

Fundamentals of Stream Processing

Stream processing is a distributed computing paradigm that supports the gathering, processing, and analysis of high-volume, heterogeneous, continuous data streams to extract insights and actionable results in real time. This comprehensive, hands-on guide, combining the fundamental building blocks and emerging research in stream processing is ideal for application designers, system builders, analytic developers, as well as for students and researchers in the field. This book introduces the key components of the stream processing computing paradigm, including the distributed system infrastructure, the programming model, design patterns, and streaming analytics. The explanation of the underlying theoretical principles, illustrative examples, and implementations using the IBM InfoSphere Streams SPL language and real-world case studies provide students and practitioners with a comprehensive understanding of stream processing applications and the middleware that supports them.

Henrique C. M. Andrade is a vice president at JP Morgan and an adjunct associate professor in the Electrical Engineering Department at Columbia University. Along with Dr. Gedik, he is the co-inventor of the SPADE and the SPL stream processing languages. He has published over 50 peer-reviewed articles and is the co-recipient of the ACM SoftVis 2009, IEEE DSN 2011, and ACM DEBS 2011 best paper awards.

Buğra Gedik is in the faculty of the Computer Engineering Department, Bilkent University, Turkey. He is the co-inventor of the SPADE and the SPL stream processing languages. He has published over 50 peer-reviewed articles and is the co-recipient of the IEEE ICDCS 2003, IEEE DSN 2011, ACM DEBS 2011 and 2012, and IEEE ICWS 2013 best paper awards. He has been an Associate Editor for the *IEEE Transactions on Services Computing*. He has filed over 30 patents. He was named an IBM Master Inventor and is the recipient of an IBM Corporate Award.

Deepak S. Turaga is the manager of the Exploratory Stream Analytics department at the IBM T. J. Watson Research Center in Yorktown Heights and an adjunct associate professor in the Electrical Engineering Department at Columbia University. He has published over 75 peer reviewed articles, and has received the 2006 IEEE TCSVT best paper, and 2008 IEEE ICASSP best student paper awards. He has been an Associate Editor for the *IEEE Transactions CSVT* as well as *IEEE Transactions Multimedia*.

"This is the first comprehensive text on stream processing, covering details of stream analytic algorithms, programming language and application design, and finally systems issues. The use of several illustrative examples and real-world scenarios, coupled with advanced research topics, makes it very well suited for undergraduate and graduate classes."

Shih-Fu Chang, Columbia University

"In a world flooded with information, yet hungry for wisdom, you would find this refreshing and thorough treatment of stream computing an excellent resource for building systems that need to analyze live data to derive actionable insights."

Hans-Arno Jacobsen, University of Toronto

"A comprehensive guide to the field of stream processing covering a wide spectrum of analytical patterns against a specialized architecture for continuous processing. This reference will prove invaluable to those engaging in the fascinating field of continuous analysis. I wish it had been written when I started in this field!"

George Long, Senior System Architect

"This book is an excellent guide for anyone involved with stream processing or data-inmotion analytics in general and is a must-read for those using the InfoSphere Streams platform."

Jim Sharpe, President of Sharpe Engineering Inc.

"This book provides a very timely introduction to stream processing for engineers, students, and researchers. With the advent of Big Data, there is pressing need for real-time systems, algorithms, and languages for distributed streaming analysis. This book provides a comprehensive overview of the topic and is great for course work and also as a practitioner guide."

Mihaela van der Schaar, University of California, Los Angeles

"This is a first-of-its-kind book that takes a holistic approach to introduce stream processing – a technology that can help overcome the data deluge. The authors guide you through various system-level and analytical techniques for harnessing data-in-motion, using a clear exposition, supplemented with real-world scenarios. You will find this book an invaluable companion, whether you are an application developer, system builder, or an analytical expert."

Philip S. Yu, University of Illinois at Chicago

Fundamentals of Stream Processing

Application Design, Systems, and Analytics

HENRIQUE C. M. ANDRADE

JP Morgan, New York

BUĞRA GEDIK

Bilkent University, Turkey

DEEPAK S. TURAGA

IBM Thomas J. Watson Research Center, New York

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107015548

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-01554-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Henrique dedicates this book to his parents, Gercil and Maria José, and to Kristen.

Buğra dedicates this book to his father Yusuf and to his mother Meral, and to all his teachers and mentors through life.

Deepak dedicates this book to his parents Sudha and Ravi, his wife Swapna, and daughter Mythri.

Contents

	Prefe	ace		page xiii
	Fore	word		xix
	Ackn	owledge	ments	xxi
		of acrony		xxii
Part I	Fundam	nentals		1
1	What	t brought	us here?	3
	1.1	Overvi		3
	1.2	Toward	ds continuous data processing: the requirements	3
	1.3	Stream	n processing foundations	6
		1.3.1	Data management technologies	8
		1.3.2	Parallel and distributed systems	13
		1.3.3	Signal processing, statistics, and data mining	16
		1.3.4	Optimization theory	18
	1.4	Stream	n processing – tying it all together	22
	Refe	rences		24
2	Intro	duction t	o stream processing	33
	2.1	Overvi	iew	33
	2.2	Stream	n Processing Applications	33
		2.2.1	Network monitoring for cybersecurity	34
		2.2.2	Transportation grid monitoring and optimization	36
		2.2.3	Healthcare and patient monitoring	38
		2.2.4	Discussion	40
	2.3	Inform	nation flow processing technologies	40
		2.3.1	Active databases	41
		2.3.2	Continuous queries	42
		2.3.3	Publish–subscribe systems	42
		2.3.4	Complex event processing systems	43
		2.3.5	ETL and SCADA systems	44
	2.4	Stream	n Processing Systems	45
		2.4.1	Data	45
		2.4.2	Processing	49
		2.4.3	System architecture	53

Frontmatter More information

		2.4.4 Implementations	56	
		2.4.5 Discussion	66	
	2.5	Concluding remarks	68	
	2.6	Exercises	69	
	Refe	rences	70	
Part II	Application development		75	
3	Appli	ication development – the basics	77	
	3.1	Overview	77	
	3.2	Characteristics of SPAs	77	
	3.3	Stream processing languages	80	
		3.3.1 Features of stream processing languages	80	
		3.3.2 Approaches to stream processing language design	83	
	3.4	Introduction to SPL	86	
		3.4.1 Language origins	86	
		3.4.2 A "Hello World" application in SPL	87	
	3.5	Common stream processing operators	92	
		3.5.1 Stream relational operators	92	
		3.5.2 Utility operators	96	
		3.5.3 Edge adapter operators	97	
	3.6	Concluding remarks	101	
	3.7	Programming exercises	101	
	Refe	rences	103	
4		ication development – data flow programming	106	
	4.1	Overview	106	
	4.2	Flow composition	106	
		4.2.1 Static composition	108	
		4.2.2 Dynamic composition	112	
		4.2.3 Nested composition	122	
	4.3	Flow manipulation	128	
		4.3.1 Operator state	128	
		4.3.2 Selectivity and arity	131	
		4.3.3 Using parameters	132	
		4.3.4 Output assignments and output functions	134	
		4.3.5 Punctuations	136	
		4.3.6 Windowing	138	
	4.4	Concluding remarks	144 144	
	4.5	Programming exercises		
	Refe	rences	147	
5	_	e-scale development – modularity, extensibility, and distribution	148	
	5.1	Overview	148	

		C	Contents	Ki
	5.2	Modularity and extensibility		148
		5.2.1 Types		149
		5.2.2 Functions		151
		5.2.3 Primitive operators		153
		5.2.4 Composite and custom operators		161
	5.3	Distributed programming		164
		5.3.1 Logical versus physical flow graphs		164
		5.3.2 Placement		166
		5.3.3 Transport		170
	5.4	Concluding remarks		172
	5.5	Programming exercises		173
	Refe	rences		176
6	Visua	alization and debugging		178
	6.1	Overview		178
	6.2	Visualization		178
		6.2.1 Topology visualization		179
		6.2.2 Metrics visualization		184
		6.2.3 Status visualization		185
		6.2.4 Data visualization		186
	6.3	Debugging		188
		6.3.1 Semantic debugging		189
		6.3.2 User-defined operator debugging		194
		6.3.3 Deployment debugging		194
		6.3.4 Performance debugging		195
	6.4	Concluding remarks		199
	Refe	rences		200
Part III	Systen	n architecture		201
7	Architecture of a stream processing system			
	7.1 Overview			203
	7.2	Architectural building blocks		203
		7.2.1 Computational environment		204
		7.2.2 Entities		204
		7.2.3 Services		206
	7.3	Architecture overview		207
		7.3.1 Job management		207
		7.3.2 Resource management		208
		7.3.3 Scheduling		209
		7.3.4 Monitoring		210
		7.3.5 Data transport		211
		7.3.6 Fault tolerance		212
		7.3.7 Logging and error reporting		213

x Contents

		7.3.8	Security and access control	213
		7.3.9	Debugging	214
		7.3.10	Visualization	214
	7.4	Interact	tion with the system architecture	215
	7.5	Conclu	ding remarks	215
	Refe	rences		215
8	InfoS	phere Str	reams architecture	218
	8.1	Overvi	ew	218
	8.2	Backgr	round and history	218
	8.3	A user'	's perspective	219
	8.4	Compo	onents	220
		8.4.1	Runtime instance	222
		8.4.2	Instance components	223
		8.4.3	Instance backbone	227
		8.4.4	Tooling	229
	8.5	Service	es	232
		8.5.1	Job management	232
		8.5.2	Resource management and monitoring	236
		8.5.3	Scheduling	239
		8.5.4	Data transport	241
		8.5.5	Fault tolerance	247
		8.5.6	Logging, tracing, and error reporting	248
		8.5.7	Security and access control	251
		8.5.8	Application development support	256
		8.5.9	Processing element	259
			Debugging	264
			Visualization	267
	8.6	Conclu	ding remarks	268
		rences		270
Part IV	Applic	ation des	sign and analytics	273
9	Desid	an princip	oles and patterns for stream processing applications	275
	9.1	Overvi		275
	9.2		onal design patterns and principles	275
		9.2.1	Edge adaptation	275
		9.2.2	Flow manipulation	287
		9.2.3	Dynamic adaptation	301
	9.3		unctional principles and design patterns	310
	7.5	9.3.1	Application design and composition	310
		9.3.2	Parallelization	314
		9.3.3	Performance optimization	325
		9.3.4	Fault tolerance	333

978-1-107-01554-8 - Fundamentals of Stream Processing: Application Design, Systems, and Analytics Henrique C. M. Andrade, Buğra Gedik and Deepak S. Turaga

Frontmatter More information

				Contents	хi		
	9.4	Conclu	iding remarks		339		
	Refer	ences			339		
10	Stream	Stream analytics: data pre-processing and transformation			342		
	10.1	Overvi	ew		342		
	10.2	The mi	ining process		342		
	10.3	Notatio	on		344		
	10.4	Descri	ptive statistics		345		
		10.4.1	1 8		348		
		10.4.2	Advanced reading		353		
	10.5	Sampli	•		353		
			Illustrative technique: reservoir sampling		356		
		10.5.2	Advanced reading		357		
	10.6	Sketch	es		358		
			Illustrative technique: Count-Min sketch		360		
		10.6.2	Advanced reading		363		
	10.7	Quanti	Quantization				
		10.7.1	Illustrative techniques: binary clipping and more	ent preserving			
			quantization		366		
		10.7.2	Advanced reading		369		
	10.8	Dimen	sionality reduction		370		
		10.8.1	Illustrative technique: SPIRIT		373		
		10.8.2	Advanced reading		375		
	10.9	Transfe	orms		375		
		10.9.1	Illustrative technique: the Haar transform		379		
		10.9.2	Advanced reading		383		
	10.10	Conclu	iding remarks		383		
	Refer	References					
11	Stream	Stream analytics: modeling and evaluation			388		
	11.1	Overview			388		
	11.2	Offline modeling and online evaluation			389		
	11.3	Data stream classification					
		11.3.1	Illustrative technique: VFDT		398		
		11.3.2	Advanced reading		402		
	11.4	Data st	ream clustering		403		
		11.4.1	Illustrative technique: CluStream microclusterin	ıg	409		
		11.4.2	Advanced reading		413		
	11.5	Data st	ream regression		414		
		11.5.1	Illustrative technique: linear regression with SG	D	417		
		11.5.2	Advanced reading		419		
	11.6	Data stream frequent pattern mining			420		
		11.6.1 Illustrative technique: lossy counting			425		
		11.6.2	Advanced reading		426		

Frontmatter More information

xii Contents

	11.7	Anomaly detection	427
		11.7.1 Illustrative technique: micro-clustering-based anomaly detection	432
		11.7.2 Advanced reading	432
	11.8	Concluding remarks	433
	Refer	ences	433
Part V	Case st	udies	439
12	Applic	cations	441
	12.1	Overview	441
	12.2	The Operations Monitoring application	442
		12.2.1 Motivation	442
		12.2.2 Requirements	443
		12.2.3 Design	445
		12.2.4 Analytics	451
		12.2.5 Fault tolerance	453
	12.3	The Patient Monitoring application	454
		12.3.1 Motivation	454
		12.3.2 Requirements	455
		12.3.3 Design	456
		12.3.4 Evaluation	463
	12.4	The Semiconductor Process Control application	467
		12.4.1 Motivation	467
		12.4.2 Requirements	469
		12.4.3 Design	472
		12.4.4 Evaluation	479
		12.4.5 User interface	481
	12.5	Concluding remarks	482
	Refer	ences	482
Part VI	Closing	, notes	485
13	Concl	usion	487
	13.1	Book summary	487
	13.2	Challenges and open problems	488
		13.2.1 Software engineering	488
		13.2.2 Integration	491
		13.2.3 Scaling up and distributed computing	493
		13.2.4 Analytics	495
	13.3	Where do we go from here?	496
	Refer	ences	497
	Keyw	ords and identifiers index	500
	Index		504

Preface

Stream processing is a paradigm built to support natural and intuitive ways of designing, expressing, and implementing *continuous* online high-speed data processing. If we look at systems that manage the critical infrastructure that makes modern life possible, each of their components must be able to *sense* what is happening externally, by processing continuous inputs, and to *respond* by continuously producing results and actions. This pattern is very intuitive and is not very dissimilar from how the human body works, constantly sensing and responding to external stimuli. For this reason, stream processing is a natural way to analyze information as well as to interconnect the different components that make such processing fast and scalable.

We wrote this book as a comprehensive reference for students, developers, and researchers to allow them to design and implement their applications using the stream processing paradigm. In many domains, employing this paradigm yields results that better match the needs of certain types of applications, primarily along three dimensions.

First, many applications naturally adhere to a sense-and-respond pattern. Hence, engineering these types of applications is simpler, as both the programming model and the supporting stream processing systems provide abstractions and constructs that match the needs associated with continuously sensing, processing, predicting, and reacting.

Second, the stream processing paradigm naturally supports extensibility and scalability requirements. This allows stream processing applications to better cope with high data volumes, handle fluctuations in the workload and resources, and also readjust to time-varying data and processing characteristics.

Third, stream processing supports the use of new algorithmic and analytical techniques for *online* mining of both structured data (such as relational database-style records) as well as unstructured data (such as audio, video, text, and image). This breaks the cycle of storing the incoming data first to analyze it later, and makes it possible to considerably shorten the lag between sensing and responding.

After more than a decade of research in this space, stream processing has had a prolific and successful history in academic and industrial settings. Several advances in data analysis and management, signal processing, data mining, optimization theory, as well as in distributed systems technology, have provided a strong foundation for the development of research and commercial stream processing systems. In essence, stream processing is no longer an emerging paradigm, it is now ready for prime time.

xiv **Preface**

The stream processing paradigm can now be harnessed in at least two ways. First, it can be used to transition existing legacy applications into true streaming implementations, making them more flexible, scalable, and adaptive. Second, stream processing can also be used to implement new analytics-intensive, high-performance, and innovative applications that could not be practically engineered earlier. Indeed, as will be seen in this book, stream processing applications can now be elegantly designed to be adaptive and autonomic, as well as self-evolving and able to continuously make use of newly learned knowledge.

Considering all of these aspects, this book is designed to provide a comprehensive foundation on stream processing techniques and on the skills necessary to design and develop stream processing applications. The book is divided into five major parts.

In Part I, we start with a discussion on the trends that led to development of the stream processing paradigm, providing also an overview of the initial academic efforts on analytical techniques, and on the engineering of some of the early stream processing system prototypes.

In Part II, we focus on application development. We describe core concepts of stream processing application development and illustrate them using the SPL language. SPL is the dataflow programming language provided by InfoSphere Streams, a commercial distributed stream processing system.

In Part III, we shift our attention to the architecture of stream processing systems. We first describe a conceptual middleware software architecture and its required services to support efficient, scalable, and fault-tolerant stream processing applications. We then illustrate these concepts with the architectural organization of InfoSphere Streams, shedding light on its internal components, and on the application runtime environment it exposes to a developer.

In Part IV, we build on the foundation provided in the earlier two parts to discuss how to best structure and design a stream processing application. The focus in this part of the book is on design patterns and principles common to stream processing applications, as well as on the algorithms used to implement online analytics.

In Part V, we describe a few case studies, detailing the end-to-end process of designing, implementing, and refining stream processing applications. This part brings together all of the information distilled in the earlier parts of the book. The case studies include real-world applications and showcase typical design decisions that must be made by developers.

We have designed this book to be used for undergraduate- as well as graduate-level courses on stream processing. The book's content is also structured so that application developers and system analysts can quickly develop the skills needed to make use of the stream processing paradigm.

While there are many ways to structure a semester-long course on stream processing, we recommend the following breakdown:

For an undergraduate course, we believe that substantial focus should be devoted to
the algorithmic and application-building aspects of stream processing. We believe
that the majority of the time should be spent in Part II, where the focus should be on

Preface

ΧV

teaching the SPL programming language. This training will provide a solid foundation for tackling Part IV, where the algorithmic and analytical techniques are discussed. This hands-on portion of the class should be concluded with the contents of Part V, to discuss case studies that show how a complete application might be designed. Information from Part III, particularly from Chapter 8, can be used as needed to provide basic system administration knowledge on managing the Streams system. We stress that a stream processing undergraduate-level course must be hands-on, so that students can pick up important technical skills along the way. At the end of some chapters, we suggest exercises that can be used to solidify a working knowledge of the SPL language and the Streams platform. Finally, we think the class should culminate with a medium size final project of the magnitude of the case studies described in Part V.

• For a graduate course, we believe that the emphasis should be on the theoretical foundations and research issues surrounding the algorithmic, analytical, software engineering, and distributed processing architectural foundations of stream processing. Nevertheless, a semester-long course should also provide a solid programming foundation and an understanding of the practical aspects of building stream processing applications. Hence, our suggestion is to follow a similar organization as for an undergraduate course on a compressed time scale, but augmented with selected readings from the bibliography included at the end of each chapter. For this extra reading, we suggest focusing primarily on a subset of the foundational papers listed in Chapters 1, 2, 10, and 11. Despite its maturity, stream processing is still a very fertile area of research. We offer suggestions of possible research topics and open problems in Section 13.2. These areas can be used for individual short-term research projects, as well as for more advanced studies leading to a thesis. One final suggestion we can offer is to make use of the case studies, discussed in Part V, as the motivation for the course's final research projects. These projects can tackle one or more of the supporting analytical- or distributed system-related parts of stream processing, particularly where the state-of-the-art can be further advanced.

We believe that this book is self-contained and no specific formal background is necessary. Yet a reader might benefit from prior knowledge of a modern programming language such as Java and C++, as well as experience with scripting languages such as Perl and Python. Likewise, previous experience with relational databases, data mining platforms, optimization theory, and signal processing can also be directly leveraged. Content that is complementary to this book covering several of the practical aspects of using Streams, including its set of documentation manuals and the Streams' IBM RedBook, are linked from www.thestreamprocessingbook.info/ibm/streams-infocenter and www.thestreamprocessingbook.info/ibm/streams-redbook, respectively.

We think that the best way to learn how to use a new technology is by trying it out and we include several code excerpts and examples of how to use InfoSphere Streams, to illustrate the fundamental concepts appropriately. For readers interested in obtaining

xvi Preface

an InfoSphere Streams license, commercial users can contact IBM directly as well as any of its authorized resellers. IBM also provides time-limited trial licenses for InfoSphere Streams. Additional information and specific conditions on the trial program can be found at www.thestreamprocessingbook.info/ibm/streams-main. IBM also maintains a program that enables academic users to obtain a license free of charge. This type of license can be used in a teaching environment. Additional information and specific conditions on the IBM academic program can be found at www.thestreamprocessingbook.info/ibm/academic-initiative.

As we mentioned, InfoSphere Streams and its SPL language are used throughout this book as examples of a stream processing system and programming language. In this way, we can provide a conceptual overview, coupled with practical foundations and code examples, application design challenges, and finally system administration issues. We believe that the abstractions, concepts, and examples included in the book are general enough to be used with a different stream processing system, both in a teaching or commercial setting.

As a commercial product, Streams is evolving and, periodically, new versions will become available. In this book, we have made an effort to provide working code and other usage examples consistent with version 3.0, the latest available version as of November 2012.

We hope that the reader will find this book as exciting to read as it was to write. We have attempted to balance the content such that it is useful both to readers who are attempting to familiarize themselves with the stream processing paradigm, and for advanced readers who intend to develop new stream processing applications, systems, and algorithms.

Finally, we welcome feedback on this book as well as accounts of experiences using stream processing in academic and industrial settings. The authors can be contacted through the website that accompanies this book at www.thestreamprocessingbook.info, where readers will also find a code repository with example applications and code excerpts (www.thestreamprocessingbook.info/apps) as well as this book's errata (www.thestreamprocessingbook.info/errata).

978-1-107-01554-8 - Fundamentals of Stream Processing: Application Design, Systems, and Analytics Henrique C. M. Andrade, Buğra Gedik and Deepak S. Turaga

Frontmatter

More information

Preface

xvii

Foreword

Humans are deeply curious and expend boundless energy and thought in sensing and interpreting that which surrounds them. Over time, direct perception through the five physical senses was extended by the creation of ingenious instrumentation designed to magnify and amplify weak signals, bringing what was beyond the visible into focus. Telescopes and light microscopy revealed natural phenomena that enabled richer and more sophisticated theories and understanding.

In recent decades industrialization has filled the world with machines and complex systems that manufacture, transport, track and deliver, communicate and mediate financial and social transactions, entertain and educate, treat and repair, and perform thousands of other tasks. As was true with the natural world, human curiosity seeks to understand the operation of these machines and systems and their interactions, but now with the added urgency to understand how and how well systems are operating, and often why they are not working as intended. Direct perception is no longer effective, nor is observation through the mere amplification of our five senses. Specialized sensors capture phenomena such as vibration, frequency, complex movements, or human-generated data and messages produced by the machines and systems as a side-effect of their operation, and so perception must now be through computer-aided interpretation of the digital signals.

Up until recently, no systematic approach existed for the creation of digital signal interpretation required to engineer this new class of perception mechanisms. IBM has long recognized this, and early in 2004 initiated a research program to create such a new approach from the ground up. As the lead for this program, I assembled a multi-disciplinary team of experts in distributed systems, mathematics, programming languages, machine learning and data mining, and computer science theory, and, over a five-year period, we (~60 researchers and engineers) developed *System S* – the research precursor to the IBM InfoSphere Streams product described in this volume, to illustrate stream processing concepts and techniques. During this period, the stream processing model and its underlying system structures evolved through feedback and application of the technology in a wide variety of real-world contexts.

The authors of this book were central members of this research and development effort, and have been closely involved in all aspects of the program – from conceptualization of the objectives, to the design of the architecture and the programming model, to engineering and implementing the system, and finally designing analytic applications and deploying them in real-world settings. Each of the three authors focused their work

xx Foreword

on a core area: the weaving of analytics into sophisticated applications, the language in which applications are described, and the system and runtime that support execution of the applications. This provided the authors with a complete and unique insider's perspective on both the fundamentals of this new model and realizations of the model in practical implementations and deployments.

This magnificent volume has captured this knowledge for students, researchers, and practitioners. The book provides an in-depth introduction to the stream processing paradigm, its programming model, its distributed runtime, and its analytic applications that will enable readers to use these techniques effectively in various settings for complex environmental monitoring and control applications. The book also includes several sample implementations, algorithms, and design principles, along with real-world use cases to provide hands-on training to practitioners. Finally, the book provides advanced readers and researchers with the necessary fundamentals to enable the design and extension of the stream processing paradigm to solve future problems.

All of us involved with the creation of this technology are convinced that stream processing will become a permanent element in the quest to create ever more sophisticated instrumentation to better understand our world, the machines and systems that serve us, and the interaction among them. The impact will be felt in virtually all modern industrial sectors and its use will lead to a safer, more efficient, and more productive society.

Nagui Halim IBM Fellow IBM T. J. Watson Research Center Yorktown Heights, NY United States

Acknowledgements

Henrique, Buğra, and Deepak were colleagues at IBM Research for several years, and were part of the team that designed and implemented InfoSphere Streams. This team included researchers, architects, designers, project managers, programmers, and testers under the direction of Nagui Halim. The techniques and lessons described here are the product of numerous discussions and refinements with this much larger team. Therefore, we acknowledge the collaboration of colleagues from multiple IBM sites, including Rochester (MN), Toronto (Canada), Silicon Valley (CA), Raleigh (NC), the China Research Lab, and from the Thomas J. Watson Research Center (NY). This book is also a tribute to our talented IBM colleagues. Thank you!

It really takes a village to build a system such as InfoSphere Streams, as we ourselves learned in the process. So it came as no surprise that the same applies when writing a book. We owe a debt of gratitude to the expertise of our colleagues who also helped reviewing an early version of this manuscript. We are particularly thankful to these early "settlers" who braved the elements to provide us with many helpful suggestions and corrections: Tarık Arıcı (İstanbul Şehir Üniversitesi), John Cox (US Government), Renato A. Ferreira (Universidade Federal de Minas Gerais), Andy Frenkiel (IBM Research), Martin Hirzel (IBM Research), Gabriela Jacques da Silva (IBM Research), Paul Jones (HM Government), Rohit Khandekar (Knight Capital Group), Senthil Nathan (IBM Research), Scott Schneider (IBM Research), Robert Soulé (Cornell University), William Szewczyk (US Government), Rohit Wagle (IBM Research), Brian Williams (IBM Software Services Federal), and Kun-Lung Wu (IBM Research).

A special thanks is due to our colleague Wim De Pauw (IBM Research) who graciously produced the image we use on this book's cover, a depiction of a stream processing application.

978-1-107-01554-8 - Fundamentals of Stream Processing: Application Design, Systems, and Analytics Henrique C. M. Andrade, Buğra Gedik and Deepak S. Turaga

Frontmatter

More information

Acronyms

A/D Analog-to-Digital

AAS Authentication and Authorization Service

ACID Atomicity, Consistency, Isolation, and Durability

ACL Access Control List

ADL Application Description Language

ADT Abstract Data Type

AES Advanced Encryption Standard

AlS Agrawal, Imielinski, Swami

AMS Alon, Matias, and Szegedy

ANSI American National Standards Institute

API Application Programming Interface

ARIMA Auto Regressive Integrated Moving Average

ASCII American Standard Code for Information Interchange

ATE Automated Test Equipment

BIH Beth Israel Hospital

BI Business Intelligence

BJKST Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan

CART Classification And Regression Tree

CC Command and Control

CDR Call Detail Record

CEP Complex Event Processing

CIS Clinical Information System

CKRM Class-based Kernel Resource Management

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CQL Continuous Query Language

CQ Continuous Query

CSV Comma-Separated Value

CVFDT Concept-adapting Very Fast Decision Tree learner

DAG Directed Acyclic Graph

DBMS Data Base Management System

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DCOM Distributed Component Object Model

DCT Discrete Cosine Transform

978-1-107-01554-8 - Fundamentals of Stream Processing: Application Design, Systems, and Analytics Henrique C. M. Andrade, Buğra Gedik and Deepak S. Turaga

Frontmatter

More information

List of acronyms

xxiii

DDL Data Definition Language

DDoS Distributed Denial of Service

DFT Discrete Fourier Transform

DHT Distributed Hash Table

DMG Data Mining Group

DML Data Manipulation Language

DNS Domain Name System

DOM Document Object Model

DoS Denial of Service

DPI Deep Packet Inspection

DSL Domain-Specific Language

DSO Dynamically Shared Object

DSS Decision Support System

DTD Document Type Definition

ECA Event-Condition-Action

ECG Electrocardiogram

EDA Electronic Design Automation

EEG Electroencephalogram

EKG Elektrokardiogramm

EM Expectation Maximization

EMS Emergency Medical Services

EPL Event Processing Language

EPN Event Processing Network

EPFL École Polytechnique Fédérale de Lausanne

ER Entity Relationship

ESP Event Stream Processor

ETL Extract/Transform/Load

FDC Fault Detection and Classification

FFT Fast Fourier Transform

FPGA Field-Programmable Gate Array

FSF Free Software Foundation

FTP File Transfer Protocol

Gbps gigabits per second

GMM Gaussian Mixture Model

GPS Global Positioning System

GPU Graphics Processing Unit

GRAM Globus Resource Allocation Manager

GSM Global System for Mobile Communications

GSN Global Sensor Networks

GSQL Gigascope SQL

GUI Graphical User Interface

HA High Availability

HC Host Controller

HDFS Hadoop Distributed File System

978-1-107-01554-8 - Fundamentals of Stream Processing: Application Design, Systems, and Analytics Henrique C. M. Andrade, Buğra Gedik and Deepak S. Turaga

Frontmatter

More information

xxiv List of acronyms

HMM Hidden Markov Model

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

Hz hertz

I/O Input/Output

ICU Intensive Care Unit

IDDQ Direct Drain Quiescent Current

IDE Integrated Development Environment

IDL Interface Definition Language

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IOR Interoperable Object Reference

IP Internet Protocol

IPC Inter-Process Communication

IT Information Technology

JDBC Java Data Base Connectivity

JMS Java Message Service

JNI Java Native Interface

JSON JavaScript Object Notation

JVM Java Virtual Machine

kbps kilobits per second

KHz kilohertz

KLT Karhunen-Loève Transform

KNN k-Nearest Neighbors

LAN Local Area Network

LBG Linde–Buzo–Gray

LDAP Lightweight Directory Access Protocol

LDA Linear Discriminant Analysis

LFUP Least Frequently Updated Partition

LLM Low Latency Messaging

LF Line Fit

LPC Linear Predictive Coding

LRUP Least Recently Updated Partition

MIMD Multiple Instruction Multiple Data

MIT Massachusetts Institute of Technology

MLA Manifold Learning Algorithm

MLE Maximum Likelihood Estimation

MLP Multi-Layer Perception

MPI Message Passing Interface

MPQ Moment Preserving Quantization

MP megapixel

ms millisecond

MTDF Mean Time to Detect Failures

978-1-107-01554-8 - Fundamentals of Stream Processing: Application Design, Systems, and Analytics Henrique C. M. Andrade, Buğra Gedik and Deepak S. Turaga

Frontmatter

More information

List of acronyms

XXV

MUSCLES MUlti-SequenCe LEast Squares

mV millivolt

NB Naïve Bayes

NFS Network File System

NICU Neonatal Intensive Care Unit

NN Nearest Neighbors

NOAA National Oceanic and Atmospheric Administration

NP Non-deterministic Polynomial time

NPMR Non-Parametric Multiplicative Regression

NS Name Service

NYSE New York Stock Exchange

ODBC Open Data Base Connectivity

ODBMS Object Data Base Management System

OLAP Online Analytical Processing

OLTP Online Transaction Processing

OMG Object Management Group

OM Operations Monitoring

00 Object-Oriented

OP Oldest Partition

0S Operating System

PAM Pluggable Authentication Module

PCA Principal Component Analysis

PCR Parent-Child Relationship

PDF Probability Density Function

PDMS Patient Data Management System

PEC Processing Element Container

PE Processing Element

PIPES Public Infrastructure for Processing and Exploring Streams

PLY Performance Limited Yield

PMF Probability Mass Function

PMML Predictive Model Markup Language

PM Patient Monitoring

P0J0 Plain Old Java Object

PSR0 Performance Sort Ring Oscillator

PVM Parallel Virtual Machine

QoS Quality of Service

RAD Rapid Application Development

RBF Radial Basis Function

RDF Random Decision Forest

RDMA Remote Direct Memory Access

RFID Radio-Frequency IDentification

ROC Receiver Operating Characteristic

RPC Remote Procedure Call

RSS Really Simple Syndication

978-1-107-01554-8 - Fundamentals of Stream Processing: Application Design, Systems, and Analytics Henrique C. M. Andrade, Buğra Gedik and Deepak S. Turaga

Frontmatter

More information

xxvi List of acronyms

RTP Real-time Transport Protocol

SAM Streams Application Manager

SAN Storage Area Network

SAX Simple API for XML

SCADA Supervisory Control and Data Acquisition

SCH Scheduler

SDE Semi-Definite Embedding

SGD Stochastic Gradient Descent

SIMD Single Instruction Multiple Data

SLR Single Logistic Regression

SMS Short Message System

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SOM Self-Organizing Map

SPA Stream Processing Application

SPADE Stream Processing Application Declarative Engine

SPC Semiconductor Process Control

SPIRIT Streaming Pattern dIscoveRy in multIple Timeseries

SPS Stream Processing System

SQL Structured Query Language

SQuAl Stream Query Algebra

SRM Streams Resource Manager

SSH Secure SHell

SSL Secure Sockets Layer

SVD Singular Value Decomposition

SVM Support Vector Machine

Sws Streams Web Server

TB terabytes

TCP Transmission Control Protocol

TEDS Transducer Electrical Data Sheet

TelegraphCQ Telegraph Continuous Queries

UCLA University of California, Los Angeles

UDP User Datagram Protocol

UML Unified Modeling Language

URI Uniform Resource Identifier

UX User Experience

VFDT Very Fast Decision Tree

VFML Very Fast Machine Learning

VLSI Very Large Scale Integration

VoIP Voice over IP

VWAP Volume Weighted Average Price

WAN Wide Area Network

WSDL Web Services Description Language

WTTW Who is Talking To Whom

List of acronyms

XXVII

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

XPATH XML Path Language

XSD XML Schema Definition

XSLT eXtensible Stylesheet Language Transformations

ZIP Zone Improvement Plan