Contents

Preface
Preface (xi)

Notation
Notation (xiii)

Part I Point process theory

1. **Introduction**
 1.1 What is stochastic geometry?
 1.2 Point processes as spatial models for wireless networks
 1.3 Asymptotic notation
 1.4 Sets and measurability
 Problems (7)

2. **Description of point processes**
 2.1 Description of one-dimensional point processes
 2.2 Point process duality
 2.3 Description of general point processes
 2.4 Basic point processes
 2.5 Distributional characterization
 2.6 Properties of point processes
 2.7 Point process transformations
 2.8 Distances
 2.9 Applications
 Bibliographical notes (43)
 Problems (44)

3. **Point process models**
 3.1 Introduction
 3.2 General finite point processes
 3.3 Cox processes
 3.4 Cluster processes
 3.5 Hard-core processes
 3.6 Gibbs processes
 3.7 Shot-noise random fields

© in this web service Cambridge University Press
www.cambridge.org
Table of Contents

4 Sums and products over point processes

4.1 Introduction 77
4.2 The mean of a sum 78
4.3 The probability generating functional 79
4.4 The Laplace functional 82
4.5 The moment-generating function of sums over Poisson processes 83
4.6 The probability generating and Laplace functionals for the Poisson point process 86
4.7 Summary of relationships 87
4.8 Functionals of other point processes 88
Bibliographical notes 92
Problems 92

5 Interference and outage in wireless networks

5.1 Interference characterization 93
5.2 Outage probability in Poisson networks 104
5.3 Spatial throughput in Poisson bipolar networks 105
5.4 Transmission capacity 107
5.5 Temporal correlation of the interference 111
5.6 Temporal correlation of outage probabilities 115
Bibliographical notes 116
Problems 117

6 Moment measures of point processes

6.1 Introduction 119
6.2 The first-order moment measure 119
6.3 Second moment measures 120
6.4 Second moment density 124
6.5 Second moments for stationary processes 129
Bibliographical notes 136
Problems 136

7 Marked point processes

7.1 Introduction and definition 138
7.2 Theory of marked point processes 143
7.3 Applications 148
Bibliographical notes 150
Problems 150

8 Conditioning and Palm theory

8.1 Introduction 152
8.2 The Palm distribution for stationary processes 157

Bibliographical notes 73
Problems 74
Contents

8.3 The Palm distribution for general point processes 160
8.4 The reduced Palm distribution 164
8.5 Palm distribution for Poisson processes and Slivnyak’s theorem 168
8.6 Second moments and Palm distributions for stationary processes 170
8.7 Palm distributions for Neyman–Scott cluster processes 171
8.8 Palm distribution for marked point processes 172
8.9 Applications 173
Bibliographical notes 175
Problems 175

Part II Percolation, connectivity, and coverage

9 Introduction 177
9.1 Motivation 179
9.2 What is percolation? 179

10 Bond and site percolation 181
10.1 Random trees and branching processes 181
10.2 Preliminaries for bond percolation on the lattice 190
10.3 General behavior of the percolation probability 191
10.4 Basic techniques 198
10.5 Critical threshold for bond percolation on the square lattice 205
10.6 Further results in bond percolation 213
10.7 Site percolation 215
Bibliographical notes 218
Problems 218

11 Random geometric graphs and continuum percolation 221
11.1 Introduction 221
11.2 Percolation on Gilbert’s disk graph 223
11.3 Other percolation models 229
11.4 Applications 233
Bibliographical notes 244
Problems 244

12 Connectivity 246
12.1 Introduction 246
12.2 Connectivity of the random lattice 246
12.3 Connectivity of the disk graph 249
12.4 Connectivity of basic random geometric graphs 251
12.5 Other graphs 251
Bibliographical notes 253
Problems 253
<table>
<thead>
<tr>
<th>Coverage</th>
<th>13.1 Introduction</th>
<th>255</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.2 Germ-grain and Boolean models</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>13.3 Boolean model with fixed disks</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>13.4 Applications</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Bibliographical notes</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>270</td>
</tr>
</tbody>
</table>

Appendix Introduction to R 272

References 275

Index 281