Thermodynamics and Statistical Mechanics of Macromolecular Systems

The structural mechanics of proteins that fold into functional shapes, polymers that aggregate and form clusters, and organic macromolecules that bind to inorganic matter can be understood only through statistical physics and thermodynamics.

This book reviews the statistical mechanics concepts and tools necessary for the study of structure formation processes in macromolecular systems that are essentially influenced by finite-size and surface effects. Readers are introduced to molecular modeling approaches, advanced Monte Carlo simulation techniques, and systematic statistical analyses of numerical data. Applications to folding, aggregation, and substrate adsorption processes of polymers and proteins are discussed in great detail. Particular emphasis is placed on the reduction of complexity by coarse-grained modeling, which allows for the efficient, systematic investigation of structural phases and transitions.

Providing insight into modern research at this interface between physics, chemistry, biology, and nanotechnology, this book is an excellent reference for graduate students and researchers.

Michael Bachmann is Associate Professor in the Department of Physics and Astronomy at the University of Georgia. His major fields of interest include theoretical physics, computational physics, statistical physics, biophysics, and chemical physics.

Thermodynamics and Statistical Mechanics of Macromolecular Systems

MICHAEL BACHMANN The University of Georgia

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107014473

© M. Bachmann 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by T. J. International Ltd, Padstow

A catalog record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data Bachmann, Michael Thermodynamics and statistical mechanics of macromolecular systems / Michael Bachmann.

pages cm ISBN 978-1-107-01447-3 (hardback) 1. Macromolecules–Thermodynamics. 2. Biomolecules–Structure. 3. DNA–Structure. 4. Statistical mechanics.

I. Title. QP801.P64B33 2014 547'.7–dc23 2013032171

ISBN 978-1-107-01447-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Dedicated to my family

Contents

Preface	and ou	tline	page xiii
1 Intro	oduction		1
1.1	Relev	Relevance of biomolecular research	
1.2	Proteins		3
	1.2.1	The trinity of amino acid sequence, structure, and function	3
	1.2.2	Ribosomal synthesis of proteins	6
	1.2.3	From sequence to function: The protein folding process	7
1.3	Molecular modeling		9
	1.3.1	Covalent bonds	9
	1.3.2	Effective noncovalent interactions and nanoscopic modeling:	
		Toward a semiclassical all-atom representation	11
1.4	1.4 All-atom peptide modeling		
1.5	The mesoscopic perspective		14
	1.5.1	Why coarse-graining? The origin of the hydrophobic force	15
	1.5.2	Coarse-grained hydrophobic-polar modeling	17
1.6	Polymers		20
	1.6.1	DNA and RNA	20
	1.6.2	Modeling free DNA	22
	1.6.3	Flexible, attractively self-interacting polymers	23
	1.6.4	Elastic polymers	27
2 Stati	istical me	echanics: A modern review	31
2.1	The th	neory of everything	31
2.2	Thermodynamics and statistical mechanics		33
	2.2.1	The thermodynamic limit	33
	2.2.2	Thermodynamics of closed systems: The canonical ensemble	34
	2.2.3	Thermodynamic equilibrium and the statistical nature of entrop	y 36
2.3	Thern	nal fluctuations and the statistical path integral	43
2.4	Phase	Phase and pseudophase transitions	
2.5	Relevant degrees of freedom		48
	2.5.1	Coarse-grained modeling on mesoscopic scales	48
	2.5.2	Macroscopic relevant degrees of freedom: The free-energy	
		landscape	49
2.6	Kineti	ic free-energy barrier and transition state	51

vii

...

2.7 Microcanonical statistical analysis 53 2.7.1 Temperature as a derived quantity 54 2.7.2 Identification of first-order transitions by Maxwell construction 55 2.7.3 Systematic classification of transitions by inflection-point analysis 62 3 The complexity of minimalistic lattice models for protein folding 67 3.1 Evolutionary aspects 67 3.2 Self-avoiding walks and contact matrices 68 3.3 Exact statistical analysis of designing sequences 69 3.4 Exact density of states and thermodynamics 81 4.1 Introduction 81 4.2 Conventional Markov-chain Monte Carlo sampling 82 4.2.1 Ergodicity and finite time series 82 4.2.2 Statistical error analysis 88 4.3 Systematic data smoothing by using Bézier curves 93 4.3.1 Construction of a Bézier functions for discrete noisy data sets 96 4.4 Markov processes and stochastic sampling strategies 100 4.4.3 Simple sampling 103 4.5.2 Multipel-histogram reweighting <t< th=""><th>viii</th><th></th><th>Contents</th><th></th></t<>	viii		Contents	
2.7.1 Temperature as a derived quantity 54 2.7.1 Identification of first-order transitions by Maxwell construction 55 2.7.3 Systematic classification of transitions by inflection-point analysis 62 3 The complexity of minimalistic lattice models for protein folding 67 3.1 Evolutionary aspects 67 3.2 Self-avoiding walks and contact matrices 68 3.3 Exact statistical analysis of designing sequences 69 3.4 Exact density of states and thermodynamics 76 4 Monte Carlo and chain growth methods for molecular simulations 81 4.1 Introduction 81 4.2 Conventional Markov-chain Monte Carlo sampling 82 4.2.1 Ergodicity and finite time series 82 4.2.2 Statistical error and bias 84 4.3.1 Construction of a Bézier curves 93 4.3.1 Construction of a Bézier curves 93 4.3.2 Smooth Bézier functions for discrete noisy data sets 96 4.4 Markov processes and stochastic sampling strategies 100 4.4.1 Master equation <td< th=""><th></th><th>2.5</th><th></th><th>50</th></td<>		2.5		50
2.7.1 Identification of first-order transitions by Maxwell construction 54 2.7.2 Identification of first-order transitions by inflection-point analysis 62 3 The complexity of minimalistic lattice models for protein folding 67 3.1 Evolutionary aspects 67 3.2 Self-avoiding walks and contact matrices 68 3.3 Exact statistical analysis of designing sequences 69 3.4 Exact density of states and thermodynamics 76 4 Monte Carlo and chain growth methods for molecular simulations 81 4.1 Introduction 81 4.2 Conventional Markov-chain Monte Carlo sampling 82 4.2.1 Ergodicity and finite time series 82 4.2.2 Statistical error and bias 84 4.2.3 Binning-jackknife error analysis 88 4.3.1 Construction of a Bézier curve 93 4.3.2 Smooth Bézier functions for discrete noisy data sets 96 4.4 Markov processes and stochastic sampling strategies 100 4.4.2 Selection and acceptance probabilities 101 4.3.1 Katropolis sampling <td></td> <td>2.7</td> <td>Microcanonical statistical analysis</td> <td>53</td>		2.7	Microcanonical statistical analysis	53
2.7.2 The complexity of minalistic lattice models for protein folding 53 2.7.3 Systematic classification of transitions by inflection-point analysis 62 3 The complexity of minalistic lattice models for protein folding 67 3.1 Evolutionary aspects 67 3.2 Self-avoiding walks and contact matrices 68 3.3 Exact statistical analysis of designing sequences 69 3.4 Exact density of states and thermodynamics 76 4 Monte Carlo and chain growth methods for molecular simulations 81 4.1 Introduction 81 4.2.1 Ergodicity and finite time series 82 4.2.2 Statistical error and bias 84 4.2.3 Binning-jackknife error analysis 88 4.3 Systematic data smoothing by using Bézier curves 93 4.3.1 Construction of a Bézier functions for discrete noisy data sets 96 4.4 Markov processes and stochastic sampling strategies 100 4.4.2 Selection and acceptance probabilities 101 4.3.3 Simple sampling 102 4.4.4 Metropolis sampling			2.7.1 Temperature as a derived quantity	54
2.1.3 Systematic classification of transitions by inflection-point analysis 62 3 The complexity of minimalistic lattice models for protein folding 67 3.1 Evolutionary aspects 68 3.2 Self-avoiding walks and contact matrices 68 3.3 Exact statistical analysis of designing sequences 69 3.4 Exact density of states and thermodynamics 76 4 Monte Carlo and chain growth methods for molecular simulations 81 4.1 Introduction 81 4.2 Conventional Markov-chain Monte Carlo sampling 82 4.2.1 Ergodicity and finite time series 82 4.2.2 Statistical error analysis 88 4.3 Systematic data smoothing by using Bézier curves 93 4.3.1 Construction of a Bézier curve 93 4.3.2 Smooth Bézier functions for discrete noisy data sets 96 4.4 Markov processes and stochastic sampling strategies 100 4.4.1 Master equation 100 4.4.2 Selection and acceptance probabilities 101 4.4.3 Simple sampling 103			2.7.2 Identification of lifst-order transitions by Maxwell construction	55
3 The complexity of minimalistic lattice models for protein folding 67 3.1 Evolutionary aspects 67 3.2 Self-avoiding walks and contact matrices 68 3.3 Exact statistical analysis of designing sequences 69 3.4 Exact density of states and thermodynamics 76 4 Monte Carlo and chain growth methods for molecular simulations 81 4.1 Introduction 81 4.2 Conventional Markov-chain Monte Carlo sampling 82 4.2.1 Ergodicity and finite time series 82 4.2.2 Statistical error and bias 84 4.2.3 Binning-jackknife error analysis 88 4.3 Systematic data smoothing by using Bézier curves 93 4.3.1 Construction of a Bézier curve 93 4.3.2 Smooth Bézier functions for discrete noisy data sets 96 4.4 Markov processes and stochastic sampling strategies 100 4.4.2 Selection and acceptance probabilities 101 4.4.3 Simple sampling 103 4.5 Reweighting methods 104 4.5.1 Single-histogram reweighting 105 4.6 Generalized-ensemble Monte Carlo methods 108 4.6.1 Replica-exchange Monte Carlo methods 108 4.6.2 Simulat			analysis	62
3.1 Evolutionary aspects 67 3.2 Self-avoiding walks and contact matrices 68 3.3 Exact statistical analysis of designing sequences 69 3.4 Exact density of states and thermodynamics 76 4 Monte Carlo and chain growth methods for molecular simulations 81 4.1 Introduction 81 4.2 Conventional Markov-chain Monte Carlo sampling 82 4.2.1 Ergodicity and finite time series 82 4.2.2 Statistical error and bias 84 4.2.3 Binning-jackknife error analysis 88 4.3.5 Systematic data smoothing by using Bézier curves 93 4.3.1 Construction of a Bézier curve 93 4.3.2 Smooth Bézier functions for discrete noisy data sets 96 4.4 Markov processes and stochastic sampling strategies 100 4.4.2 Selection and acceptance probabilities 101 4.4.3 Simple sampling 103 4.5 Reweighting methods 104 4.5.1 Single-histogram reweighting 104 4.5.2 Multiple-histogram reweighting <td></td> <td>3 The c</td> <td>omplexity of minimalistic lattice models for protein folding</td> <td>67</td>		3 The c	omplexity of minimalistic lattice models for protein folding	67
3.2 Self-avoiding walks and contact matrices 68 3.3 Exact statistical analysis of designing sequences 69 3.4 Exact density of states and thermodynamics 76 4 Monte Carlo and chain growth methods for molecular simulations 81 4.1 Introduction 81 4.2 Conventional Markov-chain Monte Carlo sampling 82 4.2.1 Ergodicity and finite time series 82 4.2.2 Statistical error and bias 84 4.2.3 Binning-jackknife error analysis 88 4.3 Systematic data smoothing by using Bézier curves 93 4.3.1 Construction of a Bézier curve 93 4.3.2 Smooth Bézier functions for discrete noisy data sets 96 4.4 Markov processes and stochastic sampling strategies 100 4.4.2 Selection and acceptance probabilities 101 4.4.3 Simple sampling 102 4.4.4 Metropolis sampling 103 4.5 Reweighting methods 104 4.5.1 Single-histogram reweighting 104 4.5.2 Simulated tempering <td< td=""><td></td><td>3.1</td><td>Evolutionary aspects</td><td>67</td></td<>		3.1	Evolutionary aspects	67
3.3 Exact statistical analysis of designing sequences 69 3.4 Exact density of states and thermodynamics 76 4 Monte Carlo and chain growth methods for molecular simulations 81 4.1 Introduction 81 4.2 Conventional Markov-chain Monte Carlo sampling 82 4.2.1 Ergodicity and finite time series 82 4.2.2 Statistical error and bias 84 4.2.3 Binning-jackknife error analysis 88 4.3 Systematic data smoothing by using Bézier curves 93 4.3.1 Construction of a Bézier curve 93 4.3.2 Smooth Bézier functions for discrete noisy data sets 96 4.4 Markov processes and stochastic sampling strategies 100 4.4.2 Selection and acceptance probabilities 101 4.4.3 Simple sampling 102 4.4.4 Metropolis sampling 103 4.5.2 Multiple-histogram reweighting 104 4.5.1 Single-nistogram reweighting 104 4.5.2 Simulated tempering 108 4.6.1 Replica-exchange Monte Carlo methods <td></td> <td>3.2</td> <td>Self-avoiding walks and contact matrices</td> <td>68</td>		3.2	Self-avoiding walks and contact matrices	68
3.4 Exact density of states and thermodynamics 76 4 Monte Carlo and chain growth methods for molecular simulations 81 4.1 Introduction 81 4.2 Conventional Markov-chain Monte Carlo sampling 82 4.2.1 Ergodicity and finite time series 82 4.2.2 Statistical error and bias 84 4.2.3 Binning-jackknife error analysis 88 4.3 Systematic data smoothing by using Bézier curves 93 4.3.1 Construction of a Bézier curve 93 4.3.2 Smooth Bézier functions for discrete noisy data sets 96 4.4 Markov processes and stochastic sampling strategies 100 4.4.2 Selection and acceptance probabilities 101 4.4.3 Simple sampling 103 4.5.1 Single-histogram reweighting 104 4.5.2 Multiple-histogram reweighting 104 4.5.1 Single-exchange Monte Carlo methods 108 4.6.1 Replica-exchange Monte Carlo methods 108 4.6.2 Simulated tempering 109 4.6.3 Multicanonical sampling uso		3.3	Exact statistical analysis of designing sequences	69
4 Monte Carlo and chain growth methods for molecular simulations 81 4.1 Introduction 81 4.2 Conventional Markov-chain Monte Carlo sampling 82 4.2.1 Ergodicity and finite time series 82 4.2.2 Statistical error and bias 84 4.2.3 Binning-jackknife error analysis 88 4.3 Systematic data smoothing by using Bézier curves 93 4.3.1 Construction of a Bézier curve 93 4.3.2 Smooth Bézier functions for discrete noisy data sets 96 4.4 Markov processes and stochastic sampling strategies 100 4.4.3 Simple sampling 102 4.4.4 Matropolis sampling 102 4.4.3 Simple sampling 102 4.4.4 Metropolis sampling 103 4.5 Reweighting methods 104 4.5.1 Single-histogram reweighting 104 4.5.2 Multiple-histogram reweighting 105 4.6 Generalized-ensemble Monte Carlo methods 108 4.6.1 Replica-exchange Monte Carlo methods 108 4.6.2		3.4	Exact density of states and thermodynamics	76
4.1Introduction814.2Conventional Markov-chain Monte Carlo sampling824.2.1Ergodicity and finite time series824.2.2Statistical error and bias844.2.3Binning–jackknife error analysis884.3Systematic data smoothing by using Bézier curves934.3.1Construction of a Bézier curve934.3.2Smooth Bézier functions for discrete noisy data sets964.4Markov processes and stochastic sampling strategies1004.4.1Master equation1004.4.2Selection and acceptance probabilities1014.4.3Simple sampling1034.5.1Single-histogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method:1174.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang–Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states130		4 Mont	e Carlo and chain growth methods for molecular simulations	81
4.2Conventional Markov-chain Monte Carlo sampling824.2.1Ergodicity and finite time series824.2.2Statistical error and bias844.2.3Binning-jackknife error analysis884.3Systematic data smoothing by using Bézier curves934.3.1Construction of a Bézier curve934.3.2Smooth Bézier functions for discrete noisy data sets964.4Markov processes and stochastic sampling strategies1004.4.1Master equation1004.4.2Selection and acceptance probabilities1014.4.3Simple sampling1024.4.4Metropolis sampling1034.5Reweighting methods1044.5.1Single-histogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo methods1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang-Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain-growth with PERM1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states130		4.1	Introduction	81
4.2.1Ergodicity and finite time series824.2.2Statistical error and bias844.2.3Binning-jackknife error analysis884.3Systematic data smoothing by using Bézier curves934.3.1Construction of a Bézier curve934.3.2Smooth Bézier functions for discrete noisy data sets964.4Markov processes and stochastic sampling strategies1004.4.1Master equation1004.4.2Selection and acceptance probabilities1014.4.3Simple sampling1024.4.4Metropolis sampling1034.5Reweighting methods1044.5.1Single-histogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang-Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth algorithm1294.11.1Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states133		4.2	Conventional Markov-chain Monte Carlo sampling	82
4.2.2Statistical error and bias844.2.3Binning-jackknife error analysis884.3Systematic data smoothing by using Bézier curves934.3.1Construction of a Bézier curve934.3.2Smooth Bézier functions for discrete noisy data sets964.4Markov processes and stochastic sampling strategies1004.4.1Master equation1004.4.2Selection and acceptance probabilities1014.4.3Simple sampling1024.4.4Metropolis sampling1034.5Reweighting methods1044.5.1Single-histogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang-Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states133			4.2.1 Ergodicity and finite time series	82
4.2.3Binning-jackknife error analysis884.3Systematic data smoothing by using Bézier curves934.3.1Construction of a Bézier curve934.3.2Smooth Bézier functions for discrete noisy data sets964.4Markov processes and stochastic sampling strategies1004.4.1Master equation1004.4.2Selection and acceptance probabilities1014.4.3Simple sampling1024.4.4Metropolis sampling1034.5Reweighting methods1044.5.1Single-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo methods1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang-Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.1.1Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states133			4.2.2 Statistical error and bias	84
4.3Systematic data smoothing by using Bézier curve934.3.1Construction of a Bézier curve934.3.2Smooth Bézier functions for discrete noisy data sets964.4Markov processes and stochastic sampling strategies1004.4.1Master equation1004.4.2Selection and acceptance probabilities1014.4.3Simple sampling1024.4.4Metropolis sampling1034.5Reweighting methods1044.5.1Single-histogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang-Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain-growth algorithm1294.11.1Multicanonical sampling of Rosenbluth-weighted chains1294.12Random number generators130			4.2.3 Binning–jackknife error analysis	88
4.3.1Construction of a Bézier curve934.3.2Smooth Bézier functions for discrete noisy data sets964.4Markov processes and stochastic sampling strategies1004.4.1Master equation1004.4.2Selection and acceptance probabilities1014.4.3Simple sampling1024.4.4Metropolis sampling1034.5Reweighting methods1044.5.1Single-histogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang-Landau method1174.7Elementary Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states130		4.3	Systematic data smoothing by using Bézier curves	93
4.3.2Smooth Bézier functions for discrete noisy data sets964.4Markov processes and stochastic sampling strategies1004.4.1Master equation1004.4.2Selection and acceptance probabilities1014.4.3Simple sampling1024.4.4Metropolis sampling1034.5Reweighting methods1044.5.1Single-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang-Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain-growth algorithm1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.12.1Iterative determination of the density of states133			4.3.1 Construction of a Bézier curve	93
4.4Markov processes and stochastic sampling strategies1004.4.1Master equation1004.4.2Selection and acceptance probabilities1014.4.3Simple sampling1024.4.4Metropolis sampling1034.5Reweighting methods1044.5.1Single-histogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1094.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang-Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states1304.12Random number generators133			4.3.2 Smooth Bezier functions for discrete noisy data sets	96
4.4.1Master equation1004.4.2Selection and acceptance probabilities1014.4.3Simple sampling1024.4.4Metropolis sampling1034.5Reweighting methods1044.5.1Single-histogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang-Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain-growth algorithm1294.11.1Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states133		4.4	Markov processes and stochastic sampling strategies	100
4.4.2Selection and acceptance probabilities1014.4.3Simple sampling1024.4.4Metropolis sampling1034.5Reweighting methods1044.5.1Single-histogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang-Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain-growth algorithm1294.11.1Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states1304.12Random number generators133			4.4.1 Master equation	100
4.4.3Simple sampling1024.4.4Metropolis sampling1034.5Reweighting methods1044.5.1Single-histogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1094.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang–Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states133			4.4.2 Selection and acceptance probabilities	101
4.4.4Metropolis sampling1034.5Reweighting methods1044.5.1Single-histogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang–Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states133			4.4.3 Simple sampling	102
4.5Reweighting methods1044.5.1Single-histogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang–Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states133		15	4.4.4 Metropolis sampling	103
4.5.1Single-instogram reweighting1044.5.2Multiple-histogram reweighting1054.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang–Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states133		4.5	4.5.1 Single histogram reweighting	104
4.3.2Multiple-instogram reweighting1034.6Generalized-ensemble Monte Carlo methods1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang–Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states133			4.5.1 Single-instogram reweighting	104
4.0Generalized-clisteniole functions1084.6.1Replica-exchange Monte Carlo method: Parallel tempering1084.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang–Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states1304.12Random number generators133		16	Generalized ensemble Monte Carlo methods	105
4.6.1Replicatestenange infonce can binemod. Faraner tempering1034.6.2Simulated tempering1094.6.3Multicanonical sampling1094.6.4Wang–Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical chain-growth algorithm1294.11.1Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states1304.12Random number generators133		ч.0	4.6.1 Replice-exchange Monte Carlo method: Parallel tempering	108
4.6.25000000000000000000000000000000000000			4.6.2 Simulated tempering	108
4.6.4Wang–Landau method1174.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical chain-growth algorithm1294.11.1Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states1304.12Random number generators133			4.6.2 Multicanonical sampling	109
4.7Elementary Monte Carlo updates1184.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical chain-growth algorithm1294.11.1Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states1304.12Random number generators133			4.6.4 Wang-I and au method	117
4.8Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth1234.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical chain-growth algorithm1294.11.1Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states1304.12Random number generators133		47	Flementary Monte Carlo undates	118
4.9Pruned-enriched Rosenbluth method: Go with the winners1264.10Canonical chain growth with PERM1274.11Multicanonical chain-growth algorithm1294.11.1Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states1304.12Random number generators133		4.8	Lattice polymers: Monte Carlo sampling vs. Rosenbluth chain growth	123
4.10Canonical chain growth with PERM1274.11Multicanonical chain-growth algorithm1294.11.1Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states1304.12Random number generators133		4.9	Pruned-enriched Rosenbluth method: Go with the winners	125
4.11Multicanonical chain-growth algorithm1294.11.1Multicanonical sampling of Rosenbluth-weighted chains1294.11.2Iterative determination of the density of states1304.12Random number generators133		4 10	Canonical chain growth with PERM	120
4.11.1 Multicanonical sampling of Rosenbluth-weighted chains1294.11.2 Iterative determination of the density of states1304.12 Random number generators133		4.11	Multicanonical chain-growth algorithm	129
4.11.2 Iterative determination of the density of states1304.12 Random number generators133			4.11.1 Multicanonical sampling of Rosenbluth-weighted chains	129
4 12 Random number generators			4.11.2 Iterative determination of the density of states	130
		4.12	Random number generators	133
4.13 Molecular dynamics 134		4.13	Molecular dynamics	134

ix		Contents	
	5 First	insights to freezing and collance of flexible polymers	137
	5 1	Conformational transitions of flexible homonolymers	137
	5.1	Energetic fluctuations of finite-length polymers	137
	5.2	5.2.1 Peak structure of the specific heat	138
		5.2.2 Simple-cubic lattice polymers	139
		5.2.3 Polymers on the face-centered cubic lattice	141
	5.3	The Θ transition	144
	5.4	Freezing and collapse in the thermodynamic limit	147
	6 Crys	tallization of elastic polymers	149
	6.1	Lennard-Jones clusters	149
	6.2	Perfect icosahedra	150
	6.3	Liquid-solid transitions of elastic flexible polymers	152
		6.3.1 Finitely extensible nonlinear elastic Lennard-Jones polymers	152
		6.3.2 Classification of geometries	153
		6.3.3 Ground states	155
		6.3.4 Thermodynamics of liquid-solid transitions toward complete	
		icosahedra	156
		6.3.5 Liquid-solid transitions of elastic polymers	158
		6.3.6 Long-range effects	162
	6.4	Systematic analysis of compact phases	164
	6.5	Dependence of structural phases on the range of nonbonded	
		interactions	165
	7 Stru	ctural phases of semiflexible polymers	175
	7.1	Structural hyperphase diagram	175
	7.2	Variation of chain length	180
	8 Gen	eric tertiary folding properties of proteins on mesoscopic scales	181
	8.1	A simple model for a parallel β helix lattice protein	181
	8.2	Protein folding as a finite-size effect	184
	8.3	Hydrophobic-polar off-lattice heteropolymers	185
	9 Prot	ein folding channels and kinetics of two-state folding	191
	9.1	Similarity measure and order parameter	192
	9.2	Identification of characteristic folding channels	195
	9.3	Gō kinetics of folding transitions	198
		9.3.1 Coarse-grained Go modeling	199
		9.3.2 Thermodynamics	201
		9.3.3 Kinetics	204
		9.3.4 Mesoscopic heteropolymers vs. real proteins	208
	9.4	Microcanonical effects	209
	9.5	Two-state cooperativity in helix-coil transitions	213

x	_	Contents	
	10	Inducing generic secondary structures by constraints	217
	10	10.1 The intrinsic nature of secondary structures	217 217
		10.2 Polymers with thickness constraint	217
		10.2.1 Global radius of curvature	218
		10.2.2 Modeling flexible polymers with constraints	219
		10.2.3 Thickness-dependent ground-state properties	220
		10.2.4 Structural phase diagram of tube-like polymers	222
		10.3 Secondary-structure phases of a hydrophobic–polar heteropolymer model	223
	11	Statistical analyses of aggregation processes 2	227
		11.1 Pseudophase separation in nucleation processes of polymers	227
		11.2 Mesoscopic hydrophobic–polar aggregation model	228
		11.3 Order parameter of aggregation and fluctuations	229
		11.4 Statistical analysis in various ensembles	230
		11.4.1 Multicanonical results	230
		11.4.2 Canonical perspective	233
		11.4.3 Microcanonical interpretation: The backbending effect	235
		11.5 Aggregation transition in larger heteropolymer systems	239
	12	Hierarchical nature of phase transitions 2	243
		12.1 Aggregation of semiflexible polymers	243
		12.2 Structural transitions of semiflexible polymers with different bending rigidities	244
		12.3 Hierarchies of subphase transitions	247
		12.4 Hierarchical peptide aggregation processes	249
		12.5 Hierarchical aggregation of GNNQQNY	252
	13	Adsorption of polymers at solid substrates 2	255
		13.1 Structure formation at hybrid interfaces of soft and solid matter	255
		13.2 Minimalistic modeling and simulation of hybrid interfaces 2	256
		13.3 Contact-density chain-growth algorithm 2	258
		13.4 Pseudophase diagram of a flexible polymer near an attractive substrate	259
		13.4.1 Solubility-temperature pseudophase diagram	260
		13.4.2 Contact-number fluctuations	261
		13.4.3 Anisotropic behavior of gyration tensor components	263
		13.5 Alternative view: The free-energy landscape	264
		13.6 Continuum model of adsorption	269
		13.6.1 Off-lattice modeling	269
		13.6.2 Energetic and structural quantities for phase characterization by	270
		canonical statistical analysis	270 271
		13.0.5 Comparative discussion of structural nuctuations	2/1 772
		13.0.4 Adsorption parameters	213 N71
		13.7. Comparison with lattice results	シノ4)フフ
			<u>-</u> //

xi	Contents	
	12.9. Systematic microcomonical analysis of advantion transitions	270
	13.8 Systematic iniciocationical analysis of adsorption transitions	219
	13.8.1 Dependence on the surface attraction strength	280
	13.8.2 Chain-length dependence	202
	12.0. Polymon adaptition at a nonovina	204
	13.9 Forymer adsorption at a nanowire	200
	13.9.1 Modeling the polymer-nanowire complex	201
	13.9.2 Structural phase diagram	288
	Hybrid protein–substrate interfaces	293
	14.1 Steps toward bionanotechnology	293
	14.2 Substrate-specific peptide adsorption	294
	14.2.1 Hybrid lattice model	294
	14.2.2 Influence of temperature and solubility on substrate-specific	
	peptide adsorption	295
	14.3 Semiconductor-binding synthetic peptides	301
	14.4 Thermodynamics of semiconductor-binding peptides in solution	303
	14.5 Modeling a hybrid peptide-silicon interface	307
	14.5.1 Introduction	307
	14.5.2 Si(100), oxidation, and the role of water	308
	14.5.3 The hybrid model	309
	14.6 Sequence-specific peptide adsorption at silicon (100) surface	312
	14.6.1 Thermal fluctuations and deformations upon binding	312
	14.6.2 Secondary-structure contents of the peptides	313
	14.6.3 Order parameter of adsorption and nature of adsorption transition	315
	5 Concluding remarks and outlook 3	319
	eferences	323
	dex	337

Preface and outline

The idea to write this book unfolded when I more and more realized how equally frustrating and fascinating it can be to design research projects in molecular biophysics and chemical physics – frustrating for the sheer amount of inconclusive and contradicting literature, but fascinating for the mechanical precision of the complex interplay of competing interactions on various length scales and constraints in conformational transition processes of biomolecules that lead to functional geometric structures. Proteins as the "workhorses" in any biological system are the most prominent examples of such biomolecules.

The ability of a "large" molecule consisting of hundreds to tens of thousands of atoms to form stable structures spontaneously is typically called "cooperativity." This term is not well defined and could easily be replaced by "emergence" or "synergetics" - notions that have been coined in other research fields for the same mysterious feature of macroscopic ordering effects. There is no doubt that the origin of these net effects is of "microscopic" (or better nanoscopic) quantum nature. By noting this, however, we already encounter the first major problem and the reason why heterogeneous polymers such as proteins have been almost ignored by theoretical scientists for a long time. From a theoretical physicist's point of view, proteins are virtually "no-no's." Composed of tens to thousands of amino acids (already inherently complex chemical groups) linearly lined up, proteins reside in a complex, aqueous environment under thermal conditions. They are too large for a quantum-chemical treatment, but too small and too specific for a classical, macroscopic description. They do not at all fulfill the prerequisites of the thermodynamic limit and do not scale. In consequence, the standard statistical theory of phase transitions is not directly applicable, although many aspects of molecular structure formation processes resemble those known from phase transitions. Since 20 types of amino acids occur frequently in bioproteins, the number of possible compositions is astronomically large, but only of the order of 100 000 highly specific types of bioproteins are functional in the human cell system. Beside this obviously elementary evolutionary aspect, the heterogeneous composition (which causes glass-like behavior) and their high specialization level raise the question, to what extent folding properties can be generic at all. This is actually one of the key questions. A negative answer is not very likely; nature has always proven that even the most complex structures possess symmetries (in a more general context), which explain their stability. Stability is necessary, because these molecular systems exist and function in a thermal environment. It is even appropriate to formulate the whole problem in the following way: it is the interplay and balance between system and environment that stabilizes the structure of the system. Having said that, there is no reasonable way to try to understand any structure formation process without including thermodynamics and, therefore, statistical mechanics.

xiii

xiv

Preface and outline

Another apparent problem is that analytical approaches virtually fail to explain processes of heterogeneous systems, leaving computer simulations the only available tool for theoretical studies. Since protein folding is a relatively slow process (microseconds to seconds), it is almost impossible to use molecular dynamics simulations, operating on nanosecond timescales, for folding studies. Alternatively, Monte Carlo methods are inefficient, if the surrounding water molecules are explicitly simulated. The models are generally not well defined and computer simulations on atomic scales often require large-scale supercomputing resources. The abovementioned key question of generics affects the possibility and limitation of using much more efficient coarse-grained models. For these reasons, studies of biomolecular systems remain a true challenge to theoretical and computational biologists, chemists, and physicists. However, the fact that, among others, neurodegenerative diseases such as Alzheimer's and all virus infections are associated with structural properties of biomolecules makes it worth the efforts to research macromolecular systems of such scale.

This book is a "research book" for the interdisciplinary community. This means it offers many approaches to deal with molecular systems by means of statistical mechanics and computer simulation, yet it will give no precise answers to the above questions. It shall provide young scientists from all affected disciplines of natural and technological sciences with the background to get started, but it also addresses senior scientists by promoting alternative views. The book could also be of value as a compendium as it includes widely accepted research results, in particular for homopolymer systems.

More specifically, we are going to discuss thermodynamic properties of conformational transitions for single- and multiple-chain polymer and protein systems, with particular focus dedicated to molecular folding, aggregation, and adsorption processes to solid substrates. In most of the presented examples, we will investigate the structural transitions by statistical analyses of simplified models. This is based on the idea that in cooperative processes like structural transitions, the collective action of the mechanical degrees of freedom allows for a reduction of the phase space. In other words, the essential features of these transitions are expected to be described qualitatively correctly by models in which a strongly reduced number of effective degrees of freedom is considered only. This reduction of mechanical complexity is called coarse-graining and has proven to be extremely successful in the understanding of complex phenomena and phase transitions of macroscopic systems holds true, then coarse-grained approaches can also be valuable tools for the description of molecular behavior. Coarse-grained modeling and simulation will, therefore, play a vital role in this book.

The finiteness of molecular systems, the geometric nature of the structural transitions, and the constraints (e.g., stiff bonds) that affect the mechanical motion render a theoretical treatment typically very difficult. For this reason, the design of efficient algorithms is inevitable for unraveling the properties of structural transitions of molecular systems. We will discuss various examples throughout this book, where sophisticated computer simulation methodologies were employed to obtain the statistical information needed for a thermodynamic analysis of such transitions. Therefore, a short review of modern χv

Cambridge University Press 978-1-107-01447-3 - Thermodynamics and Statistical Mechanics of Macromolecular Systems Michael Bachmann Frontmatter More information

Preface and outline

simulational methods is also included, as it is considered to be beneficial for readers who wish to get started or who would simply like to know where the results discussed in this book originated from.

In the first chapter of this book, we begin with an introduction of the molecular structure and the modeling of linear macromolecules. Fundamental aspects of thermodynamics and statistical mechanics, with emphasis on finite-size effects and their statistical analysis, are reviewed in Chapter 2. In Chapter 3, properties of the complete sequence and conformation space are systematically analyzed for short lattice proteins by exact enumeration of a minimalistic hydrophobic-polar heteropolymer model. Computer simulations of larger systems require efficient algorithms. Such algorithms are reviewed in Chapter 4 and important aspects of analyses of finitely long time series of data generated by these algorithms are discussed. As a first application, the study of homopolymer freezing and collapse transitions on regular lattices is the subject of Chapter 5. In this regard, the influence of surface and finite-size effects upon crystallization of elastic flexible and semiflexible polymers is addressed in detail in Chapters 6 and 7, respectively. Returning to proteins, characteristic folding properties of proteins and the classification of folding channels are investigated in Chapters 8 and 9. Generic local geometries like secondary structures induced by constraints that effectively reflect many-body effects are discussed in Chapter 10 by introducing tube-like polymers. The extension of coarse-grained modeling to multiple-chain systems is described in Chapter 11, where also analyses of aggregation transitions of short heteropolymers in different statistical ensembles are presented. In Chapter 12, we unravel the hierarchical nature of phase transitions by discussing the exemplified aggregation transition of homopolymers. Pseudophase diagrams of adsorption processes of lattice and off-lattice homopolymers to solid substrates are investigated in detail in Chapter 13. An introductory, simple example for substrate-specific binding of peptides to solid substrates is studied in detail in Chapter 14.

I am indebted to Wolfhard Janke for many years of successful cooperation, advice, and support. For constant support and extremely helpful discussions, I am also thankful to David P. Landau, Kurt Binder, Hagen Kleinert, and Gerhard Gompper. The collaboration with Thomas Neuhaus, Anders Irbäck, Joan Adler, Axel Pelster, and Qianqian Cao is also very much appreciated. It is a particular pleasure to thank my long-term collaborators Thomas Vogel, Stefan Schnabel, Karsten Goede, Monika Möddel, Christoph Junghans, Jonathan Groß, Daniel T. Seaton, and Tristan Bereau for the joint successful work, without which it would not have been possible to write this book. Many other people have also actively and passively helped streamline my thoughts in the exciting field of structural biophysics, which I am also quite thankful for. I would also like to thank Érica de Mello Silva and Paulo H. L. Martins at the Universidade Federal de Mato Grosso, Cuiabá, for their kind hospitality during my current visit to Brazil.

Michael Bachmann Athens, GA (USA) June 2013