
introduction

Chang and Keisler [8] famously defined model theory as the sum of logic and uni-
versal algebra. In the same spirit, one might describe computable model theory
to be the investigation of the constraints on information content imposed by alge-
braic structure. The analogue of the interplay between syntactical objects and the
algebraic structure they define is the connection between definability and com-
plexity. One asks: How complicated are the constructions of model theory and
algebra? What kind of information can be coded in structures like groups, fields,
graphs, and orders? What mathematical distinctions are unearthed when “bold-
face” notions such as isomorphism are replaced by their “lightface” analogues
such as, say, computable isomorphism?

A special case of the following definition was first rigorously made by Fröhlich
and Shepherdson [11], following work of Hermann [17] and van der Waerden
[40], which itself built on the constructive tradition of 19th century algebra. It was
further developed by Rabin [32, 33] and Mal’cev [27].

Definition. Let L be a computable signature (language), and let M be an L-
structure whose universe is the set of natural numbers. The degree of M is the
Turing degree of the atomic (equivalently, quantifier-free) diagram of M.

A structure is computable if its degree is 0, the Turing degree of computable
sets. Equivalently, a structure M is computable if, uniformly in the symbols of L,
the interpretations in M of the constant symbols, function symbols, and relation
symbols of L are computable. In the Eastern school of computable model theory,
the focus has been on constructivizations: in Western terminology, a construc-
tivization of a structure M is an isomorphism between M and a computable copy
of M. A structure M is said to be computably presentable, or constructivizable, if
it has some constructivization, that is, if it has a computable copy.

Within computable model theory we identify three research programmes.

1. Pure computable model theory considers the effectiveness of model-theoretic
constructions. For example, an examination of the standard proof of the compact-
ness theorem reveals that every complete computable (a.k.a. decidable) theory
has a computable model, indeed one whose elementary diagram is computable;
such structures are called decidable (or strongly constructivizable). The countable
omitting types theorem can be similarly extended [28]. On the other hand, Millar
[29] and Kudaibergenov [25] showed that Vaught’s “no two models” theorem fails
if we consider only decidable models.

Another example of this line of research is the investigation of the effective
properties of “special” models. A typical theorem is the characterization of the
decidable complete atomic theories that have decidable prime models (Goncharov
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2 introduction

and Nurtazin [13] and Harrington [16]), depending on the effective properties of
the collection of isolated types of the theory. This result has been extended to an
extensive analysis of the degrees of prime, saturated, and homogeneous models
of decidable theories by several authors (see e.g. [26]). Similarly, an investigation
into the computability of countable models of ℵ1-categorical theories is ongoing
(see e.g. [1]).

2. Computable structure theory, a more computability-centric approach, looks
at the trace left on computability theory, and in particular on the Turing degrees,
by their interaction with model theory. Typical here is Knight’s result [22] that
if M is not automorphically trivial and a Turing degree d computes a copy of
M, then d contains a copy of M. In general, one may ask which sets of Turing
degrees are degree spectra: the collection of degrees of copies of some structure.
For example, Slaman [39] and Wehner [41] showed that the collection of nonzero
degrees is a degree spectrum.

This approach, pioneered by Ash and Knight, also asks about the relationship
between definability of relations on structures and their complexity. The follow-
ing is a main result [4, 9]: Let R be a relation on a structure M. Then the property
that for every isomorphism f : M → N, the image of R is c.e. in N is equivalent
to the property that R is definable in M by an effectively presented infinitary Σ0

1
formula in the logic Lω1,ω. One investigates not only the degrees of structures, but
also how complicated are the isomorphisms between structures. This line of re-
search leads to new notions, motivated by computability, which have no analogue
in “boldface” model theory. Central among them are the notions of computable
categoricity, relative computable categoricity, and computable dimension. (See
[2, 3, 15] for definitions and further discussion of these notions.) These are prop-
erties of structures rather than theories. A characterization of relative computable
categoricity (Ash, Knight, Manasse, and Slaman [4], Chisholm [9]) in terms of
definability of the orbits of M under the action of the automorphism group of M
is an effective version of Scott’s analysis of the isomorphism types of countable
structures using infinitary logic.

3. Computable algebra investigates the effective properties of particular classes
of structures. In some sense this is applied computable model theory. Researchers
have attempted, for example, to characterize, among the class of Abelian p-
groups, which Abelian p-groups have computable copies. One also asks about
the relationship between the complexity of a structure and the complexity of as-
sociated objects; for example, Fröhlich and Shepherdson implemented van der
Waerden’s construction of a computable field with no splitting algorithm. Simi-
larly, one asks about the complexity of the linear independence relation in com-
putable vector spaces; a definitive answer was given by Shore [37]. One asks how
complicated are algebraic constructions: for example, the algebraic closure of a
computable field has a computable copy, but the image of the original field in its
algebraic closure need not always be computable [33]. Instances of notions from
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introduction 3

computable model theory may have succinct characterizations: Goncharov and
Dzgoev [12] and Remmel [34] showed that a computable linear ordering is com-
putably categorical if and only if it contains only finitely many successor pairs.
One also asks what are the degree spectra of structures in particular classes, such
as linear orderings. For example, Jockusch and Soare [20] showed that there
is a low linear ordering with no computable copy; this result was extended by
R. Miller [30], though the question of whether the Slaman–Wehner example men-
tioned above can be realized by a linear order is still an important open problem.
On the other hand, every low4 Boolean algebra has a computable copy [23].

Computable model theory is also related to reverse mathematics, the project of
classifying theorems of mathematics in terms of proof-theoretic strength, often
by showing equivalence (over a weak base theory) of these theorems with certain
subsystems of second order arithmetic (see [38]). For example, the result that a
computable field has a computable algebraic closure translates to a proof in the
system RCA0 of recursive comprehension of the existence of algebraic closure of
any given field. Thus, computable algebra is often the key for classifying theorems
of algebra within reverse mathematics. Similarly, the investigations of pure model
theory yield a reverse mathematical classification of theorems of model theory;
see for example [18].

While model theory has interesting things to say about countable models (such
as Vaught’s theorem, or the Ryll-Nardzewski theorem), the real strength of model
theory, and in particular stability theory, is apparent in the realm of uncountable
models, with Morley’s theorem on uncountable categoricity being both a paragon
and the catalyst of modern model theory. It is only natural to wish to find the
effective content of this part of mathematics. Yet computable model theory has
been restricted to investigating countable models, and its interactions with stabil-
ity theory has been only at the fringe of the latter, for example using the Baldwin-
Lachlan analysis [5] of models of uncountably categorical theories to understand
effective properties of countable models of such theories. Nonetheless, intuitively
one sees “effective” and “non-effective” aspects of uncountable model theory and
uncountable mathematics in general, and one would like to formalize them and
reason about them.

The source of the restriction to countable structures is the fact the the objects
that are manipulated by models of computation are hereditarily finite. Turing
machines take as input finite strings over a finite alphabet, register machines store
natural numbers, and so on. In other words, the world of computability theory
is inherently countable. In order to develop an effective theory of uncountable
structures, one needs to generalize the theory of computable functions and sets to
include uncountable domains. There is no canonical generalization of this sort,
and so the kind of effective theory of uncountable mathematics one gets depends
heavily on the choice of the model of computation.
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4 introduction

The purpose of this book is to describe eight such choices and the resulting ap-
plications to the study of effective properties of uncountable objects. It is intended
as both an invitation to uncountable computable mathematics and a resource for
researchers in the area who, while working along one or more of these lines, are
interested in the possibilities raised by other approaches. We first discuss ap-
proaches to uncountable computable model theory in particular, via the choice of
some model of computation, and then discuss effective uncountable mathematics
in greater generality.

In “Borel structures: a brief survey”, Montalbán and Nies take “effective” to
mean “Borel”. They look at structures whose universe is a Borel subset of a
Polish space, and where the relations and functions on the structure are uniformly
Borel; and also concentrate on Borel homomorphisms between such structures.
More generally, they also accept structures that are quotients of Borel structures
by a Borel equivalence relation. In this context, Hjorth and Nies [19] verified the
failure of an effective compactness theorem, and Nies and Shore [unpublished]
have computed the Borel dimension (number of Borel inequivalent Borel copies)
of the field of complex numbers to be 2ℵ0 .

Coskey and Hamkins (“Infinite time turing machines and an application to the
hierarchy of equivalence relations on the reals”) show what happens if one lets
Turing machines run beyond forever; that is, if computations of Turing machines
run for an ordinal amount of time. These machines can then be used to compute
subsets of Cantor space 2ω, by writing entire reals on the input tape. The sets of
real numbers that can be computed by such machines are all Δ1

2; all Π1
1 sets can

be so computed. Thus, infinite time Turing machine computation is in a sense
an extension of the Borel model. In this context, Hamkins, Miller, Seabold, and
Warner [14] showed that the effective version of the completeness theorem is
independent of ZFC: it holds if V = L, but can be forced to fail, for example in
any model in which there are no Σ1

2 sets of size ℵ1. As in the Borel world, here
too there may be a difference between “injective” presentations and presentations
that allow for taking a quotient by a computable equivalence relation. Unlike
the Borel case, in the context of infinite time Turing machine computability, it
is independent of ZFC whether the injective and non-injective notions coincide,
that is, whether every structure with a computable presentation has an injective
presentation.

Blum, Shub, and Smale [6] introduced a notion of computability over real num-
bers. In this model, a machine treats a real number as a complete object and does
not require an approximation for the number; on the other hand, the machine
runs for finitely many steps. Although originally developed with an eye toward
modeling numerical analysis, it is natural to consider this notion as a model for
computability for sets and functions of real numbers. In “Some results on R-
computable structures”, Calvert and Porter pursue the development of effective
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introduction 5

model theory using the Blum–Shub–Smale computation scheme. In particular,
they discuss R-vector spaces, 2-manifolds, and homotopy groups.

The concept of Σ-definability was developed by Ershov [10]. We say that a
structure M is Σ-reducible to a structure N if M is interpretable in the smallest
hereditarily finite set containing the elements of N as ur-elements using existen-
tial formulas. In other words, M �Σ N if N can interpret M effectively when
imbued with the power of arithmetic on the natural numbers. In “Effective model
theory: an approach via the Σ-definability”, Stukachev surveys the Σ-definability
approach. A source of unexpected results in this context is the reducibility of
fields to linear orderings. For example, Ershov showed that the field of complex
numbers is Σ-reducible to any dense linear ordering of size continuum (but is not
Σ-reducible to any set, i.e., to any structure with empty signature), whereas the
field of real numbers is not Σ-reducible to any linear ordering.

In “Computable structure theory using admissible recursion theory on ω1”,
Greenberg and Knight use admissible recursion theory as a model of computa-
tion on infinite cardinals, in particular on ω1. This model has several equiva-
lent definitions, but the original and shortest definition states that computability is
given by definability by existential formulas over the structure (Lω1 , ∈), where
L is Gödel’s constructible universe. This choice allows for a development of
computable model theory for structures of size ℵ1 much along the lines of the
development of computable model theory for countable structures. The authors
discuss, for example, fields, vector spaces, and linear orderings; and pure com-
putable model theory, with a look into the effective completeness theorem, Scott
families, and computable categoricity.

The theory of E-recursion is an extension of admissible recursion theory to
inadmissible sets. The divergence-admissibility split states that the inadmissi-
ble sets Lα that are closed under E-recursive functions are exactly those which
admit divergence witnesses. Thus computability on these inadmissible E-closed
domains has new properties that are not mirrored in admissible recursion theory.
In “E-recursive intuitions”, Sacks discusses how the logic Lα,ω behaves with re-
spect to the completeness and compactness theorems, when Lα is inadmissible
and E-closed.

Miller, in “Local computability and uncountable structures”, takes a different
approach. Rather than using some theory of computation for uncountable sets, lo-
cal computability measures the effectiveness of uncountable structures by exam-
ining their finitely generated substructures and how embeddings between these
lift to containments of substructures of the original uncountable structure. This
approach yields distinctions between, for example, the field of real numbers and
the field of complex numbers; in a sense, the latter is “more” locally computable
than the former. Local computability of the real field relies on Artin’s theorem,
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6 introduction

and so requires not insignificant algebra. Miller also discusses linear orderings
and trees.

Finally, in “Reverse mathematics, countable and uncountable: a computational
approach”, Shore discusses uncountable versions of reverse mathematics. While
reverse mathematics is rooted in proof theory, computability theorists often pre-
fer to ignore nonstandard models of (first order) arithmetic, and so concentrate
on the ω-models (that is, models with standard first-order part) of theorems of
mathematics. This approach is generalized by Shore to uncountable domains, us-
ing admissible recursion theory as the computational tool. In this context, Shore
analyzes a number of statements of uncountable algebra in terms of their compu-
tational strength. For example, he shows that the existence of a basis is equivalent
to closure under the Turing jump, and that the existence of prime ideals in a ring is
equivalent to an uncountable version of weak König’s lemma, the finite character
tree property.

We would be remiss if we omitted computable analysis from this discussion. It
is the longest-standing and most-developed approach to computability on the real
numbers, stemming from Turing’s own definition of a computable real number
and covering a wide range of topics since then. Over that time, many introduc-
tions to the subject have been written and are available to the interested reader.
Therefore, we did not feel the need to add another one in this volume, but we
recommend [7] as a useful and recent tutorial on computable analysis, very much
in the style of the textbook [42], and we encourage the reader to keep computable
analysis in mind when considering the fifteen questions at the end of this introduc-
tion. Among earlier books on the subject, we would also mention [24] and [31].
The approach taken is to view a real number x as given by a Cauchy sequence of
rational approximations 〈qn〉, converging effectively to x, i.e. with |x − qn| < 2−n

for all n. A real number is computable if there is a computable Cauchy sequence
converging effectively to it. One can then define a computable function f on all
real numbers to be given by a Turing functional Φ, which uses as oracle a Cauchy
sequence (computable or not) converging effectively to the input x, and, on in-
put n, outputs the nth element of a Cauchy sequence converging effectively to
f (x). (Such a function is sometimes called type-two computable; there are cer-
tain analogies to the infinite-time Turing machines in the chapter of Coskey and
Hamkins.)

The methods outlined in the eight papers in this book for developing an effec-
tive theory of uncountable mathematics are quite distinct. They yield different
collections of computable structures and mappings between them. Nevertheless,
we would like to discuss some similarities and particularly noteworthy distinc-
tions between them, and some themes to which most of them relate. Some of
these issues are special to uncountable mathematics, and do not have analogues
in the countable realm.
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introduction 7

The most jarring issue, to some, is independence, and the reliance on set-
theoretic hypotheses beyond Zermelo–Fränkel set theory. For example, both Shore
and Greenberg–Knight, when dealing with objects of size κ, assume that all
bounded subsets of κ are constructible, so Hκ = Lκ; this assumption ensures that
every subset of κ is amenable for Lκ. Similarly, we mentioned above that basic
results in the infinite time Turing machine model are independent of ZFC, essen-
tially because of the fact that this theory goes beyond the Borel world to Δ1

2 sets.
Traditionally, computation is considered a “down to earth” part of mathematics,
absolute between models of set theory, and invariant to the choice of axioms of set
theory. (Although independence results do occur in classical computability the-
ory, they do not occur in the basic theory, but rather arise in contexts where there
is a mix of set theory with computability theory.) Thus, some may expect any
theory of computation, including one on uncountable objects, to be basic enough
to maintain this invariance.

Another difference between the various approaches is whether they allow con-
siderations of structures of different cardinalities. A number of approaches – Borel
computability, infinite time Turing machines, and the Blum–Shub–Smale model
– apply only to structures of size the continuum (although the Blum–Shub–Smale
model generalizes to work over any ring). On the other hand, Σ-definability and
local computability work, at once, for all cardinals. In the middle, admissible re-
cursion theory can work with any cardinal, but requires us to fix a cardinal. That
is, admissible κ-recursion theory is defined for each κ, but for distinct cardinals κ
and λ, κ-computability and λ-computability are incompatible. The issue of work-
ing with distinct cardinals at once may come up, for example, when considering
effective versions of the Löwenheim–Skolem theorems, an avenue that is yet un-
explored.

In practice, it turns out that another fundamental distinction between models of
computation of uncountable objects is the extent to which they have access to a
well-ordering of the universe. Traditionally, the ordering and successor relations
on the natural numbers are computable. This fact means that searching for wit-
nesses for a particular computable property is a computable procedure. Indeed,
the centrality of this aspect of computability to the general theory is evident from
Gödel’s definition of the class of partial computable functions by the least number
operator. This property has profound implications in classical computable model
theory. Consider, for example, a (countable) computable field F. Given a polyno-
mial f ∈ F[x], if we know that f has a root in F, then such a root can be effectively
found by searching over the elements of the field and testing them one by one as
inputs for f , until a root is found. An ordering of F in order-typeω, which ensures
that such a search will end in finitely many steps, cannot be separated from F it-
self; computable model theory does not know how to “forget” about this ordering
of F, and access F only via its algebraic structure. To some mathematicians, this
power is unreasonable: algorithms involving an “explicit” field (in the language
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8 introduction

of van der Waerden) should rely only on algebra, not on external properties such
as an ordering of the field. In that view, finding roots of polynomials should be
done algebraically, say using Newton’s method, but not via “mindless” search.

Borel computation, Blum–Shub–Smale, and infinite time Turing machines have
no access to a well-ordering of the continuum, and so according to the view above
are “purer” models of computation. Similarly, Σ-definability has access only to
the traditional structure on ω; the elements of a structure M are considered as ur-
elements and are not effectively ordered. Local computability too does not access
a well-ordering of uncountable objects, since it directly manipulates only finitely
generated substructures of the given structure.

The consequences are dramatic. They are exemplified by the “lost melody” the-
orem of infinite time Turing machines, which states the existence of a real c ∈ 2ω

that can be recognized by an infinite time Turing machine, but not produced (or
enumerated) by any such machine that has no access to c as an oracle. In these
models of computation, the traditional equivalence between computable enumer-
ability and semi-decidability is broken. In contrast, admissible recursion theory
and E-recursion theory work with a computable well-ordering of their universe,
although in E-recursion the utility of such an ordering is limited, compared to
the unbridled access given to admissible recursion theory. As a result, admissible
recursion reflects many of the properties of countable computability, and many
constructions of the latter lift to uncountable constructions in the former; but the
theory loses the pure reliance on algebra.

The dichotomy between models with a well-ordering of the universe and mod-
els without one is a special case of a larger theme: the choice between an intuitive
presentation and computational power of a model of computation. Few would
dispute that a desirable property of a model of computation is a presentation that
makes it intuitive. We would like to understand easily why the model purports
to capture the notion of computability. This desideratum explains why it was
Turing’s machine model, rather than, say, Gödel’s equivalent definition of par-
tial recursive functions, that convinced mathematicians that this class of functions
correctly captures the notion of computability of functions of natural numbers.

Often, the price of a clear intuitive definition is a weaker theory of effective
mathematics. An alternative approach would allow for intuition to develop via
usage. Thus, for example, admissible recursion theory has a machine definition
via ordinal register machines, or by Turing machines with an ordinal-length tape;
but calling these definitions “intuitive” relies, at least, on initially being comfort-
able with ordinals as basic building blocks. In any case, this is a matter of taste
and personal judgment, and so we leave it to the readers.

The above discussion points to some issues that the reader might wish to keep
in mind when reading the ensuing papers. Of course, each approach to uncount-
able computable model theory also has its own specific set of open problems
and research directions, discussion of which is best left to the individual papers.
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introduction 9

However, there are several other general questions relevant to many or all of these
approaches. To finish this introduction, we will list some here, including ones
suggested by our previous discussion. In some cases, the answers for particular
approaches may be clear or already known, but in many cases, thorough accounts
are still challenges for the future of this fascinating area of research.

Here then are some of the questions one might ask when considering an ap-
proach to uncountable computable model theory such as the ones discussed in
this book.

1. What are the effective versions, under the given approach, of the most basic
model-theoretic notions and results, such as the notion of isomorphism and
the Completeness Theorem? Moving beyond these, we may consider areas
of investigation that have met with great success in the countable case, for
example the effective content of the study of special models, such as atomic
and homogeneous models, or structure/nonstructure theorems that point out
differences between various classes of structures, as in the work of Richter
[35, 36].

2. Beyond the above areas, what does the approach have to say about modern
concerns in model theory, such as stability theory, which are in many ways
beyond the ken of classical computable model theory?

3. Which particular areas of “classical” mathematics is the approach well suited
to investigating?

4. There are certain uncountable structures, such as R, which most people
would agree are “intuitively effective”. Does the given approach make such
structures formally effective, or if not, is there a good reason for the mis-
match between our intuitions and the formal definitions? The same question
may be asked about intuitively effective constructions and theorems.

5. A great part of the success of classical computable mathematics comes from
the close connections between computability theory and definability. How
well does the given approach interact with definability?

6. How well does the notion of relative computability generalize under this
approach, and what impact does the answer to this question have to gen-
eralizing notions that such as degree spectra of structures and relations on
structures, which in the countable setting rely on the structure of the Turing
degrees?

7. In the countable setting, one of the most important tools in analyzing the
effective content of mathematics is the theory of classes of degrees, such
as low degrees, PA degrees, hyperimmune-free degrees, and so on, which,
while usually defined in computability-theoretic terms, have deep connec-
tions with combinatorial principles that often arise in the deep analysis of
mathematical concepts and constructions. What are the useful analogues to
such notions under the given approach, and how may they be applied to the
study of uncountable effective mathematics?
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10 introduction

8. One reason to be interested in computable mathematics, and the closely re-
lated program of reverse mathematics, is that computable procedures (or, in
the context of reverse mathematics, the roughly corresponding weak base
system RCA0) may be seen as a mathematically precise version of Hilbert’s
finitistic procedures (or at least a concept that can play a similar foundational
role to finitistic procedures). To what extent does the given approach provide
a notion of effective procedure that can reasonably fit the same foundational
role?

9. How dependent is the approach on set-theoretic assumptions, and how is it
affected by varying these assumptions? Do the differences thus obtained say
something of interest about the effective aspects of uncountable mathemat-
ics?

10. Is the approach limited to particular cardinalities? If so, can it be generalized
to other cardinalities?

11. Is there a way under this approach to consider the effectiveness of structures
of different cardinalities at once?

12. To what extent are well-orderings of the universe important to this approach?
If such well-orderings of uncountable universes are available, what effects
do they have on the results obtained under the approach?

13. Are there ways of extending the approach to address questions of efficiency
raised by complexity theory? In this connection, a particularly active area of
current research in the countable setting is that of automatic structures (see
e.g. [21]).

14. Is there anything the approach can tell us about the countable setting?
15. What are the connections between this approach and other ones? Here we

mean both “hard” mathematical connections, allowing us perhaps to trans-
fer results obtained via one approach to another, and comparisons of results.
For instance, does effectiveness (of a particular structure or construction,
say) under one approach tend to imply effectiveness under the other, at least
heuristically? If certain constructions turn out to be effective under one ap-
proach but not the other, what does this situation tell us about the nature
of these constructions? Turning things around, can such differences in the
resulting theories of effective mathematics be used to improve our under-
standing of the differences between various approaches to “pure” uncount-
able computability theory?
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