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Jordan and Lie theory

1.1 Jordan algebras

We begin by discussing the basic structures and some examples of Jordan

algebras which are relevant in later chapters. One important feature is that

multiplication in these algebras need not be associative.

By an algebra we mean a vector space A over a field, equipped with a

bilinear product (a, b) ∈ A2 �→ ab ∈ A. We do not assume associativity of the

product. If the product is associative, we call A associative.

Homomorphisms and isomorphisms between two algebras are defined as in

the case of associative algebras. An antiautomorphism of an algebra A is a

linear bijection ϕ : A −→ A such that ϕ(ab) = ϕ(b)ϕ(a) for all a, b ∈ A.

We call an algebra A unital if it contains an identity, which will always be

denoted by 1, unless stated otherwise. As usual, one can adjoint an identity 1

to a nonunital algebra A to form a unital algebra A1, called the unit extension

of A.

A Jordan algebra is a commutative algebra over a field F, and satisfies the

Jordan identity

(ab)a2 = a(ba2) (a, b ∈ A).

We always assume that F is not of characteristic 2; however, in later sections,

F is usually either R or C.

The concept of a Jordan algebra was introduced by P. Jordan, J. von Neumann,

and E. Wigner [64] to formulate an algebraic model for quantum mechanics.

They introduced the notion of an r-number system which is, in modern ter-

minology, a finite-dimensional, formally real Jordan algebra. In fact, the term

Jordan algebra first appeared in an article by A. A. Albert [3]. It denotes an

1
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2 Jordan and Lie theory

algebra of linear transformations closed in the product

A · B =
1

2
(AB + BA).

Although Jordan algebras were motivated by quantum formalism, unexpected

and important applications in algebra, geometry and analysis have been dis-

covered. Some of these discoveries are the subject of discussions in ensuing

chapters.

On any associative algebra A, a product ◦ can be defined by

a ◦ b =
1

2
(ab + ba) (a, b ∈ A),

where the product on the right-hand side is the original product of A. The

algebra A becomes a Jordan algebra with the product ◦. We call this product

special. A Jordan algebra is called special if it is isomorphic to, and hence

identified with, a Jordan subalgebra of an associative algebra A with respect to

the special Jordan product ◦. Otherwise, it is called exceptional.

It is often convenient to express the Jordan identity as an operator identity.

Given an algebra A and a ∈ A, we define a linear map La : A −→ A, called

left multiplication by a, as follows:

La(x) = ax (x ∈ A).

The Jordan identity can be expressed as

[La, La2 ] = 0 (a ∈ A),

where [·, ·] is the usual Lie bracket product of linear maps. Given a, b ∈ A, we

define the quadratic operator Qa : A −→ A and box operator a b : A −→

A by

Qa = 2L2
a − La2 , a b = Lab + [La, Lb]. (1.1)

These operators are fundamental in Jordan theory, as is the linearization of the

quadratic operator:

Qa,b = Qa+b − Qa − Qb.

Let A be an algebra and let a ∈ A. We define a0 = 1 if A is unital,

a1 = a, an+1 = aan (n = 1, 2, . . .).

The following power associative property depends on the assumption that the

scalar field F for A is not of characteristic 2.
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1.1 Jordan algebras 3

Theorem 1.1.1 A Jordan algebra A is power associative; that is,

aman = am+n (a ∈ A ; m, n = 1, 2, . . .).

In fact, we have [Lam , Lan ] = 0.

Proof For any α, β in the underlying field F, we have

[La+αb+βc, L(a+αb+βc)2 ] = 0

for all a, b, c ∈ A. Expanding the product, we find that the coefficient of the

term αβ is

2[La, Lbc] + 2[Lb, Lca] + 2[Lc, Lab],

which must be 0. Since F is not of characteristic 2, we have

[La, Lbc] + [Lb, Lca] + [Lc, Lab] = 0.

Applying this operator identity to an element x ∈ A and using commutativity

of the Jordan product yields

(LaLbc + LbLca + LcLab)(x)

= (LbcLa + LcaLb + LabLc)(x)

= LbcLx(a) + LbxLc(a) + LxcLb(a)

= (LbcLx + LcxLb + LxbLc)(a)

= (LxLbc + LbLcx + LcLxb)(a)

= (L((bc)a) + LbLaLc + LcLaLb)(x).

Putting b = an and c = a in this identity, we obtain a recursive formula,

Lan+2 = 2LaLan+1 + LanLa2 − LanL2
a,−L2

aLan ,

which implies that each Lan is a polynomial in La and La2 which commute. It

follows that Lan commutes with Lam for all m, n ∈ N. In particular, we have

LanLa(am) = LaLan(am),

and power associativity follows from induction.

Corollary 1.1.2 Let A be a Jordan algebra and let a ∈ A. The subalgebra

A(a) generated by a in A is associative.

In fact, we have the following deeper result. It can be derived from

Macdonald’s theorem, which states that if an identity in 3 variables is linear in

1 variable and holds in all special Jordan algebras, then it holds in all Jordan

algebras. We omit the proof, which can be found, for instance, in the books
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4 Jordan and Lie theory

by Jacobson [62], McCrimmon [88], and Zhevlakov et al. [123]. We remark,

however, that for Jordan algebras over a field of characteristic 2, a Jordan

algebra with a single generator need not be special.

Shirshov–Cohn Theorem Let A be a Jordan algebra and let a, b ∈ A. Then

the Jordan subalgebra B generated by a, b (and 1, if A is unital) is special.

One can use the Shirshov–Cohn theorem to establish various identities in

Jordan algebras. For instance, in any Jordan algebra A, we have the identity

2L3
a − 3La2La + La3 = 0 (1.2)

for each a ∈ A. In other words, we have

2a(a(ab)) − 3a2(ab) + a3b = 0

for a, b ∈ A. To see this, let B be the Jordan subalgebra of A generated by a

and b. Then it is special and hence embeds in some associative algebra (A′,×)

with

ab =
1

2
(a × b + b × a).

In B, we have

2a(a(ab)) =
1

4
(a3 × b + 3a2 × b × a + 3a × b × a2 + b × a3)

3a2(ab) =
1

4
(3a3 × b + 3a2 × b × a + 3a × b × a2 + 3b × a3),

which, together with 2a3b = a3 × b + b × a3, verifies the identity.

Definition 1.1.3 Two elements a and b in a Jordan algebra A are said to

operator commute if the left multiplications La and Lb commute. The centre

of A is the set Z(A) = {z ∈ A : LzLa = LaLz,∀a ∈ A}.

We observe that LaLb = LbLa if, and only if, (ax)b = a(xb) for all x ∈ A.

Evidently, the centre Z(A) = {z ∈ A : (za)b = z(ab),∀a, b ∈ A} is an asso-

ciative subalgebra of A.

Example 1.1.4 The Cayley algebra O, known as the octonions, is a complex

nonassociative algebra with a basis {e0, e1, . . . , e7} and satisfies

a2b = a(ab) , ab2 = (ab)b (a, b ∈ O), (1.3)

where e0 is the identity of O, e2
j = −e0 for j 	= 0, and the multiplication is

encoded in the following Fano plane, consisting of seven points and seven
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1.1 Jordan algebras 5

lines. The points are the basis elements but e0, and the lines are the sides of

the triangle, together with the circle. Each line has a cyclic ordering shown by

the arrow. If ei , ej and ek are cyclically ordered, then eiej = −ejei = ek . For

instance, e6e2 = (−e4e2)e2 = −e4e
2
2 = e4.
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Octonion multiplication

The algebra O is an alternative algebra in the sense that the associator

[x, y, z] = (xy)z − x(yz)

is an alternating function of x, y, z: exchanging any two variables entails a sign

change of the function. This condition is a reformulation of the multiplication

rules in (1.3).

We will denote by O the real Caylay algebra, which is the real subalgebra of

O with basis {e0, . . . , e7}. Historically, octonions were discovered by a process

of duplicating the real numbers R. Indeed, the complex numbers arise from R

as the product R × R with the multiplication

(a, b)(c, d) = (ac − db, bc + da) (a, b, c, d ∈ R).

The real associative quaternion algebra H can be constructed by an analogous

duplication process. One can define H as C × C with the multiplication

(a, b)(c, d) = (ac − d̄b, bc̄ + da) (a, b, c, d ∈ C),

which is isomorphic to the following real non-commutative algebra of 2 × 2

matrices:
{(

a b

−b̄ ā

)
: (a, b) ∈ C × C

}
. (1.4)

In the identification with this algebra, H has a basis

1 =

(
1 0

0 1

)
, i =

(
i 0

0 −i

)
, j =

(
0 1

−1 0

)
, k =

(
0 i

i 0

)
,
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6 Jordan and Lie theory

satisfying

i2 = j2 = k2 = ijk = −1, ij = −ji = k.

Likewise, O can be defined as the product H × H with the multiplication

(a, b)(c, d) = (ac − d̄b, bc̄ + da) (a, b, c, d ∈ H),

where the conjugate c̄ of a quaternion c = α1 + xi + yj + zk is defined by

c̄ = α1 − xi − yj − zk,

so that the real part of c is Re c = 1
2
(c + c̄) = α1. A positive quaternion is one

of the form α1 for some α > 0. The basis elements of H × H are

e0 = (1, 0), e1 = (i, 0), e2 = (j, 0), e3 = (k, 0),

e4 = (0, 1), e5 = (0, i), e6 = (0, j), e7 = (0, k).

The algebras C, H and O are quadratic; that is, each element x satisfies the

equation x2 = αx + β1 for some α, β ∈ R, where 1 denotes the identity of the

algebra. If x = (a1, a2) ∈ H × H with

an = αn1 + xni + ynj + znk (n = 1, 2),

then we have

x2 = 2α1x − (x2
1 + y2

1 + z2
1 + x2

2 + y2
2 + z2

2)e0.

Example 1.1.5 A well-known example in Albert [2] of an exceptional Jordan

algebra is the 27-dimensional real algebra

H3(O) = {(aij )1≤i,j≤3 : (aij ) = (̃aji), aij ∈ O}

of 3 × 3 matrices over O, Hermitian with respect to the usual involution ˜ in

O defined by

(α0e0 + · · · + α7e7 )̃ = α0e0 − · · · − α7e7.

The Jordan product is given by

A ◦ B =
1

2
(AB + BA) (A,B ∈ H3(O)),

where the multiplication on the right is the usual matrix multiplication. We

refer to Jacobson [62] and McCrimmon [88] for a more detailed analysis of

H3(O). The exceptionality of H3(O) involves the so-called s-identities, which

are valid in all special Jordan algebras but not all Jordan algebras. One such
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1.1 Jordan algebras 7

identity was first found by Glennie [43]:

2Qx(z)Qy,xQz(y
2) − QxQzQx,yQy(z)

= 2Qy(z)Qx,yQz(x
2) − QyQzQy,xQx(z),

which does not hold in H3(O). An alternative proof of exceptionality bypassing

s-identities can be found in Hanche-Olsen and Størmer [47].

Definition 1.1.6 An element e in an algebraA is called an idempotent if e2 = e.

Two idempotents e and u are said to be orthogonal if eu = ue = 0. An element

a ∈ A is called nilpotent if an = 0 for some positive integer n.

Lemma 1.1.7 Let A be a unital Jordan algebra with an idempotent e. Let

a ∈ A. The following conditions are equivalent:

(i) a and e operator commute.

(ii) Qe(a) = Lea.

(iii) a and e generate an associative subalgebra of A.

Proof (i) ⇒ (ii). We have

Qe(a) = 2(L2
e − Le)(a) = 2e(ea) − ea = 2e2a − ea = ea.

(ii) ⇒ (iii). Let B be the subalgebra generated by a and e. By the Shirshov–

Cohn theorem, B is isomorphic to a Jordan subalgebra B′ of an associative

algebra (A′,×) with respect to the special Jordan product. Identify a and e as

elements in B′. Then

Lea =
1

2
(e × a + a × e) = Qe(a) = e × a × e,

since e = e2 = e × e. Multiplying the above identity on the left by e, we get

e × a = e × a × e. Multiplying the identity on the right by e gives a × e = e ×

a × e. Hence e × a = a × e and ea = e × a. Hence (B′,×) is a commutative

subalgebra of (A,×) and the special Jordan product in B′ is just the product ×

and is, in particular, associative.

(iii) ⇒ (i). In the proof of Theorem 1.1.1, we have the operator identity

[Le, Lbc] + [Lb, Lce] + [Lc, Leb] = 0

for all b, c ∈ A. Putting c = e, we have

[Le, Lbe] + [Lb, Le] + [Le, Leb] = 0,

which gives

2[Le, Lbe] = [Le, Lb]. (1.5)
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8 Jordan and Lie theory

Since e2 = e, in the special Jordan algebra A(a, e, 1) generated by a, e and 1,

it can be verified easily that

a = Qe(a) + Q1−e(a)

and Q1−e(a)e = 0, as well as Qe(a)e = Qe(a). Substituting Q1−e(a) for b in

(1.5), we get [Le, LQ1−e(a)] = 0. Putting b = Qe(a) in (1.5) gives [Le, LQe(a)] =

0. It follows that

[Le, La] = [Le, LQe(a)] + [Le, LQ1−e(a)] = 0.

Lemma 1.1.8 Let A be a finite-dimensional associative algebra containing an

element a which is not nilpotent and not an identity. Then A contains a nonzero

idempotent, which is a polynomial in a, without constant term.

Proof We may assume that A has an identity 1. Finite dimensionality implies

that there is a nonzero polynomial p of least degree and without constant term,

such that p(a) = 0. Write p(x) = xkq(x), where k ≥ 1 and q is a polynomial,

such that q(0) 	= 0. The degree deg q of q is strictly positive, since a is not

nilpotent. There are then polynomials q1 and q2 with deg q1 < deg q and

xkq1(x) + q2(x)q(x) = 1,

where the nonzero polynomial g(x) = xkq1(x) has no constant term and

deg g < deg p. Hence e = g(a) 	= 0. We have e2 = e, since a2kq1(a) +

akq2(a)q(a) = ak and

g(a)2 − g(a) = a2kq1(a)2 − akq1(a) = akq2(a)q(a)q1(a) = 0.

Lemma 1.1.9 Let A be a Jordan algebra. Then an element a ∈ A is nilpotent

if and only if the left multiplication La : A −→ A is nilpotent.

Proof If La is nilpotent, then an+1 = Ln
a(a) implies that a is nilpotent. Con-

versely, for any a ∈ Awith an = 0, we show that La is nilpotent by induction on

the exponent n. The assertion is trivially true if n = 1. Given that the assertion

is true for n, we consider an+1 = 0. We have (a2)n = 0 = (a3)n, and therefore

La2 and La3 are nilpotent, by the inductive hypothesis. It follows from the

identity

2L3
a = 3La2La − La3

that La is nilpotent.
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1.1 Jordan algebras 9

Given an idempotent e in a Jordan algebra A, the left multiplication

Le : A −→ A satisfies the equation

2L3
e − 3L2

e + Le = 0 (1.6)

by the identity (1.2). Hence an eigenvalue α of Le is a root of

2α3 − 3α2 + α = 0

and is 0, 1
2

or 1. If A is associative, then L2
e = Le and 1

2
is not an eigenvalue of

Le. Nevertheless, we denote the eigenspaces of 2Le by

Ak(e) = {x ∈ A : 2ex = kx} (k = 0, 1, 2)

and call Ak(e) the Peirce k-space of e. The earlier remark implies that A1(e) =

{0} if A is associative.

We define two linear operators, Qe : A −→ A, and Q⊥
e : A −→ A, by

Qe = 2L2
e − Le, Q⊥

e = 4(Le − L2
e). (1.7)

Evidently, Le commutes with both Qe and Q⊥
e . Using the equation (1.6),

one can easily establish

LeQe = Qe = Q2
e, LeQ

⊥
e =

1

2
Q⊥

e =
1

2
(Q⊥

e )2, Le(I − Qe − Q⊥
e ) = 0,

where I is the identity operator on A and Qe and Q⊥
e are mutually orthogonal.

It follows that

A2(e) = Qe(A), A1(e) = Q⊥
e (A), A0(e) = (I − Qe − Q⊥

e )(A), (1.8)

which gives rise to the following Peirce decomposition of A:

A = A0(e) ⊕ A1(e) ⊕ A2(e).

We will return to the Peirce decomposition with more details in the more

general setting of Jordan triple systems. We note for the time being that the

Peirce spaces A0(e) and A2(e) are Jordan subalgebras of A, as shown below.

We also note that A2(e) never vanishes.

Lemma 1.1.10 The Peirce spaces of an idempotent e in a Jordan algebra A

satisfy

A0(e)A0(e) ⊂ A0(e), A1(e)A1(e) ⊂ A0(e) ⊕ A2(e), A2(e)A2(e) ⊂ A2(e).
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10 Jordan and Lie theory

Proof We first prove the second inclusion. Let x, y ∈ A1(e) and let xy =

a0 + a1 + a2 be the Peirce decomposition of xy. We have

0 = [Ly, Lex] + [Le, Lxy] + [Lx, Lye]

=
1

2
[Ly, Lx] + [Le, Lxy] +

1

2
[Lx, Ly]

= [Le, Lxy].

In particular, [Le, Lxy](e) = 0 gives

0 = e(xy) − e(e(xy))

= a2 +
1

2
a1 − e

(
a2 +

1

2
a1

)

= a2 +
1

2
a1 − a2 −

1

4
a1 =

1

4
a1.

Hence xy ∈ A0(e) ⊕ A2(e).

Let x, y ∈ Aj (e), where j = 0, 2. Then we have [Le, Lx2 ] = 0 by the first

equation earlier in the proof. Using this and expanding ((x + e)y)(x + e)2 =

(x + e)(y(x + e)2), we obtain

2(xy)(xe) + (xy)e + 2(ey)(xe) = 2x(y(xe)) + x(ye) + 2(ey)(xe),

which gives (xy)e =
j

2
xy. This proves the first and the last inclusion.

Definition 1.1.11 An idempotent e in a Jordan algebra A is called maximal if

the Peirce 0-space A0(e) is {0}. A nonzero idempotent e is called primitive if

there are no nonzero orthogonal idempotents u and v satisfying e = u + v.

Lemma 1.1.12 Let A be a finite-dimensional Jordan algebra which contains

no nonzero nilpotent element. Then A contains a maximal idempotent.

Proof Ignore the trivial case A = {0}. Applying Lemma 1.1.8 to an associative

subalgebra of A generated by a nonzero element, one finds a nonzero idempo-

tent e. IfA0(e) 	= {0}, then again one can pick a nonzero idempotent u ∈ A0(e).

Then e′ = e + u is an idempotent andA0(e) ⊂ A0(e′). Since u ∈ A0(e′)\A0(e),

we have dimA0(e) < dimA0(e′). By finite dimensionality of A, this process

of increasing dimension must stop, yielding a maximal idempotent.

Proposition 1.1.13 Let A be a finite-dimensional Jordan algebra which con-

tains no nonzero nilpotent element. Then A has an identity.

Proof By Lemma 1.1.12, A contains a maximal idempotent e such that

A = A1(e) ⊕ A2(e).
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