

#### **Research Methods in Linguistics**

A comprehensive guide to conducting research projects in linguistics, this book provides a complete training in state-of-the-art data collection, processing, and analysis techniques. The book follows the structure of a research project, guiding the reader through the steps involved in collecting and processing data, and providing a solid foundation for linguistic analysis. All major research methods are covered, each by a leading expert. Rather than focusing on narrow specializations, the text fosters interdisciplinarity, with many chapters focusing on shared methods such as sampling, experimental design, transcription, and constructing an argument. Highly practical, the book offers helpful tips on how and where to get started, depending on the nature of the research question. The only book that covers the full range of methods used across the field, this student-friendly text is also a helpful reference source for the more experienced researcher and current practitioner.

ROBERT J. PODESVA is an Assistant Professor in the Department of Linguistics at Stanford University.

DEVYANI SHARMA is a Senior Lecturer in Linguistics at Queen Mary University of London.





# Research Methods in Linguistics

EDITED BY

ROBERT J. PODESVA

Stanford University

AND

DEVYANI SHARMA

Queen Mary University of London





# CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107696358

© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printing in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-01433-6 Hardback ISBN 978-1-107-69635-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.



### **Contents**

| Li | st of figures                                     | page vii |
|----|---------------------------------------------------|----------|
| Li | st of tables                                      | xii      |
| Li | st of contributors                                | xiv      |
| Αc | cknowledgments                                    | xvi      |
| 1  | Introduction Devyani Sharma and Robert J. Podesva | 1        |
|    | PART I DATA COLLECTION                            | 9        |
| 2  | Ethics in linguistic research                     |          |
|    | Penelope Eckert                                   | 11       |
| 3  | Judgment data                                     |          |
|    | Carson T. Schütze and Jon Sprouse                 | 27       |
| 4  | Fieldwork for language description                |          |
|    | Shobhana Chelliah                                 | 51       |
| 5  | Population samples                                |          |
|    | Isabelle Buchstaller and Ghada Khattab            | 74       |
| 6  | Surveys and interviews                            |          |
|    | Natalie Schilling                                 | 96       |
| 7  | Experimental research design                      |          |
|    | Rebekha Abbuhl, Susan Gass, and Alison Mackey     | 116      |
| 8  | Experimental paradigms in psycholinguistics       |          |
|    | Elsi Kaiser                                       | 135      |
| 9  | Sound recordings: acoustic and articulatory data  |          |
|    | Robert J. Podesva and Elizabeth Zsiga             | 169      |

V



| 1 |      | Contents                                                                        |     |  |
|---|------|---------------------------------------------------------------------------------|-----|--|
|   | 10   | Ethnography and recording interaction  Erez Levon                               | 195 |  |
|   | 11   | Using historical texts Ans van Kemenade and Bettelou Los                        | 216 |  |
|   |      | PART II DATA PROCESSING AND STATISTICAL ANALYSIS                                | 233 |  |
|   | 12   | <b>Transcription</b> Naomi Nagy and Devyani Sharma                              | 235 |  |
|   | 13   | Creating and using corpora Stefan Th. Gries and John Newman                     | 257 |  |
|   | 14   | Descriptive statistics Daniel Ezra Johnson                                      | 288 |  |
|   | 15   | Basic significance testing Stefan Th. Gries                                     | 316 |  |
|   | 16   | Multivariate statistics R. Harald Baayen                                        | 337 |  |
|   |      | PART III FOUNDATIONS FOR DATA ANALYSIS                                          | 373 |  |
|   | 17   | Acoustic analysis Paul Boersma                                                  | 375 |  |
|   | 18   | Constructing and supporting a linguistic analysis  John Beavers and Peter Sells | 397 |  |
|   | 19   | Modeling in the language sciences Willem Zuidema and Bart de Boer               | 422 |  |
|   | 20   | Variation analysis  James A. Walker                                             | 440 |  |
|   | 21   | <b>Discourse analysis</b> Susan Ehrlich and Tanya Romaniuk                      | 460 |  |
|   | 22   | Studying language over time<br>Hélène Blondeau                                  | 494 |  |
|   | Inde | x                                                                               | 519 |  |



# **Figures**

| 3.1 | An example of a two-afternative forced-choice task               | page 32 |
|-----|------------------------------------------------------------------|---------|
| 3.2 | An example of the yes-no task                                    | 32      |
| 3.3 | An example of a Likert scale task                                | 33      |
| 3.4 | An example of the magnitude estimation task                      | 34      |
| 7.1 | $4 \times 4$ Latin squares design                                | 121     |
| 8.1 | Visual-world eye-tracking graph showing the probability of       |         |
|     | fixating objects on the screen (0 ms = onset of the critical     |         |
|     | word, e.g., beaker). Allopenna, Magnuson, and Tanenhaus          |         |
|     | 1998 (see Acknowledgments for full copyright information)        | 145     |
| 8.2 | Examples of object-array displays. Allopenna, Magnuson,          |         |
|     | and Tanenhaus 1998; Trueswell et al. 1999; Brown-Schmidt         | :       |
|     | and Konopka 2008; Sussman 2006 (see Acknowledgments              |         |
|     | for full copyright information)                                  | 146     |
| 8.3 | Examples of clip-art displays. Kamide, Altmann, and              |         |
|     | Haywood 2003; Weber, Grice, and Crocker 2006; Kaiser             |         |
|     | 2011a; Arnold et al. 2000 (see Acknowledgments for full          |         |
|     | copyright information)                                           | 150     |
| 8.4 | Poor man's eye-tracking, "Tickle the frog with the feather."     |         |
|     | Snedeker and Trueswell 2004 (see Acknowledgments for full        |         |
|     | copyright information)                                           | 154     |
| 9.1 | Common microphone mounts: stand-mounted (left),                  |         |
|     | head-mounted (middle), and lavalier (right)                      | 174     |
| 9.2 | Microphone jacks: XLR (left), mini-stereo (middle), and          |         |
|     | USB (right)                                                      | 174     |
| 9.3 | Solid state recorders: Marantz PMD660 (left) and Zoom H2n        | l       |
|     | (right)                                                          | 177     |
| 9.4 | Range of data collection scenarios                               | 180     |
| 9.5 | Lip position for $[\phi]$ (left) and $[s^w]$ (right) in Sengwato | 182     |
| 9.6 | Palatogram (left) and linguogram (right) of American English /t/ | 183     |
| 9.7 | Artificial palate with embedded electrodes (left); sample        |         |
|     | patterns for /s/ and /t/ (right). http://speech.umaryland.edu/   |         |
|     | epg.html (left); www.rds-sw.nihr.ac.uk/success stories           |         |
|     | lucy_ellis.htm (right)                                           | 184     |
| 9.8 | Subject holding a sonograph transducer (top); sonograph          |         |
|     | image for the vowel /i/ (bottom). Gick 2002                      | 185     |
|     |                                                                  |         |

vii



| 111          | List of figures                                                                                                           |            |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------|------------|--|
| 9.9          |                                                                                                                           | 187        |  |
| 9.10         | Using a pressure/airflow mask (top); trace of pressure at the lips during [aφa] (bottom)                                  | 188        |  |
| 9.11         | Pictures of abducted (left) and adducted (right) vocal folds, taken via flexible endoscope. http://voicedoctor.net/media/ |            |  |
|              | normal-vocal-cord                                                                                                         | 189        |  |
| 9.12         |                                                                                                                           | 190        |  |
| 9.13         |                                                                                                                           | 1,0        |  |
|              | http://beckman.illinois.edu/news/2007/10/100307 (top);                                                                    |            |  |
|              | Fagel and Clemens 2004 (bottom)                                                                                           | 191        |  |
| 9.14         | EMG trace (solid line) shows a burst of activity in the                                                                   |            |  |
|              | cricothyroid muscle during pitch raising (dotted line) in Thai                                                            |            |  |
|              | falling and rising tone. Erickson 1976                                                                                    | 192        |  |
| 11.1<br>13.1 | Demonstrative elements in dislocates. Los and Komen 2012<br>Markup in the TEI Header of file A01 in the XML Brown         | 219        |  |
|              | Corpus                                                                                                                    | 265        |  |
| 13.2         | The first sentence (and paragraph) in the text body of file A01                                                           |            |  |
|              | in the XML Brown Corpus (the tags beginning with p, s, and                                                                |            |  |
|              | w mark the paragraph, sentence, and each word respectively)                                                               | 266        |  |
| 13.3         | <u> </u>                                                                                                                  |            |  |
|              | XML                                                                                                                       | 267        |  |
| 13.4         |                                                                                                                           | 256        |  |
| 12.5         | file                                                                                                                      | 276        |  |
| 13.5         | •                                                                                                                         | 281        |  |
| 13.6         | R session to create a frequency list of a file from the Brown Corpus and the resulting plots                              | 282        |  |
| 14.1         | Stem-and-leaf plot of daily temperatures for Albuquerque in                                                               | 202        |  |
| 17.1         | 2010                                                                                                                      | 291        |  |
| 14.2         |                                                                                                                           | 293        |  |
| 14.3         |                                                                                                                           |            |  |
|              | on Peterson and Barney 1952                                                                                               | 293        |  |
| 14.4         | Histogram of men's and women's natural-log-transformed                                                                    |            |  |
|              | F0. Johnson, based on Peterson and Barney 1952                                                                            | 294        |  |
| 14.5         |                                                                                                                           |            |  |
|              | {0.5, 1, 2}                                                                                                               | 294        |  |
| 14.6         | ,                                                                                                                         | 206        |  |
| 147          | tendencies labeled                                                                                                        | 296        |  |
| 14.7<br>14.8 | Dispersion of Peterson and Barney F0 for men and women                                                                    | 300<br>303 |  |
| 14.8         | Plot of 2010 Albuquerque temperatures, by date<br>Plot of 2006–2010 Albuquerque temperatures, by date                     | 303<br>304 |  |
| 14.10        |                                                                                                                           | 304        |  |
| 14.11        | The relationship between Pearson's r and Spearman's rho                                                                   | 304        |  |
| 14.12        | •                                                                                                                         | 500        |  |
| <b>-</b>     | corpus                                                                                                                    | 308        |  |
|              |                                                                                                                           |            |  |



|       |                                                                                                                  | List of figures | ix |
|-------|------------------------------------------------------------------------------------------------------------------|-----------------|----|
| 14.13 | Distribution of 335 ratings for "Mary has had more drink:                                                        | g               |    |
| 14.13 | than she should have done so" $(0 = \text{completely impossible},$                                               |                 |    |
|       | = perfectly natural)                                                                                             | 309             |    |
| 14.14 | Distribution of 335 ratings for "Who did John see George                                                         |                 |    |
| 14.14 | and?" (0 = completely impossible, 10 = perfectly natural)                                                        |                 |    |
| 14.15 | Mosaic plot of York quotative variants by grammatical                                                            | 309             |    |
| 14.13 |                                                                                                                  | 312             |    |
| 15.1  | person  Probability distributions for outcomes of equally likely                                                 | 312             |    |
| 13.1  | Probability distributions for outcomes of equally likely binary trials. Three, six, and twelve trials (top row); |                 |    |
|       | twenty-five, fifty, and one hundred trials (bottom row)                                                          | 319             |    |
| 15.2  |                                                                                                                  |                 |    |
| 15.2  | A normal distribution (left panel); an exponential distribut                                                     |                 |    |
| 15.2  | (right panel)                                                                                                    | 323             |    |
| 15.3  | Mosaic plot for the data in <i>walk</i>                                                                          | 326             |    |
| 15.4  | Box plot of the Dice coefficients for the two subtractive                                                        | 221             |    |
| 15.5  | word-formation processes                                                                                         | 331             |    |
| 15.5  | Graphical representation of the differences between <i>befor</i>                                                 |                 |    |
| 464   | and after                                                                                                        | 334             |    |
| 16.1  | A regression line (left) and a factorial contrast between a                                                      |                 |    |
|       | reference group mean $a$ on the intercept and a group mean                                                       |                 |    |
|       | The difference between the two group means, the contrast                                                         |                 |    |
|       | equal to the slope of the line connecting $a$ and $b$ : 2. Both                                                  |                 |    |
|       | regression line and the line connecting the two group mea                                                        |                 |    |
| 1.60  | are described by the line $y = 1 + 2x$                                                                           | 340             |    |
| 16.2  | <u>-</u>                                                                                                         | 342             |    |
| 16.3  | Example of an interaction of a factor and a covariate in ar                                                      |                 |    |
|       | analysis of covariance                                                                                           | 343             |    |
| 16.4  | Tukey all-pairs confidence intervals for contrasts between                                                       |                 |    |
|       | mean pitch for different branching conditions across Engl                                                        |                 |    |
|       | tri-constituent compounds                                                                                        | 346             |    |
| 16.5  | Correlation of the by-word random intercepts and the by-wo                                                       | ord             |    |
|       | random slopes for Sex=male in the linear mixed-effects                                                           |                 |    |
|       | model fitted to the pitch of English tri-constituent compound                                                    | nds 353         |    |
| 16.6  | Random effects structure for subject. Correlations of the                                                        |                 |    |
|       | BLUPs (upper panels); correlations of the by-subject                                                             |                 |    |
|       | coefficients (lower panels)                                                                                      | 354             |    |
| 16.7  | Fitted smooths (with 95 percent confidence intervals) for                                                        |                 |    |
|       | Pitch as a function of Time for the four branching condition                                                     | ons             |    |
|       | of the pitch dataset of English tri-constituent compounds                                                        | 358             |    |
| 16.8  | Tensor product for the interaction of Time by Danger Rat                                                         | ing             |    |
|       | Score at channel FC2                                                                                             | 359             |    |
| 16.9  | The pronunciation distance from standard Dutch for differ                                                        | ent             |    |
|       | quantiles of word frequency                                                                                      | 360             |    |
| 16.10 | The probability of using was as a function of Age, Adjacer                                                       | ncy             |    |
|       | and Polarity                                                                                                     | 363             |    |



| X | List of | figures |
|---|---------|---------|
|   |         |         |

| 16.11<br>16.12 | Recursive partitioning tree for the Russian goal/theme data<br>The ndl network for the Finnish <i>think</i> verbs. Darker shades of<br>grey indicate stronger positive connections, lighter shades of | 365 |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                |                                                                                                                                                                                                       |     |
|                | grey larger negative connections. For the abbreviations in the                                                                                                                                        | 260 |
| 17.1           | nodes, see Table 16.14                                                                                                                                                                                | 368 |
| 17.1           | Waveform of several periods of the Dutch vowel /i/,                                                                                                                                                   | 276 |
| 15.0           | illustrating glottal fold vibration                                                                                                                                                                   | 376 |
| 17.2           | Waveform of several periods of the Dutch vowel /i/,                                                                                                                                                   |     |
|                | illustrating the first formant                                                                                                                                                                        | 377 |
| 17.3           | Waveform of several periods of the Dutch vowel /i/,                                                                                                                                                   |     |
|                | illustrating the second formant                                                                                                                                                                       | 378 |
| 17.4           | Waveform of several periods of the Dutch vowel /a/,                                                                                                                                                   |     |
|                | illustrating mangled formants                                                                                                                                                                         | 378 |
| 17.5           | Waveform of a whole Dutch /i/, illustrating duration and                                                                                                                                              |     |
|                | intensity                                                                                                                                                                                             | 379 |
| 17.6           | Waveform of the voiceless palatal plosive in [aca], illustrating                                                                                                                                      |     |
|                | silence and release burst                                                                                                                                                                             | 380 |
| 17.7           | Waveform of the voiceless palatal fricative in [aça],                                                                                                                                                 |     |
|                | illustrating the many zero crossings                                                                                                                                                                  | 380 |
| 17.8           | Waveform of the alveolar trill in [ara], illustrating four                                                                                                                                            |     |
|                | passive tongue-tip closures                                                                                                                                                                           | 381 |
| 17.9           | Determining the pitch of the sound in Figure 17.1 at a time of                                                                                                                                        |     |
|                | 0.3002 seconds (cross-correlation method). The top row                                                                                                                                                |     |
|                | shows parts of the sound just before that time, and the bottom                                                                                                                                        |     |
|                | row shows equally long parts just after. The two parts look                                                                                                                                           |     |
|                | most similar if they are 7.1 ms long                                                                                                                                                                  | 382 |
| 17.10          | Pitch curve for the [i] vowel of Figure 17.5                                                                                                                                                          | 383 |
| 17.11          | Determining the intensity curve for the [i] vowel of Figure                                                                                                                                           |     |
|                | 17.5: (a) the original sound, as measured relative to the                                                                                                                                             |     |
|                | auditory threshold; (b) the square of this; (c) the Gaussian                                                                                                                                          |     |
|                | smoothing kernel, on the same time scale as the sound; (d) the                                                                                                                                        |     |
|                | intensity curve, computed as the convolution of the squared                                                                                                                                           |     |
|                | amplitude and the Gaussian; (e) the intensity curve along a                                                                                                                                           |     |
|                | logarithmic scale                                                                                                                                                                                     | 385 |
| 17.12          | Splitting up two periods of the [i] vowel of Figure 17.5 into                                                                                                                                         |     |
|                | six harmonics. At the top is the original sound. The rough                                                                                                                                            |     |
|                | features of the original sound are reconstructed by adding the                                                                                                                                        |     |
|                | first harmonic (1) and the second harmonic (2) to each other                                                                                                                                          |     |
|                | (1+2). When we add the 15th, 22nd, 23rd, and 24th                                                                                                                                                     |     |
|                | harmonics to this, the original waveshape is approximated                                                                                                                                             |     |
|                | even more closely (bottom)                                                                                                                                                                            | 387 |
| 17.13          | The Fourier spectrum of the two-period [i]-like sound of                                                                                                                                              | 20, |
| 1,.13          | Figure 17.12                                                                                                                                                                                          | 388 |
| 17.14          | Spectrum of the vowel [i]                                                                                                                                                                             | 389 |
| 1,.17          | specialist the total [1]                                                                                                                                                                              | 207 |



|       |                                                           | List of figures | Xi |
|-------|-----------------------------------------------------------|-----------------|----|
| 17.15 | Spectrogram of the vowels [a], [i], and [u]               | 390             |    |
| 17.16 | Spectrogram of sibilants                                  | 392             |    |
| 17.17 | Spectrogram of [aca], showing the four acoustic correlate | es of           |    |
|       | the plosive                                               | 392             |    |
| 17.18 | Spectrogram of [ara]                                      | 393             |    |
| 17.19 | Automated formant measurement in the vowels [a], [i], a   | and             |    |
|       | [u], superimposed on the spectrogram of Figure 17.15      | 394             |    |
| 19.1  | Classes of representation of language                     | 432             |    |
| 20.1  | Excerpt from coding instructions for the English future   | 448             |    |
| 20.2  | Fragment of an Excel coding sheet and GoldVarb token      | file            |    |
|       | for the coding of the English future                      | 450             |    |
| 22.1  | Apparent-time distribution at Time 1                      | 507             |    |
| 22.2  | Real-time distribution at Time 1 and Time 2: age-grading  | g               |    |
|       | interpretation                                            | 507             |    |
| 22.3  | Real-time distribution at Time 1 and Time 2: community    | ,               |    |
|       | change interpretation                                     | 508             |    |
| 22.4  | Stability over time for two speakers                      | 510             |    |
| 22.5  | *                                                         | 510             |    |



## **Tables**

| 5.1   | Relationship between sample size and sampling error. De        |         |
|-------|----------------------------------------------------------------|---------|
|       | Vaus 2001                                                      | page 82 |
| 5.2   | The database for Spanish second language acquisition.          |         |
|       | Mitchell et al. 2008                                           | 84      |
| 13.1  | A subset of the Uppsala Learner English Corpus. Adapted        |         |
|       | from Table 1 in Johansson and Geisler 2011                     | 260     |
| 13.2  | Four tagging solutions for English rid                         | 267     |
| 13.3  | Sub-corpora of the Brown written corpus                        | 270     |
| 13.4  | Sub-corpora of the ICE corpora                                 | 271     |
| 13.5  | Sub-corpora of the MICASE spoken corpus                        | 272     |
| 13.6  | Sub-corpora of the BNC                                         | 272     |
| 13.7  | Sub-corpora of the written component of COCA, as of April      |         |
|       | 2011                                                           | 273     |
| 13.8  | Frequency lists: words sorted according to frequency (left     |         |
|       | panel); reversed words sorted alphabetically (center panel);   |         |
|       | 2-grams sorted according to frequency (right panel)            | 275     |
| 13.9  | Excerpt of a collocate display of general/generally            | 277     |
| 13.10 | Excerpt of a concordance display of alphabetic and             |         |
|       | alphabetical                                                   | 278     |
| 13.11 | Examples of regular expressions                                | 278     |
| 14.1  | Frequency table of daily temperatures for Albuquerque in 2010  | 292     |
| 14.2  | Cross-tabulations for survival vs sex and survival vs age on   |         |
|       | the <i>Titanic</i>                                             | 311     |
| 14.3  | Cross-tabulation of York quotative variants by grammatical     |         |
|       | person, observed                                               | 311     |
| 14.4  | Cross-tabulation of York quotative variants by grammatical     |         |
|       | person, expected (if no association)                           | 312     |
| 15.1  | All possible results from asking three subjects to classify    | • • •   |
|       | walk as a noun or a verb                                       | 318     |
| 15.2  | Fictitious data from a forced-choice part-of-speech selection  |         |
|       | task                                                           | 325     |
| 15.3  | Dice coefficients of source words for complex clippings and    |         |
| 161   | blends                                                         | 328     |
| 16.1  | A multivariate dataset with $n$ cases (rows) and $k$ variables | 222     |
|       | (columns)                                                      | 338     |
|       |                                                                |         |

xii



|       | I                                                             | List of tables | xiii |
|-------|---------------------------------------------------------------|----------------|------|
| 16.2  | 1 , 5                                                         |                |      |
|       | analysis of variance                                          | 341            |      |
| 16.3  | Predicted group means given the dummy coding in Table         |                |      |
|       | 16.2 and regression equation (2)                              | 341            |      |
| 16.4  | Predicted group means for the data in Table 16.2 given        |                |      |
|       | regression equation (4)                                       | 342            |      |
| 16.5  | An example of treatment dummy coding for an analysis of       | Î              |      |
|       | covariance with an interaction                                | 343            |      |
| 16.6  | Four kinds of compound stress patterns in English tri-        |                |      |
|       | constituent compounds                                         | 344            |      |
| 16.7  | Coefficients of an analysis of covariance model fitted to the | e              |      |
|       | pitch of English tri-constituent compounds                    | 345            |      |
| 16.8  | Sequential model comparison for Pitch in English              |                |      |
|       | tri-constituent compounds                                     | 347            |      |
| 16.9  | A repeated measures dataset with gn cases with observatio     | ns             |      |
|       | on $k$ variables collected for $n$ items and $g$ subjects     | 350            |      |
| 16.10 | Notation for adjustments to intercept and predictors          | 351            |      |
| 16.11 | Standard deviations and correlation parameter for the         |                |      |
|       | random-effects structure of the mixed-effects model fitted    | to             |      |
|       | the pitch of English tri-constituent compounds                | 352            |      |
| 16.12 | Model comparison for a series of models with increasing       |                |      |
|       | nonlinear structure fitted to the pitch dataset               | 356            |      |
| 16.13 | Log odds for four Finnish near-synonyms meaning <i>think</i>  | 364            |      |
| 16.14 | Naive discrimination learning weights for four Finnish        |                |      |
|       | near-synonyms for <i>think</i>                                | 368            |      |
| 20.1  | Factors contributing to the occurrence of the alveolar        |                |      |
|       | variant -in' in Toronto English                               | 452            |      |
| 22.1  | Indirect and direct approaches to time                        | 496            |      |
| 22.2  | The pseudo-longitudinal effect in SLA                         | 498            |      |



#### **Contributors**

REBEKHA ABBUHL
California State University, Long Beach, US

R. HARALD BAAYEN Eberhard Karls University, Tübingen, Germany, and University of Alberta, Canada

JOHN BEAVERS
The University of Texas at Austin, US

HÉLÈNE BLONDEAU University of Florida, US

PAUL BOERSMA University of Amsterdam, Netherlands

ISABELLE BUCHSTALLER Leipzig University, Germany

SHOBHANA CHELLIAH University of North Texas, US

BART DE BOER Vrije Universiteit Brussel, Belgium

PENELOPE ECKERT
Stanford University, US

SUSAN EHRLICH York University, Canada

SUSAN GASS Michigan State University, US

STEFAN TH. GRIES University of California, Santa Barbara, US

DANIEL EZRA JOHNSON Lancaster University, UK

ELSI KAISER University of Southern California, US

xiv



List of contributors

XV

GHADA KHATTAB Newcastle University, UK

EREZ LEVON

Queen Mary University of London, UK

BETTELOU LOS

Radboud University, Netherlands

ALISON MACKEY

Georgetown University, US

NAOMI NAGY

University of Toronto, Canada

JOHN NEWMAN

University of Alberta, Canada

ROBERT J. PODESVA

Stanford University, US

TANYA ROMANIUK

Portland State University, US

NATALIE SCHILLING

Georgetown University, US

CARSON T. SCHÜTZE

University of California, Los Angeles, US

PETER SELLS

University of York, UK

DEVYANI SHARMA

Queen Mary University of London, UK

JON SPROUSE

University of Connecticut, US

ANS VAN KEMENADE

Radboud University, Netherlands

JAMES A. WALKER

York University, Canada

WILLEM ZUIDEMA

University of Amsterdam, Netherlands

ELIZABETH ZSIGA

Georgetown University, US



## Acknowledgments

This book has been a truly collaborative enterprise. It could never have been produced without the expertise and dedication of our contributing authors, to whom we owe our greatest debt. In our effort to foster dialogue across the subdisciplines of our field, we have asked contributors to take a broad perspective, to reflect on issues beyond their areas of particular specialization, and to neatly package their ideas for a diverse readership. In rising to meet this challenge, authors have consulted scholars and readings that interface with their own areas of expertise, endured a lengthy external review and extensive revision process, and in all cases produced chapters that we think will be useful to wide swaths of researchers. We thank the authors for their significant contributions.

The initial impetus for this book came from our students, who ask all the right questions about data (who? when? how much?) and analysis (why? how?). We hope they find answers and new questions in these pages. We are also indebted to five anonymous reviewers who, at an early stage of this project, affirmed the usefulness of the proposed collection and made crucial recommendations regarding its scope, structure, and balance of coverage.

For their expert advice and truly generous contributions, we thank an army of reviewers and advisors, none of whom of course bears any responsibility for the choices ultimately made: David Adger, Paul Baker, Joan Beal, Claire Bowern, Kathryn Campbell-Kibler, Charles Clifton, Paul De Decker, Judith Degen, Susanne Gahl, Cynthia Gordon, Matthew Gordon, Tyler Kendall, Roger Levy, John Moore, Naomi Nagy, Jeanette Sakel, Rebecca Scarborough, Morgan Sonderegger, Naoko Taguchi, Marisa Tice, Anna Marie Trester, and Alan Yu.

We would also like to acknowledge our departments: the Department of Linguistics at Stanford University and the Department of Linguistics at Queen Mary University of London. The range of methods represented in the work of our closest colleagues continues to inspire us and push our field forward. Thanks also to the Department of Linguistics at Georgetown University and the Department of English at the National University of Singapore, where we spent significant time during the production of this volume.

Helena Dowson, Fleur Jones, Gnanadevi Rajasundaram, Christina Sarigiannidou, Alison Tickner and the team at Cambridge University Press provided efficient and very patient support throughout the production schedule. Finally, special thanks to Andrew Winnard at Cambridge University Press for his encouragement and support. Like us, he recognized the many challenges of

xvi



Acknowledgments

xvii

developing such a project, but also shared our enthusiasm for its potential uses in a fast-developing field. We hope this book represents a proof of concept.

The editors and publisher acknowledge the following sources of copyright material reproduced in Chapter 8 and are grateful for the permissions granted:

Figure 8.1 Reprinted from *Journal of Memory and Language* 38, Allopenna, Magnuson, and Tanenhaus, Tracking the time course of spoken word recognition: evidence for continuous mapping models. Copyright 1998, with permission from Elsevier.

Figure 8.2 reprinted from:

- (a) *Journal of Memory and Language* 38, Allopenna, Magnuson, and Tanenhaus, Tracking the time course of spoken word recognition: evidence for continuous mapping models. Copyright 1998, with permission from Elsevier.
- (b) Cognition 73, Trueswell, Sekerina, Hill, and Logrip, The kindergarten-path effect: studying on-line sentence processing in young children, 89–134. Copyright 1999, with permission from Elsevier.
- (c) Cognition 109, Brown-Schmidt and Konopka, Little houses and casas pequeñas: message formulation and syntactic form in unscripted speech with speakers of English and Spanish, 274–80. Copyright 2008, with permission from Elsevier.
- (d) *Verb-Instrument Information During On-line Processing*, Rachel Sussmann, Copyright 2006, with permission from the author.

Figure 8.3 reprinted from:

- (a) *Journal of Memory and Language* 49, Kamide, Altmann, and Haywood, Prediction and thematic information in incremental sentence processing: evidence from anticipatory eye movements, 133–56. Copyright 2003, with permission from Elsevier.
- (b) *Cognition* 88, Weber, Grice, and Crocker, The role of prosody in the interpretation of structural ambiguities: a study of anticipatory eye movements, B63–B72. Copyright 2006, with permission from Elsevier.
- (c) Language and Cognitive Processes 26, Kaiser, Consequences of subject-hood, pronominalisation, and contrastive focus, 1625–66. Copyright 2011, reprinted by permission of Taylor & Francis Ltd, www.tandf.co.uk/journals.
- (d) *Cognition* 76, Arnold, Eisenband, Brown-Schmidt, and Trueswell, The rapid use of gender information: eyetracking evidence of the time-course of pronoun resolution, B13–B26. Copyright 2000, with permission from Elsevier.

Figure 8.4 Reprinted from *Cognitive Psychology* 49, Snedeker and Trueswell, The developing constraints on parsing decisions: the role of lexical-biases and referential scenes in child and adult sentence processing, 238–99. Copyright 2004, with permission from Elsevier.