., 820 transition temperature at $T \sim 15 \times 10^6$ K between wave functions for particles of fixed linear dominance by pp-chain energy generation and momentum, 89-90 wave functions for the hydrogen atom, 340 CN-cycle energy generation is determined by the fact that the Coulomb barrier between protons Weber, E. J., & Davis, L., Jr., 37 weak coupling constant from ⁶He beta decay, and CNO isotopes is several times larger than the Coulomb barrier between two protons, causing 262-264 the temperature dependence of the CN-cycle weak interaction and Solar neutrinos, 673-699 energy-generation rate to be several times larger the solar neutrino problem, 673-682

Cambridge University Press & Assessment 978-1-107-01656-9 — Stellar Evolution Physics Icko Iben Index More Information

889

Index

neutrino mass and oscillations, 682-689 the MSW effect, 689-699 resolution of the Solar neutrino problem, 703-712 WD (white dwarf), a star in which degenerate electrons are the primary source of pressure, 195, 231-237 Weinberg, S., 249 von Weizsäcker, C. F., 284, 389 white dwarf (WD) composition and mass vs mass of main sequence progenitor, 51 CO core of mass $\sim 0.55 - 0.65$ if $M_{MS} < 2.25 M_{\odot}$ CO core of mass $\sim 0.65-1.1 \ M_{\odot}$ if $2.25 M_{\odot} < M_{MS} < 8 M_{\odot},$ ONe core of mass $\sim 1.1-1.37 \ M_{\odot}$ if $8M_{\odot} < M_{MS} < 10M_{\odot}$ white dwarf cooling timescales, 9, 10, 48 white dwarf mass-radius relationship, 50 comparison of locations in HR and ML diagrams demonstrates inverse relationship between mass and radius, 50 white dwarfs and one zone models, 237-248 internal temperature maximum, 242-246 internal temperature vs adjacent particle separation, 243, 245-246 luminosity as cooling rate of ions, 246 radius minimum at zero temperature, 246 relative cooling age vs luminosity, 247 time dependence of luminosity, 247 white dwarfs are stars in which degenerate electrons are the primary source of pressure, 195, 231-237 white dwarfs of small mass and index N = 3/2polytropes, 231-237 white dwarf surface abundances and gravity-induced diffusion, 517 white dwarfs (WDs), 4, 8, 9, 10, 26-28, 40-42, 50.51 close binary white dwarfs as type Ia SN precursors, 26 - 28composition vs mass of main sequence progenitor, 51 cooling ages, 9, 10, 48, 248 40 Eridani B, low mass white dwarf, 26, 40-42, 52 GWR driven mergers of close binary WDs and type Ia SNe, 26-28 L870-2 A, B, 40-42, Fig. 2.2.1, 40 mass vs main sequence progenitor mass, 8, 15, 51 Sirius B, massive white dwarf, 40-42, 50, 52, 53, 248 white dwarf sequence in the HR diagram, 50, Fig. 2.2.1, 40 Whittaker, E. T., & Watson, G. N., 113, 136, 217 Wildt, R., 419, 425 wind mass loss, 6, 8-10, 13-14, 16-17, 48, 52

common envelope wind in a close binary driven by a frictional interaction between envelope matter and the "eggbeater" binary system, 16-17 evaporative wind, red giants, 6 evaporative wind, Sun, 32 radiative wind, massive MS stars, 13-14 radiative wind, Wolf-Rayet stars, 13-14 superwind, TPAGB phase, 8-10, 48, 52, 524 WIP (Work in Progress) graphics package, 543 Wolfenstein, L., 689, 690, 695 see MSW effect Wolf Ravet (WR) stars, massive He-rich, C-rich (WC), and N-rich (WN) main sequence and helium-burning stars, are responsible for the enrichment of the Universe with many heavy elements, 4, 13-14, 843 Wolf-Rayet (WR) stars with highly evolved surface abundances demonstrate that the initially most massive stars can eject their entire hydrogen-rich envelopes while on the main sequence, 13, 14, 843 work done by gravity and compression: rates differ locally but are the same globally, 445-446, 454, 456 workstations and personal computers and their impact on the nature of stellar evolution studies, 524 W UMa (W Ursa Majoris) stars, 23-24 W Ursa Majoris (W UMa) stars, 23-24 X-ray bursts from LMXBs, 20-21 ZAMS (zero age main sequence) model, 222-224, 587-597, 614-621, 627-635 definition, model in which the gravothermal energy generation rate is negligible compared with the hydrogen burning energy-generation rate and a negligible amount of hydrogen has been converted into helium at the center, 587, 614, 627 characteristics of a 1 M_{\odot} model, 587–591, Figs. 9.3.18-9.3.30, 588-597 characteristics of a 5 M_{\odot} model, 613–621, Figs. 9.4.14-9.4.22, 613-620 characteristics of a 25 M_{\odot} model, 627–635, Figs. 9.5.8-9.5.15, 628-635 zero age main sequence (ZAMS) models compared with polytropes with regard to central concentration permits assignment of an effective polytropic index, 222-224 characteristics of polytropes, Table 5.2.3, 206, and Table 5.3.1, 211 characteristics of realistic models, Table 5.5.1, 223 zirconium oxide (ZrO) in LPVs as an indication of s-processing and dredge-up in TPAGB stars, 10 zoning considerations during red giant branch

evolution of a 1 M_{\odot} model, 744–745

830-832

insisting on a lower limit to the fractional decrease in the hydrogen abundance per time step leads to

890	Index	
	a decrease in the mass of the hydrogen-burning shell necessitates an increase in the number of zones required to resolve the shell, 744–745 an increase in luminosity necessitates a decrease in the size of an evolutionary time step, 744–745 zoning considerations during the last stage of the main sequence evolution of a 25 M_{\odot} model, as hydrogen is depleted in a large convective core,	excessively small evolutionary time steps, 830–832 experimentation is necessary to determine an acceptable minimum evolutionary time step, 830–832 Zoning considerations in the neighborhood of a moving convective-radiative boundary 565, 628–629

628–629 Zoning considerations in general see spatial zoning considerations and choice of time step size Zwicky, Fritz, 12

© in this web service Cambridge University Press & Assessment