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Introduction

The goal of this book is to provide algebraic tools for the design of pseudo-random
sequences. It is meant to be both a text book and a reference book. We present a
unified approach based on algebraic methods, which allows us to simultaneously
treat linear feedback shift registers, feedback with carry shift registers, and many
other analogous classes of sequence generators. The requisite algebraic tools are
developed in Appendices A through D.

1.1 Pseudo-random sequences

Applications of random numbers became so widespread in the early 1950s that
eventually a table of one million random digits was generated and published
[178] by the Rand corporation. It was soon found necessary to generate ‘ran-
dom numbers” in real time using a computer algorithm. Sequences of numbers
generated in this way are referred to as pseudo-random, see Section 8.1. Pseudo-
random sequences have become ubiquitous in modern electronics and information
technology. They are used, for example, as spreading codes in communications sys-
tems (such as cellular telephones and GPS signals), as components for generating
keystreams for stream ciphers and other cryptographic applications, as sampling
data for simulations and Monte Carlo integration, for timing measurements in radar
and sonar signals and in GPS systems, as error correcting codes in satellite and
other communications, as randomizers of digital signals to eliminate spectral lines,
as counters in field programmable gate arrays, and in power on self tests.

In all cases speed in generating the sequences is important — time spent gener-
ating sequences affects the speed of the whole system, and thus affects throughput,
or accuracy, or some other important characteristic. In most cases it is also impor-
tant to be able to reproduce the sequence (for example, so a receiver can undo
the encoding from a transmitter). Many desirable characteristics of sequences are
specific to the application. In cryptography we want sequences that are difficult to

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107014992
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-01499-2 - Algebraic Shift Register Sequences
Mark Goresky and Andrew Klapper

Excerpt

More information

2 Introduction

predict from short segments. In CDMA we want families of sequences with low
pairwise correlations. Error correcting codes require families of sequences with
large pairwise Hamming distance and efficient decoding algorithms. Many appli-
cations require sequences with uniform distributions of fixed size patterns. Some,
such as Monte Carlo methods, require many other statistical properties.

1.2 LFSR sequences

For all of these applications there are solutions that rely on sequences produced by
linear feedback shift registers (LFSRs). They are easily implemented in hardware,
resulting in high speed generation of the sequences. There is a rich algebraic theory
of the design and analysis of LFSR sequences, which is used in the selection of
those generators having the most appropriate properties for a given application.
Some applications rely on other types of sequence generators such as feedback
with carry shift registers (FCSRs). These can also be implemented in hardware for
high speed, and they have an algebraic theory parallel to that of LESRs.

Although they were preceded by many important papers and technical reports
[47, 48, 60, 93, 136, 190, 210, 211], the publication of “Error correcting codes”
[172] by W. W. Peterson and “Shift Register Sequences” [61] by S. Golomb were
milestones in the development of LFSR techniques for the generation of pseudo-
random sequences. These books explained and exploited the deep connection
between the architecture of the shift register and the mathematics of Galois theory
in a way that makes for exciting reading, even today, 45 years later. In Golomb’s
book, each “cell” of the shift register is a vacuum tube that can be either ON or
OFF, and the output of the shift register is a pseudo-random sequence of zeroes
and ones. Reading this book, one is tempted to run out and buy the parts to build
one of these machines and watch it run.

One of the most fascinating aspects of this theory concerns the design of shift
registers that produce maximal length sequences, or m-sequences, and the remark-
able statistical and correlation properties of these sequences, which we describe in
Chapter 10: besides having maximal length, each m-sequence a of rank k is also
a (punctured) de Bruijn sequence' and its autocorrelation function is optimal. It is
an amazing fact that the design problem can be completely solved using the Galois
theory of finite fields. Although this fact was known already to L. E. Dickson [41]
(in a slightly different language, of course, since electronic shift registers did not
exist in 1919), it was rediscovered in the 1950s by the engineering community, and
it remains one of the most compelling illustrations of how an abstract mathemati-
cal theory can unexpectedly become the key to understanding a complex physical
system. Similarly, the distribution and correlation properties of m-sequences turn

1 Each subsequence of length k, except the all-zero subsequence, occurs exactly once in each period of a.
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1.3 FCSR sequences 3

out to be related to a variety of mathematical abstractions including finite fields,
difference sets (a subject that developed independently, but around the same time
[80]), and even elliptic curves. See Section 10.6.4.

The explosive development of code division multiple access (CDMA) commu-
nications, especially with cellular telephones, has created considerable interest in
finding families of pseudo-random sequences with low cross-correlation between
distinct sequences in a given family. In Chapter 11 we discuss some of the more
common families, including Gold codes, Kasami sequences, GMW sequences, and
Legendre sequences, as well as several more exotic variations on these themes. Our
analysis is more “geometric” than the standard approach. We have only scratched
the surface of this fascinating topic and the reader interested in a more complete
study of correlation questions may wish to consult Golomb and Gong’s recent
book [63].

In the years since the publication of Golomb’s book [61], the basic design of
shift registers has been enhanced in several different directions. The “Galois” and
“Fibonacci” modes were developed [173], many ways of interconnecting shift reg-
isters were analyzed, and perhaps most significantly, the binary state vacuum tubes
were eventually replaced by cells with many possible states. Engineers were led,
for example, to consider N-ary shift registers, whose cell contents are taken from
the integers modulo N, or from a finite Galois field, or more generally from an
algebraic ring. It turns out that much of the analysis of shift register sequences
goes through in this more general setting. In Chapters 3, 10, and 11 we present
this general analysis. Although the material is not new, it is derived from many
disparate sources.

1.3 FCSR sequences

It is possible to enhance the basic shift register architecture in yet another way, by
the addition of a small amount of memory. The memory is used as a “carry” in the
calculations. For example, when two sequences of ones and zeroes are added, they
can be added as elements of Z/(2) (or XOR addition) in which 1 + 1 = 0, or they
can be added as “integers”, in which 1+1 = 2 = 0 + a carry of 1. The difference
is illustrated by the following example, where carries go to the right (which is the
opposite convention to the usual place value notation):

1100 01 1 010 1 10001 1010

1 010110110 1 010110110

01 101 01 100 0001 1 00011
mod 2 with carry.

In fact, the summation combiner [182] does exactly the latter: it combines two
binary sequences into a third, using addition with carry. It was originally proposed
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4 Introduction

as a method for creating a difficult-to-predict bit stream from two relatively easy-
to-predict bit streams, for cryptographic applications.

In an effort to analyze the summation combiner, the authors decided to incorpo-
rate this addition with carry into the architecture of a linear feedback shift register.
The result was the feedback with carry shift register (FCSR) [114, 115, 119],
described in Chapters 4, 13, and 16.

Around the same time a similar idea began circulating in the random number
generation community, perhaps initiated by G. Marsaglia [144] and A. Zaman
[146], and more fully developed by R. Couture and P. I’'Ecuyer [31, 32] and others,
where the method became known as “add with carry” and “multiply with carry”
(MWC) random number generators. These approaches appeared to be different at
first because the add with carry generators involved only two “cells”, each of which
stores a very large integer, while the FCSR used many cells, each of which stores
only a single bit. But in later papers, architectures were considered which involve
(possibly) many cells, each storing (possibly) large integers, and in this setting the
two methods are seen to be identical. The generation and analysis of FCSR and
MWC sequences is covered in Chapters 4 and 13. Galois and Fibonacci versions
of FCSR generators also exist. See Chapter 7.

As in the case of LFSRs, the FCSR architecture can be enhanced by considering
cell contents taken from Z/(p), or a finite field, or even an arbitrary ring. But in
these cases, the analysis becomes considerably more difficult (and interesting). The
natural setting for all these architectures is the algebraic feedback shift register or
AFSR, for which the general theory is developed in Chapter 5. In this generality,
the theory of AFSRs includes both that of FCSRs (with cell contents in an arbi-
trary ring) and LESRs. But the AFSR architecture also contains a number of new
and interesting special cases as well, some of which are studied in some detail in
Chapters 5, 6, 12, 14, and 17.

For example, another way in which the FCSR architecture can be enhanced is to
delay the “carry” by a certain number of steps. Here is an example of addition in
which the carry is delayed by one step:

11101 101 00

1 o1 01 10110

01 10 1 0 1 1 11
carry delay +1

(1.1)

It is possible to build hardware FCSR generators that implement this sort of
addition; we call them d-FCSRs? and they are described in Chapter 6. The d-FCSR
is a special case of an AFSR, and although the analysis of the d-FCSR is more

2 Our original intention was that the d in 4-FCSR was an integer indicating the degree, but it has been since
claimed that d stands for “delay”.
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1.4 Register synthesis 5

difficult than that of the FCSR, it is somewhat simpler than the general AFSR and
is still surprisingly complete.

For another example, the cells of an FCSR, or of a d-FCSR, could be polyno-
mials. This gives rise to the function field FCSR, as described in Section 5.4.2 and
Chapter 12. There appears to be an almost unlimited number of variations on this
theme.

As in the case of LFSR sequences, the maximal length FCSR sequences (which
we refer to as £-sequences) have several remarkable properties. Such a sequence
is as equi-distributed as possible, given its period. Although the autocorrelation
function of such a sequence is not known in general, it nevertheless has perfect
arithmetic autocorrelation (a function that is the direct arithmetic analog of the
usual autocorrelation function). These properties are investigated in Chapter 13.
In Chapter 14 the analogous questions for maximal length d-FCSR sequences are
considered. The case of AFSR sequences based on a function field is especially
surprising: the ones of maximal length turn out to be punctured de Bruijn sequences
with ideal auto-correlations, but (in the non-binary case) they are not necessarily
m-sequences. See Chapter 12.

1.4 Register synthesis

In Part III of the book we change gears and consider the “synthesis” problem: given
a periodic sequence a, how can we construct a device (such as an LFSR) that will
generate the sequence? The length of the smallest such LFSR is called the linear
span or linear complexity of the sequence a. The optimal result in this direction
is the Berlekamp—Massey algorithm which predicts later terms of the sequence
using the minimum possible amount of data, and it does so very efficiently. It is
well known that this algorithm is “essentially” the same as the continued fraction
expansion in the field of formal power series. In Section 15.2.4 the exact relation
between these two procedures is made explicit.

The Berlekamp—Massey algorithm therefore provides a possible technique for
uncovering the keystream in a stream cipher, based only on the knowledge of the
plaintext. It is therefore desirable that such a keystream should have an enormous
linear span. Several standard techniques for constructing sequences with large lin-
ear span are described in Section 15.5, but the reader should be aware that this is
a rapidly changing field and none of these techniques is considered “secure” by
modern standards.

The continued fractions approach to FCSR synthesis (that is, the construction
of an FCSR that produces a given sequence) simply does not work. However, two
successful approaches are described in Section 16.3. The first is based on the math-
ematical theory of lattice approximations, and the second is based on the extended
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6 Introduction

Euclidean algorithm. These techniques were used to “break” the summation cipher
described above. The problem of AFSR synthesis is even more difficult, but in
Chapter 17 we describe Xu’s algorithm which converges in many cases.

The mathematics behind all this material can be a daunting obstacle. Although
we have included the appropriate mathematical background in the appendices of
this book, most of the chapters in the main part of the book have been written so
as to be independent of this material, as much as possible. The reader is invited
to start in the middle, on a topic of interest, and to read as far as possible until it
becomes necessary to refer to the appendices, using the index as a guide. It may
even be possible to delay the retreat to the appendices indefinitely, by skipping the
proofs of the theorems and propositions.

1.5 Applications of pseudo-random sequences

Although pseudo-random sequences are ubiquitous in modern technology, each
application requires a particular type of pseudo-random sequence which must be
optimized so as to have particular statistical properties. For this reason, the subject
of pseudo-random sequences is enormous and varied. In the following paragraphs
we only give an outline of some of the most common applications.

1.5.1 Frequency hopping spread spectrum

In a frequency hopping (FH) wireless communication system, the transmitter and
receiver jump, in synchrony, from one frequency to another, as directed by a (peri-
odic) pseudo-random sequence a = ay, ay, - - - that they share. The power spectrum
of the transmitted signal is therefore “spread” out among these various frequencies.

This technique may be used to minimize interference from natural or man-made
causes: an agent that attempts to jam the transmission is forced to pursue the costly
strategy of jamming all the frequencies unless he also knows the pseudo-random
sequence. Sequences designed for this application must therefore be difficult to
predict based on partial knowledge of the sequence. FH can also be used as part
of an encryption scheme: an unwanted listener must monitor all the frequencies
in order to detect the full message. FH is used in multiple-access systems in
which several communications occur simultaneously. In this case, each transmitter
is assigned its own (periodic) signature pseudo-random sequence of frequencies.
These sequences must be designed so as to exhibit low Hamming correlation. That
is, the design should minimize the chances of a collision (when two or more trans-
mitters attempt to transmit on the same frequency at the same time). See Section
11.9. Recovery from occasional collisions can be effected through the use of an
error correcting code.
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1.5 Applications of pseudo-random sequences 7

The first patent for an FH system was obtained by actress Hedy Lamarr (Hedy
Marky) and composer George Antheil in 1944. See Section 11.9 and references
[193, 200]. FH is widely implemented and is currently part of the Bluetooth
specification. Some brands of 2.4 GHz transmitters for radio control make use
of FH.

1.5.2 Code division multiple access

In a code division multiple access (CDMA) communication system, many users
wish to communicate on the same channel, for example on a single radio fre-
quency or on a single optical fiber. Each transmitter (A, B, C, etc.) is pre-assigned
a (relatively short) signature sequence (s, sg, etc.). Often it is a binary sequence.
The signature sequence s4 must also be known to the receiver if it is attempt-
ing to receive a message from A. Let us say that transmitter A wishes to send a
message. To send the information bit “1”, transmitter A broadcasts its full signa-
ture sequence. To send the information bit “0” it broadcasts the complementary
sequence. Typically many transmitters operate simultaneously on the same base
frequency. If the family of sequences is chosen so as to have low cross-correlation
then the receiver is able to determine the information bits from transmitter A by
correlating the total received signal with the signature sequence s4. Since the sig-
nals from the other transmitters have low correlation with this signature sequence,
these other signals will appear as noise at the output of the receiver’s correla-
tor. Provided the different signature sequences are orthogonal (meaning that their
cross-correlations are small), and provided there are not too many simultaneous
users, this noise will not swamp the positive correlations from A. The signature
sequence for transmitter A is also chosen so as to have low out-of-phase correla-
tion with itself, so that the correlator will only register a high (positive or negative)
correlation when it is synchronized with the start of the transmitted signature
sequence.

Usually, each transmitter is designed so as to broadcast a sine wave at a single
base frequency Fy. The signature sequence is typically transmitted using phase
shift keying: to alternate between a “0” and a “1” the phase of the transmission
might be shifted by 180 degrees. The rate at which these shifts occur is called the
chip rate. Dividing the chip rate by the length of the signature sequence gives the
rate at which the information bits are processed, or the information rate. The power
spectrum of the transmission appears as a spike at the frequency F; with sidelobe
spikes separated from Fj by integer multiples of the chip rate and the information
rate. Consequently, the spectrum is “spread” over a frequency band, and, just as
with an FH system, the transmission is somewhat immune to jamming by natural
or man-made interference.
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8 Introduction

CDMA systems therefore require families of pseudo-random sequences with
low auto- and cross-correlation. Further desirable properties may include crypto-
graphic strength of the signature sequences, error correcting capabilities, etc. These
desiderata tend to be mutually incompatible and one of the challenges of modern
communication theory is the design of optimal CDMA families.

CDMA is widely used in cellular telephone and GPS systems. See the exercises
in Section 11.12 where the C/A (coarse acquisition) code for the current USA
civilian GPS system is described.

1.5.3 Optical CDMA

In an optical fiber (or similar channel) there is only “room” for a single signal at a
time (meaning that the fiber is either active with light, or it is dark). Such a chan-
nel can be used for CDMA as above, with each user assigned his own signature
sequence. In order to send a binary “1” the user sends his signature sequence. To
send a binary “0” the user sends nothing. When r users are transmitting simultane-
ously, their signals ay, as, - - - , a, are combined according to the “maximum” rule,
a = max(aj, ap, -+ ,a,) € {0, 1}. Such a system will work provided each indi-
vidual signature sequence has many zeroes and few ones, thereby leaving as much
“dark” time as possible for the other users.

As in the case of wireless CDMA, the individual messages are recovered using
a correlation receiver. However the definition of “correlation” is slightly different
for the optical channel than for the wireless channel. See Section 11.10.

1.5.4 Synchronization and radar

In many applications (such as radar) it is necessary to measure the time lag between
two signals (for example, a transmitted and a reflected signal). For example one
might transmit a single, high powered, short duration burst and measure the elapsed
time for the reflected signal. But there are many problems with this approach. Such
bursts are difficult to produce, and due to propagation and other effects, the received
signal may fail to look like a “burst”: it may be distributed over a relatively large
time segment.

Another approach is to transmit a periodic pseudo-random sequence with opti-
mal autocorrelation (meaning that the out of phase correlation of the sequence with
itself is zero, or almost zero). In the simplest systems, a correlator compares the
received signal to all possible (cyclic) shifts of the transmitted signal. The output of
the correlator will exhibit a sharp peak for exactly one shift which therefore trans-
lates into a time lag (which will be a multiple M, of the chip period 7). However
this measurement carries an indeterminacy that is an integral multiple M of the
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1.5 Applications of pseudo-random sequences 9

period T of the sequence, meaning that the sequence went through M, full periods
before returning. The time lag M, T is easier to measure because the period 7} is
typically much greater than Tj.

This technique was used by the Jet Propulsion Laboratory in 1961 to bounce a
radar signal off the surface of Venus. This exciting story, and its consequences for
the accurate determination of the astronomical unit, are described in [22]. Modern
radar systems are much more complex than described here, since we have not even
addressed the issue of Doppler shift due to the motion of the target, and pseudo-
random sequence design for radar is an enormous but fascinating subject in its own
right.

1.5.5 Stream ciphers

In a stream cipher, a keystream generator produces a pseudo-random sequence
of bits (or of elements in an Abelian group). This sequence is added, symbol by
symbol, to the plaintext. The result is called the ciphertext which is then broadcast.
The receiver, who has an identical copy of the keystream generator, subtracts its
output, symbol by symbol, from the ciphertext, and thereby recovers the plaintext.

Stream ciphers are used for transmitting large amounts of data. They are
extremely fast and are often implemented in hardware for added speed. Conse-
quently the keystream generator must be designed to produce a pseudo-random
sequence of enormous period using a relatively simple algorithm. In a known
plaintext attack it is assumed that the enemy (by some nefarious technique or by
negligence on the part of the user) has knowledge of a relatively small section of
the plaintext. This allows the enemy to recover that section of the keystream. A
stream cipher will therefore be secure against a plaintext attack provided it is diffi-
cult to predict the key sequence from a knowledge of a (relatively small) segment
of the sequence. This is the main requirement for a “strong” key sequence. In some
situations one even assumes that the attacker has knowledge of the hardware that
is used to generate the key sequence, but does not have knowledge of its initial
state.

Many techniques exist for predicting the full key sequence, based on a knowl-
edge of a segment, some of which are covered in Section 15.5 of this book. One
technique is a correlation attack in which one attempts to correlate the known seg-
ment with the state of the keystream generator. Other techniques include statistical
tests and the Berlekamp—Massey algorithm. See Section 15.2.

These requirements (simple algorithm, large period, difficult to predict from
short segments) are incompatible in the complexity-theoretic sense, but not in
the practical sense, and a tremendous amount of research has been invested in
the design and analysis of cryptographically secure keystream generators. Stream
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10 Introduction

ciphers are in wide use, perhaps the most common being RC4, which is used in
WEP (for secure WiFi communication) and SSL (for secure internet transactions).

1.5.6 Pseudo-random arrays

Imagine a huge m x n (bi-periodic) array of zeroes and ones such that every non-
zero nine by nine block appears exactly once in a single period. There are 28! — 1
possible blocks, so the array might have m = 2%’ — 1 andn = (28! — 1)/(2%7 — 1),
which is approximately 2°*. Now imagine that an agent is lost in this array, but
from its location it can see the square it resides on as well as the 80 neighboring
squares that are within four steps (in any direction) from its present location. The
agent looks up in a table (or preferably, does a small computation) and it is then
able to determine that it is at location (x, y), which is uniquely determined by the
nine by nine pattern of bits.

Such arrays are used on the floors of warehouses to help robots determine their
position. Another example is a widely marketed “digital pen” that writes on “digital
paper” that is printed with a background array of microscopic dots. The pen has a
tiny camera that reads a small region on the paper, from which software determines
the position of the pen on the paper, as well as which piece of paper is being used,
and which pad it came from. The background array of dots is an example of a
pseudo-random array which has been designed so that any nine by nine region will
uniquely determine the position within the array. At 300 dots per inch an array of
227 by 23* dots is approximately 8 miles by 1 000 000 miles, a surface area large
enough that every piece of digital paper printed by the company can come from a
different region. Pseudo-random arrays are discussed in Section 10.4.

1.5.7 Monte Carlo

LetI' = [0, 1]° and suppose f : T’ — Ris a continuous function. We wish to cal-
culate f7s f(u)du. If s = 1 the integral can be approximated using the trapezoidal
rule or Riemann sums: let0 = xy, - - - , xy — 1 be N equally spaced points in [0, 1]
and form

1 n
FDIFICHE (12)
v

If 5 is large this becomes impractical because it will involve N* evaluations. The
Monte Carlo method consists of choosing points xj, - -+ , Xy € T’ at random (inde-
pendent and uniformly distributed) for use in equation (1.2). It is known that the
expected error in this estimate varies as O (1 /«/ﬁ) Typically these computa-
tions are performed for large values of N, so an efficient source of independent
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