Contents

Preface and outline

1 Introduction
1.1 Relevance of biomolecular research
1.2 Proteins
 1.2.1 The trinity of amino acid sequence, structure, and function
 1.2.2 Ribosomal synthesis of proteins
 1.2.3 From sequence to function: The protein folding process
1.3 Molecular modeling
 1.3.1 Covalent bonds
 1.3.2 Effective noncovalent interactions and nanoscopic modeling: Toward a semiclassical all-atom representation
1.4 All-atom peptide modeling
1.5 The mesoscopic perspective
 1.5.1 Why coarse-graining...? The origin of the hydrophobic force
 1.5.2 Coarse-grained hydrophobic–polar modeling
1.6 Polymers
 1.6.1 DNA and RNA
 1.6.2 Modeling free DNA
 1.6.3 Flexible, attractively self-interacting polymers
 1.6.4 Elastic polymers

2 Statistical mechanics: A modern review
2.1 The theory of everything
2.2 Thermodynamics and statistical mechanics
 2.2.1 The thermodynamic limit
 2.2.2 Thermodynamics of closed systems: The canonical ensemble
 2.2.3 Thermodynamic equilibrium and the statistical nature of entropy
2.3 Thermal fluctuations and the statistical path integral
2.4 Phase and pseudophase transitions
2.5 Relevant degrees of freedom
 2.5.1 Coarse-grained modeling on mesoscopic scales
 2.5.2 Macroscopic relevant degrees of freedom: The free-energy landscape
2.6 Kinetic free-energy barrier and transition state

page xiii

1
1
3
3
6
7
9
11
12
14
15
17
20
20
22
23
27
31
31
33
33
34
36
43
46
48
48
49
51
Contents

2.7 Microcanonical statistical analysis
- 2.7.1 Temperature as a derived quantity
- 2.7.2 Identification of first-order transitions by Maxwell construction
- 2.7.3 Systematic classification of transitions by inflection-point analysis

3 The complexity of minimalistic lattice models for protein folding
- 3.1 Evolutionary aspects
- 3.2 Self-avoiding walks and contact matrices
- 3.3 Exact statistical analysis of designing sequences
- 3.4 Exact density of states and thermodynamics

4 Monte Carlo and chain growth methods for molecular simulations
- 4.1 Introduction
- 4.2 Conventional Markov-chain Monte Carlo sampling
 - 4.2.1 Ergodicity and finite time series
 - 4.2.2 Statistical error and bias
 - 4.2.3 Binning-jackknife error analysis
- 4.3 Systematic data smoothing by using Bézier curves
 - 4.3.1 Construction of a Bézier curve
 - 4.3.2 Smooth Bézier functions for discrete noisy data sets
- 4.4 Markov processes and stochastic sampling strategies
 - 4.4.1 Master equation
 - 4.4.2 Selection and acceptance probabilities
 - 4.4.3 Simple sampling
 - 4.4.4 Metropolis sampling
- 4.5 Reweighting methods
 - 4.5.1 Single-histogram reweighting
 - 4.5.2 Multiple-histogram reweighting
- 4.6 Generalized-ensemble Monte Carlo methods
 - 4.6.1 Replica-exchange Monte Carlo method: Parallel tempering
 - 4.6.2 Simulated tempering
 - 4.6.3 Multicanonical sampling
 - 4.6.4 Wang–Landau method
- 4.7 Elementary Monte Carlo updates
- 4.8 Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth
- 4.9 Pruned-enriched Rosenbluth method: Go with the winners
- 4.10 Canonical chain growth with PERM
- 4.11 Multicanonical chain-growth algorithm
 - 4.11.1 Multicanonical sampling of Rosenbluth-weighted chains
 - 4.11.2 Iterative determination of the density of states
- 4.12 Random number generators
- 4.13 Molecular dynamics
5 First insights to freezing and collapse of flexible polymers 137
 5.1 Conformational transitions of flexible homopolymers 137
 5.2 Energetic fluctuations of finite-length polymers 138
 5.2.1 Peak structure of the specific heat 138
 5.2.2 Simple-cubic lattice polymers 139
 5.2.3 Polymers on the face-centered cubic lattice 141
 5.3 The Θ transition 144
 5.4 Freezing and collapse in the thermodynamic limit 147

6 Crystallization of elastic polymers 149
 6.1 Lennard-Jones clusters 149
 6.2 Perfect icosahedra 150
 6.3 Liquid–solid transitions of elastic flexible polymers 152
 6.3.1 Finitely extensible nonlinear elastic Lennard-Jones polymers 152
 6.3.2 Classification of geometries 153
 6.3.3 Ground states 155
 6.3.4 Thermodynamics of liquid–solid transitions toward complete icosahedra 156
 6.3.5 Liquid–solid transitions of elastic polymers 158
 6.3.6 Long-range effects 162
 6.4 Systematic analysis of compact phases 164
 6.5 Dependence of structural phases on the range of nonbonded interactions 165

7 Structural phases of semiflexible polymers 175
 7.1 Structural hyperphase diagram 175
 7.2 Variation of chain length 180

8 Generic tertiary folding properties of proteins on mesoscopic scales 181
 8.1 A simple model for a parallel β helix lattice protein 181
 8.2 Protein folding as a finite-size effect 184
 8.3 Hydrophobic–polar off-lattice heteropolymers 185

9 Protein folding channels and kinetics of two-state folding 191
 9.1 Similarity measure and order parameter 192
 9.2 Identification of characteristic folding channels 195
 9.3 Gō kinetics of folding transitions 198
 9.3.1 Coarse-grained Gō modeling 199
 9.3.2 Thermodynamics 201
 9.3.3 Kinetics 204
 9.3.4 Mesoscopic heteropolymers vs. real proteins 208
 9.4 Microcanonical effects 209
 9.5 Two-state cooperativity in helix–coil transitions 213
10 Inducing generic secondary structures by constraints

10.1 The intrinsic nature of secondary structures 217

10.2 Polymers with thickness constraint 218

10.2.1 Global radius of curvature 218

10.2.2 Modeling flexible polymers with constraints 219

10.2.3 Thickness-dependent ground-state properties 220

10.2.4 Structural phase diagram of tube-like polymers 222

10.3 Secondary-structure phases of a hydrophobic–polar heteropolymer model 223

11 Statistical analyses of aggregation processes

11.1 Pseudophase separation in nucleation processes of polymers 227

11.2 Mesoscopic hydrophobic–polar aggregation model 228

11.3 Order parameter of aggregation and fluctuations 229

11.4 Statistical analysis in various ensembles

11.4.1 Multicanonical results 230

11.4.2 Canonical perspective 233

11.4.3 Microcanonical interpretation: The backbending effect 235

11.5 Aggregation transition in larger heteropolymer systems 239

12 Hierarchical nature of phase transitions

12.1 Aggregation of semiflexible polymers 243

12.2 Structural transitions of semiflexible polymers with different bending rigidities 244

12.3 Hierarchies of subphase transitions 247

12.4 Hierarchical peptide aggregation processes 249

12.5 Hierarchical aggregation of GNNQQNY 252

13 Adsorption of polymers at solid substrates

13.1 Structure formation at hybrid interfaces of soft and solid matter 255

13.2 Minimalistic modeling and simulation of hybrid interfaces 256

13.3 Contact-density chain-growth algorithm 258

13.4 Pseudophase diagram of a flexible polymer near an attractive substrate

13.4.1 Solubility–temperature pseudophase diagram 260

13.4.2 Contact-number fluctuations 261

13.4.3 Anisotropic behavior of gyration tensor components 263

13.5 Alternative view: The free-energy landscape 264

13.6 Continuum model of adsorption 269

13.6.1 Off-lattice modeling 269

13.6.2 Energetic and structural quantities for phase characterization by canonical statistical analysis 270

13.6.3 Comparative discussion of structural fluctuations 271

13.6.4 Adsorption parameters 273

13.6.5 The pseudophase diagram of the hybrid system in continuum 274

13.7 Comparison with lattice results 277
Contents

13.8 Systematic microcanonical analysis of adsorption transitions 279
13.8.1 Dependence on the surface attraction strength 280
13.8.2 Chain-length dependence 282
13.8.3 Translational entropy 284
13.9 Polymer adsorption at a nanowire 286
13.9.1 Modeling the polymer–nanowire complex 287
13.9.2 Structural phase diagram 288

14 Hybrid protein–substrate interfaces 293
14.1 Steps toward bionanotechnology 293
14.2 Substrate-specific peptide adsorption 294
14.2.1 Hybrid lattice model 294
14.2.2 Influence of temperature and solubility on substrate-specific peptide adsorption 295
14.3 Semiconductor-binding synthetic peptides 301
14.4 Thermodynamics of semiconductor-binding peptides in solution 303
14.5 Modeling a hybrid peptide–silicon interface 307
14.5.1 Introduction 307
14.5.2 Si(100), oxidation, and the role of water 308
14.5.3 The hybrid model 309
14.6 Sequence-specific peptide adsorption at silicon (100) surface 312
14.6.1 Thermal fluctuations and deformations upon binding 312
14.6.2 Secondary-structure contents of the peptides 313
14.6.3 Order parameter of adsorption and nature of adsorption transition 315

15 Concluding remarks and outlook 319

References 323
Index 337