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Chapter 1

INTRODUCTION

In this book we develop a definable structure theory for finite graphs. The
goal is to decompose graphs into pieces that are “simpler” than the original
graphs, and to do this in such a way that the decomposition is definable in
some logic. A simple example of a decomposition theorem we prove here is
that every graph has a “definable treelike decomposition” into 3-connected
graphs. (A graph is 3-connected if it stays connected even after two arbitrary
vertices are removed.) A more complicated example states that every graph
that excludesK5, the complete graph on five vertices, as a minor has a definable
treelike decomposition into pieces that are either 3-connected planar graphs or
isomorphic to the graph L shown in Figure 1.1. (A minor of a graph G is a
graph H that is obtained from a subgraph of G by contracting edges. We will
give more background on graph minors in the next section.)
The main applications of our definable structure theory are in descriptive

complexity, and for these applications we need our decompositions to be
definable in least fixed-point logic LFP, or equivalently, in inflationary fixed-

point logic IFP. (For technical reasons, it will be more convenient for us to
work with IFP.) These fixed-point logics are extensions of first-order predicate
logic by fixed-point operators that allow it to formalise inductive definitions.

Figure 1.1. The graph L drawn in three different ways.
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2 1. Introduction

In this book we will exclusively study decompositions definable in IFP, but
much of the general theory we develop here applies to other logics as well, for
example, to monadic second-order logic.
There is a standard graph-theoretic notion of tree decomposition, playing

a central role in modern graph structure theory. Ideally, we would like our
definable decompositions to be tree decompositions, but it turns out that
in general tree decompositions are not logically definable, because they are
not invariant under automorphisms of the underlying graph. Instead, we
introduce a new notion of treelike decompositions. Treelike decompositions
inherit many of the desirable properties of tree decompositions, yet they can
be made automorphism-invariant and, as it turns out, are often definable in
logics like IFP.
Our main theorem, the Definable Structure Theorem 17.2.1, says that all

classes of graphs that exclude some fixed graph as a minor admit IFP-definable
treelike decompositions into pieces that admit an IFP-definable linear order.
Linearly ordered finite graphs are easy to deal with in many ways. For example,
they have trivial automorphism groups. More importantly, many results
in descriptive complexity require structures to be linearly ordered. It is a
long-standing open question whether there is a logical characterisation of
the polynomial-time properties of graphs. As an application of our definable
structure theorem, we obtain such a characterisation for all properties of graphs
with excluded minors. As a second important application of our structure
theorem, we show that for every class of graphs that exclude some fixed graph
as a minor there is a k such that a simple combinatorial algorithm, namely “the
k-dimensional Weisfeiler–Leman algorithm”, decides isomorphism of graphs
in C in polynomial time.
The rest of this introductory chapter is structured as follows. In the next

section, we describe the graph-theoretic context of our results. After that, we
briefly (and informally) explain the central concept of treelike decompositions
of graphs. Then we say more about the applications in descriptive complexity
theory and to the graph isomorphism problem. Finally, we give an outline
of the rest of this book and of the proof of our main theorem, and close the
chapter with a few bibliographical remarks.

1.1. Graph minor theory

Recall that a graphH is aminor of a graphG ifH is obtained froma subgraph
of G by contracting edges. (Formally, contracting an edge means deleting the
edge and identifying its endvertices.) Figure 1.2 shows an example. If C is a class
of graphs such thatH is not aminor of anyG * C, thenwe say that C excludesH

as a minor. Graphminor theory is concerned with graph classes excluding some
fixed graph as a minor. The starting point of the theory is perhaps a variant
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1.1. Graph minor theory 3

(a) (b) (c)

Figure 1.2. The graph in (c) is a minor of the graph in (a)
obtained by deleting the dotted edges and the white node and
contracting the dashed edges in (b).

of Kuratowski’s [82] well-known characterisation of the planar graphs due to
Wagner [126], stating that a graph is planar if and only if it excludes K5 (the
complete graph with 5 vertices) and K3,3 (the complete bipartite graph with 3
vertices in both parts) as minors. It was a long-standing open question whether
a similar characterisation by excluded minors exists for graphs embeddable
in other surfaces than the plane or, equivalently, the 2-sphere. Archdeacon [2]
gave a list of 35 excluded minors characterising the class of graphs embeddable
in the projective plane. No explicit excluded-minor characterisations are known
for any surface except the sphere and the projective plane.

However, Robertson and Seymour [108] proved that for every surface such
a characterisation exists. Indeed, they proved a much more powerful result
known as the Graph Minor Theorem [113]. Let us call a class C of graphs
that is closed under taking minors a minor ideal. It is easy to see that for every
surface S the class of all graphs embeddable in S is a minor ideal (Figure 9.4
on page 202 illustrates why). There are many other natural graph classes that
are minor ideals, for example classes of bounded tree width (see Section 4.1
and Chapter 6), the class of all graphs linklessly embeddable in 3-space (a
linkless embedding of a graph G is an embedding where no two cycles of G
are linked in the sense of knot theory; see [112] for an explicit excluded-minor
characterisation of this class), the class of all graphs knotlessly embeddable
in 3-space, the class of all graphs that have a vertex cover of size at most k (a
vertex cover of a graph is a set of vertices that contains at least one endvertex of
each edge), and the class of all graphs that have a feedback vertex set of size at
most k (a feedback vertex set of a graph is a set of vertices that contains at least
one vertex of each cycle). Trivially, each minor ideal M has a characterisation
by (possibly infinitely many) excluded minors. The Graph Minor Theorem
states that every minor ideal can be characterised by finitely many excluded
minors. That is, for every minor ideal M there is a finite list H1, . . . , Hn of
graphs such thatM is the class of all graphs that do not contain anyHi as a
minor.
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4 1. Introduction

Figure 1.3. A graph almost embedded in a triple torus with
three vortices and four apices.

To prove the Graph Minor Theorem, in a long series of articles [105]
Robertson and Seymour developed a structure theory for graphs with excluded
minors. In [111], they proved a structure theorem that says that graphs
with excluded minors have a tree decomposition into pieces that are “almost
embeddable” into some surface. Intuitively, almost embedding a graph into a
surface means first removing a bounded number of vertices from the graph
(these vertices are called apices) and then drawing the rest of the graph in
the surface with no edges crossing except in a bounded number of regions
(called vortices) in which the surface structure may be violated. The high-level
structure is illustrated in Figure 1.3. Each vortex is attached to the boundary of
a “hole” in the surface. The vortices may be far from being embeddable in the
underlying surface, but they have a fairly simple structure that is controlled by
a parameter called the width of a vortex. Thus overall there are four parameters
in the definition of almost embeddability: the surface, the number of apices,
the number of vortices, and the width of the vortices. These parameters are
bounded in terms of the excluded minor. (We will give a precise definition of
almost embeddability in Chapter 15 and the exact statement of Robertson and
Seymour’s structure theorem in Chapter 17.)

Besides the Graph Minor Theorem, the structure theorem has found numer-
ous other applications, many of them algorithmic [23, 24, 26, 27, 28, 44, 110].
The structure theorem also plays an important role in this book.

1.2. Treelike decompositions

Tree decompositions and the related notion of tree width have been intro-
duced by Robertson and Seymour in [106]. (Interestingly, several equivalent
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1.2. Treelike decompositions 5
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Figure 1.4. The cycle C5 together with a tree decomposition
of the cycle.

notions have been introduced independently by other researchers [1, 4, 62, 117].)
By now they have developed into a standard tool in structural graph theory
and graph algorithms ([104] is a survey). A tree decomposition of a graph G
consists of a tree T and a mapping � that associates with every node t of T a
set �(t) of vertices of G subject to certain technical conditions making sure
that the structure of the tree T approximates the connectivity structure of G .
The set �(t) is called the bag of the decomposition at t.

Now suppose that we want to define a tree decomposition in some logic. We
could try to interpret the treeT in the underlying graphG ; that is, define a set of
�-tuples of vertices ofG representing the nodes ofT and define a 2�-ary relation
representing the edges of T . Then we could define an (� + 1)-ary relation to
represent the bags. Unfortunately, most interesting tree decompositions are not
definable in this way, no matter which logic we use, because the decompositions
are not invariant under automorphisms of the graph. What this means is
that there may be an automorphism f of G for which we cannot find an
automorphism g of T such that for all nodes t we have �(g(t)) = f(�(t)). As
an example, consider the decomposition of the cycle C5 displayed in Figure 1.4.
However, only invariant objects are logically definable in the graph.

We resolve this problem by introducing a more general notion of decomposi-
tion, which we call treelike. In a treelike decomposition, we replace the tree T
underlying a tree decomposition by a directed acyclic graphD. The idea is that
certain restrictions of D to subtrees yield tree decompositions of G , and by
including many such decompositions we can close the treelike decompositions
under automorphisms of a graph. To get an impression how treelike decompo-
sitions look, consider Figure 1.5, which shows a treelike decomposition of the
cycle C5. The sets displayed in the nodes of the decomposition are the bags.
Observe that the four grey nodes form exactly the tree decomposition of C5

displayed in Figure 1.4. There are many tree decompositions of C5 contained
in the treelike decomposition in a similar way. Note the cyclic structure of the
whole decomposition, which reflects the structure of the underlying cycle and
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6 1. Introduction
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Figure 1.5. An automorphism-invariant treelike decomposi-
tion of the cycle C5.

is the reason for the invariance of the decomposition under automorphisms of
the cycle. This cyclic structure is lost in a tree decomposition like the one in
Figure 1.4.

We extend treelike decompositions to ordered treelike decompositions, which
one may think of as treelike decompositions together with linear orders of
all bags. Our main goal is to prove that certain classes of graphs admit IFP-

definable ordered treelike decompositions. The Definable Structure Theorem
for Graphs with Excluded Minors says that this is the case for all classes of
graphs excluding some fixed graph as a minor.

1.3. Descriptive complexity theory

Descriptive complexity theory characterises the complexity of computational
problems in terms of logical definability. The starting point of the theory was
Fagin’s Theorem [34] from 1974, stating that existential second-order logic
captures the complexity classNP. This means that a property of finite structures
is decidable in nondeterministic polynomial time if and only if it is definable
in existential second-order logic. Similar logical characterisations were later
found for most other complexity classes. For example, Immerman [72] and
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1.4. The graph isomorphism problem 7

independently Vardi [125] characterised the class PTIME (polynomial time) in
terms of least fixed-point logic, and Immerman [74] characterised the classes
NL (nondeterministic logarithmic space) and L (logarithmic space) in terms of
transitive closure logic and its deterministic variant. However, these logical
characterisations of the classes PTIME, NL, and L, and all other known logical
characterisations of complexity classes contained in PTIME, have a serious
drawback: they only apply to properties of ordered structures, that is, structures
with one distinguished relation that is a linear order of the elements of the
structure. It is still an open question whether there are logics that characterise
these complexity classes on arbitrary, not necessarily ordered, finite structures.

The question of whether there is a logic that captures PTIME was first raised
by Chandra and Harel [19] in a fundamental paper on query languages for
relational databases. Chandra and Harel asked for a query language expressing
precisely those queries that can be evaluated in polynomial time. Gurevich [59]
rephrased the question in terms of logic. His precise definition of a “logic
capturing PTIME” is subtle; we will discuss it in Chapter 3. Gurevich [60]
conjectured that there is no logic capturing PTIME. Note that this conjecture
implies PTIME �= NP, because by Fagin’s Theorem there is a logic that captures
NP. The question of whether there is a logic capturing PTIME is still open
today, and it is viewed as one of the main open problems in finite model theory
and database theory. Only partial positive answers are known. To start with,
recall the Immerman–Vardi Theorem which states that least fixed-point logic,
or equivalently inflationary fixed-point logic IFP, captures PTIME on ordered
structures. It is easy to prove that IFP does not capturePTIME on the class of all
finite structures. IFP cannot even define the property of a graph having an even
number of vertices, but clearly this property is decidable in polynomial time.
More generally, IFP “lacks the ability to count”. Immerman [73] proposed
the extension IFP+C of IFP by counting operators as a candidate for a logic
capturing PTIME. It was shown by Cai, Fürer, and Immerman in 1992 [16]
that IFP+C does not capture PTIME, but it comes surprisingly close. Indeed,
Hella, Kolaitis, and Luosto [64] proved that IFP+C captures PTIME on almost
all structures (in a precise probabilistic sense).
We shall prove that IFP+C captures PTIME on all classes C of graphs that

admit IFP-definable ordered treelike decompositions. Hence it follows from
our Definable Structure Theorem that IFP+C captures PTIME on all classes of
graphs excluding some fixed graph as a minor.

1.4. The graph isomorphism problem

It is a long-standing open problem whether there is a polynomial-time
algorithmdeciding if two graphs are isomorphic. Polynomial time isomorphism
tests are known for many natural classes of graphs including the class of planar
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8 1. Introduction

graphs [67], classes of graphs embeddable in a fixed surface [35, 89], (more
generally) classes of graphs with excluded minors [101], and classes of graphs
of bounded degree [87]. The isomorphism test for graphs of bounded degree
due to Luks [87] involves some nontrivial group theory, and many later
isomorphism algorithms build on the group-theoretic techniques developed by
Babai, Luks, and others in the early 1980s. In particular, Ponomarenko’s [101]
isomorphism algorithm for graphs with excludedminors builds heavily on these
techniques. It follows from our Definable Structure Theorem that a simple
combinatorial algorithm – known as the k-dimensional Weisfeiler–Leman
algorithm – decides isomorphism on all classes of graphs excluding some fixed
graph as a minor in polynomial time. Here the parameter k of the algorithm
depends on the excluded minor.

1.5. The structure of this book

The book has two parts. The first is devoted to the general theory of definable
treelike decomposition and its connections with descriptive complexity theory.
After two chapters giving the necessary background in graph theory, logic,
and descriptive complexity, we introduce in Chapters 4, 5, and 7 (definable,
ordered) treelike decompositions and study their basic properties. In Chapter 6
we turn to graphs of bounded tree width and prove that they admit definable
treelike decompositions of bounded width. (The width of tree decomposition
or treelike decomposition is the maximum bag size minus 1, and the tree width
of a graph is the minimum of the width of all its tree decompositions.) In
Chapter 8 we show that every graph has a definable treelike decomposition
into its 3-connected components. The first part culminates, in Chapter 9, in a
Definable Structure Theorem for Graphs Embeddable in a Surface, stating that
for each surface S the class of all graphs embeddable in S admits IFP-definable
ordered treelike decompositions.
The first part only uses elementary graph theory. Maybe expanded by

additional background material on descriptive complexity theory (for example,
[38]), it could be used as the basis of a course on this direction of finite model
theory.

The second part is largely devoted to a proof of the Definable Decomposition
Theorem for Graphs with Excluded Minors. Instead of going through the
chapters one by one, we give an outline of the proof. Actually, we step
back to the first part and start with an outline of the proof of the definable
decomposition theorems for planar graphs and graphs embeddable in a surface.
Step 1: Planar graphs. We first prove that 3-connected planar graphs admit

IFP-definable linear orders. The key step in the proof is to define the facial
cycles of a 3-connected planar graph in IFP. We use the fact, going back to
Whitney, that the facial cycles (boundaries of the faces) of a 3-connected graph
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1.5. The structure of this book 9

embedded in the plane are precisely the chordless and nonseparating cycles. In
particular, this means that the facial cycles are the same for every embedding of
the graph. Once we have defined the facial cycles, we can use three parameters
to fix one facial cycle and then define in IFP a linear order by “walking around
this cycle in spirals”.
To show that arbitrary planar graphs admit IFP-definable ordered treelike

decompositions, we use the result (proved in Chapter 8) that every graph has
an IFP-definable treelike decomposition into its 3-connected components.
Step 2: Graphs embeddable in a surface. We exploit the fact that every surface

of positive Euler genus has a noncontractible cycle. Cutting the surface open
along such a cycle and glueing disks on the hole(s) yields one or two surfaces
of strictly smaller Euler genus.

To define ordered treelike decompositions on graphs embeddable in a surface,
we proceed by induction on the Euler genus of the surface. Planar graphs are
the base case. In the inductive step, we try to define the facial cycles of a graph
embedded in a surface. Either we succeed, then we can use the facial cycles
to define a linear order in a similar way as for planar graphs. Or we find a
noncontractible cycle along the way. Then we can delete this cycle, apply the
induction hypothesis to the resulting graph embeddable in one or two surfaces
of strictly smaller Euler genus, and extend the decomposition to the original
graph.
Step 3: Almost planar graphs. Remember our informal description of

almost-embeddable graphs. Let A(p, q, r, s) be the class of all graphs almost
embeddable in a surface of Euler genus at most r with at most s apices and at
most q vortices, each of width at most p. In this and the following step, we
want to prove that for all p, q, r, s the class A(p, q, r, s) admits IFP-definable
ordered treelike decompositions. We proceed by induction on q + r. We
already know how to deal with the class A(0, 0, 0, 0) of planar graphs and,
more generally, the class A(0, 0, r, 0) of all graphs embeddable in a surface of
Euler genus at most r.

In this step, we consider the classes A(p, 1, 0, 0) of almost planar graphs. We
think of almost planar graphs as graphs being embedded into a disk with a
vortex glued on the boundary of the disk. Figure 1.6 shows an example. In
the key lemma of this step, and actually one of the most difficult lemmas of
the whole book, we show that the facial cycles of an almost planar graph that
are sufficiently far from the vortex do not depend on the specific embedding.
That is, no matter how we divide the graph into a vortex and a part embedded
in the disk, these cycles will end up in the disk, and they will be facial cycles.
Moreover, these cycles are IFP-definable. We call the subgraph of the graph
induced by these cycles the centre of the graph. Using the facial cycles, we can
define a linear order on each connected component of the centre. If we contract
each connected component of the centre to a single vertex, we obtain a graph
of tree width bounded by O(p2), which we call the skeleton of our original
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10 1. Introduction

Figure 1.6. An almost planar graph (the outer edges connect
vertices of distance two on the cycle).

graph. We define a treelike decomposition of bounded width of the skeleton,
and we can extend the decomposition to an ordered treelike decomposition of
the original graph using the linear orders of the components of the centre.
Step 4: Almost-embeddable graphs. We prove that the classes A(p, q, r, s) ad-

mit IFP-definable ordered treelike decompositions by an inductive construction
similar to, but far more complicated than, the one in Step 2.
Step 5: Graphs with excluded minors. Let C be a class of graphs excluding

some fixed graph as a minor. By Robertson and Seymour’s structure theorem,
there are p, q, r, s such that all graphs in C have a tree decomposition into pieces
from A(p, q, r, s). If we could define such a decomposition in IFP, then we
could use the definable decomposition of the graphs inA(p, q, r, s) obtained in
the previous step to define ordered treelike decompositions of the graphs in C.
But unfortunately I do not know how to define such a decomposition in IFP.
Instead, we repeatedly apply the construction of the previous steps to

inductively build up an ordered treelike decomposition of a graph in C from
partial decompositions in a bottom-up fashion. To be able to do this, we
have to prove generalisations of the results from the previous steps, so-called
completion lemmas, which roughly say that if we already have ordered treelike
decompositions of parts of a graph, and if the part of the graph that is
not covered by these partial decompositions has a nice structure, such as
being almost embeddable in some surface, then we can complete the partial
decompositions to an ordered treelike decomposition of the whole graph. The
formal framework of pre-decompositions and completions will be introduced in
Chapter 12.

Another difficulty of the proof is that we need the graphs we decompose to
be not only 3-connected, but quasi-4-connected. Quasi-4-connectedness is a
new notion introduced in Chapter 10. We prove that all graphs have definable
decompositions into their ”quasi-4-connected components.” Unfortunately,
these decompositions turn out to be quite complicated. As an immediate
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