

Set-Theoretic Methods for the Social Sciences

A Guide to Qualitative Comparative Analysis

Qualitative Comparative Analysis (QCA) and other set-theoretic methods distinguish themselves from other approaches to the study of social phenomena by using sets and the search for set relations. In virtually all social science fields, statements about social phenomena can be framed in terms of set relations, and using set-theoretic methods to investigate these statements is therefore highly valuable. This book guides readers through the basic principles of set-theory and then on to the applied practices of QCA. It provides a thorough understanding of basic and advanced issues in set-theoretic methods together with tricks of the trade, software handling, and exercises. Most arguments are introduced using examples from existing research. The use of QCA is increasing rapidly and the application of set theory is both fruitful and still widely misunderstood in current empirical comparative social research. This book provides the comprehensive guide to these methods for researchers across the social sciences.

Carsten Q. Schneider is Associate Professor in the Department of Political Science and Founding Director of the Center for the Study of Imperfections in Democracies at Central European University, Hungary.

Claudius Wagemann is Professor of Qualitative Social Science Methods at Goethe University, Frankfurt.

Strategies for Social Inquiry

Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis

Editors

Colin Elman, Maxwell School of Syracuse University John Gerring, Boston University James Mahoney, Northwestern University

Editorial Board

Bear Braumoeller, David Collier, Francesco Guala, Peter Hedström, Theodore Hopf, Uskali Maki, Rose McDermott, Charles Ragin, Theda Skocpol, Peter Spiegler, David Waldner, Lisa Wedeen, Christopher Winship

This new book series presents texts on a wide range of issues bearing upon the practice of social inquiry. Strategies are construed broadly to embrace the full spectrum of approaches to analysis, as well as relevant issues in philosophy of social science.

Published Titles

John Gerring, Social Science Methodology: A Unified Framework, 2nd edition Michael Coppedge, Democratization and Research Methods Thad Dunning, Natural Experiments in the Social Sciences: A Design-Based Approach

Forthcoming Titles

Diana Kapiszewski, Lauren M. MacLean and Benjamin L. Read, Field Research in Political Science

Jason Seawright, Multi-Method Social Science: Combining Qualitative and Quantitative Tools

Set-Theoretic Methods for the Social Sciences

A Guide to Qualitative Comparative Analysis

Carsten Q. Schneider and Claudius Wagemann

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107601130

Translated and adapted from *Qualitative Comparative Analysis (QCA) und Fuzzy Sets: Ein Lehrbuch für Anwender und alle, die es werden wollen* published in German by Verlag Barbara Budrich 2007, © Verlag Barbara Budrich 2007.

First published in English by Cambridge University Press 2012 as Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis © Cambridge University Press 2012.

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

Printed and bound in the United Kingdom by the MPG Books Group

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Schneider, Carsten Q., 1972– author.

Set-theoretic methods for the social sciences: a guide to qualitative comparative analysis / Carsten Q. Schneider and Claudius Wagemann.

pages cm. – (Strategies for social inquiry)

Includes bibliographical references and index.

ISBN 978-1-107-01352-0 (hardback) – ISBN 978-1-107-60113-0 (paperback)

1. Social sciences - Comparative method. 2. Social sciences - Mathematical models.

3. Set theory. $\,$ I. Wagemann, Claudius, author. $\,$ II. $\,$ Title.

H61.S379 2012

300.72-dc23 2012015930

ISBN 978-1-107-01352-0 Hardback ISBN 978-1-107-60113-0 Paperback

Additional resources for this publication at www.cambridge.org/schneider-wagemann

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In honor of Philippe Schmitter, wise advisor, generous colleague, and good friend.

Dedicated to Sheila, Giulia, and Leo, without whom this book would have been finished much sooner.

Contents

List of figures

	List of figures	page xii			
	List of tables	xiv			
	Acknowledgements	xvi			
	Introduction				
	Set-theoretic approaches in the social sciences	1			
	Qualitative Comparative Analysis as a set-theoretic				
	approach and technique	8			
	Variants of QCA	13			
	Plan of the book	16			
	How to use this book	19			
	_				
Part I	Set-theoretic methods: the basics	21			
	Sets, set membership, and calibration	23			
	1.1 The notion of sets	24			
	1.1.1 Sets and concepts	24			
	1.1.2 The pros and cons of crisp sets	24			
	1.1.3 Properties of fuzzy sets	27			
	1.1.4 What fuzzy sets are not	30			
	1.2 The calibration of set membership	32			
	1.2.1 Principles of calibration	32			
	1.2.2 The use of quantitative scales for calibration	33			
	1.2.3 The "direct" and "indirect" methods of calibration	35			
	1.2.4 Does the choice of calibration strategy matter much?	38			
	1.2.5 Assessing calibration	40			
2	Notions and operations in set theory	42			
	2.1 Conjunctions, Boolean and fuzzy multiplication,				
	intersection, logical AND	42			
vii	-				

Viii	Contents				
	2.2	Disjunctions Poolson and furmy addition union logical OD	45		
	2.2 2.3	Disjunctions, Boolean and fuzzy addition, union, logical OR Negations, complements, logical NOT	43 47		
			47		
	2.4	Operations on complex expressions 2.4.1 Rules for combining logical operators	48		
		2.4.2 Negation, intersection, and union of complex sets	49		
		2.4.3 Calculating membership in complex sets	51		
	2.5		52		
	2.6	Notational systems in set-theoretic methods	54		
3	Set i	relations	56		
	3.1	Sufficient conditions	57		
		3.1.1 Crisp sets	57		
		3.1.2 Fuzzy sets	65		
	3.2	Necessary conditions	69		
		3.2.1 Crisp sets	69		
		3.2.2 Fuzzy sets	75		
	3.3	Causal complexity in set-theoretic methods	76		
		3.3.1 Defining causal complexity	78		
		3.3.2 INUS and SUIN conditions	79		
		3.3.3 The notion of asymmetry	81		
		3.3.4 Set-theoretic methods and standard quantitative approaches	83		
4	Truth	tables	91		
	4.1	What is a truth table?	92		
	4.2	0	93		
		4.2.1 Crisp sets	93		
		4.2.2 Fuzzy sets	96		
	4.3	, e	104		
		4.3.1 Matching similar conjunctions	105		
		4.3.2 Logically redundant prime implicants	108		
		4.3.3 Issues related to the analysis of the non-occurrence			
		of the outcome	112		
Part II	— Nea	t formal logic meets noisy social science data	117		
5	Parameters of fit				
	5.1	Defining and dealing with contradictory truth table rows	120		
	5.2	Consistency of sufficient conditions	123		
	5.3	Coverage of sufficient conditions	129		

ix	Conte	Contents				
	5.4	Consistency of necessary conditions	139			
	5.5	Coverage of necessary conditions	144			
	5.6	Issues related to consistency and coverage	148			
6	Limi	ted diversity and logical remainders	151			
	6.1	Limited diversity in set-theoretic methods: how				
		to see it when it is there	152			
	6.2	Sources of limited diversity	153			
		6.2.1 Arithmetic remainders	154			
		6.2.2 Clustered remainders	154			
		6.2.3 Impossible remainders	155			
	6.3	What limited diversity is not	157			
	6.4	The Standard Analysis procedure: identifying				
		logical remainders for crafting plausible solution terms	160			
		6.4.1 The dimension of set relations	161			
		6.4.2 The dimension of complexity	165			
		6.4.3 The dimension of types of counterfactuals	167			
		6.4.4 The Standard Analysis procedure in a nutshell	175			
7	The Truth Table Algorithm					
	7.1	From the data matrix to truth table	179			
	7.2	Attributing an outcome value to each truth table row	182			
	7.3	Logically minimizing the truth table	186			
	7.4	Implications of the Truth Table Algorithm	190			
Part III	– Pote	ential pitfalls and suggestions for solutions	195			
	_					
8	Potential pitfalls in the Standard Analysis procedure and suggestions					
	for improvement					
	8.1	Beyond the Standard Analysis: expanding the types				
		of counterfactuals	198			
	8.2	The Enhanced Standard Analysis: forms of untenable				
		assumptions and how to avoid them	200			
		8.2.1 Incoherent counterfactuals I: contradicting the statement				
		of necessity	201			
		8.2.2 Incoherent counterfactuals II: contradictory assumptions	203			
		8.2.3 Implausible counterfactuals: contradicting common sense8.2.4 Putting the Enhanced Standard Analysis procedure	206			
		into practice	209			

Contents

rt IV	– Vari	iants of QCA as a technique meet QCA as an approach	251			
		9.2.3 A general treatment of skewed set membership in fuzzy-set analyses	244			
		9.2.2 The consistency of sufficient conditions and the problem of simultaneous subset relations	237			
		of trivialness	233			
	9.2	The analytic consequences of skewed set-membership scores 9.2.1 The coverage of necessary conditions and the problem	232			
		9.1.2 The appearance of false necessary conditions	227			
		9.1.1 Hidden necessary conditions	221			
	9.1	Pitfalls in inferring necessity from sufficiency solution terms	221			
	Potential pitfalls in the analysis of necessity and sufficiency and suggestions for avoiding them					
		logical remainders	217			
	8.4	Comparing the different strategies for the treatment of	213			
		8.3.1 Choosing entire truth table rows as good counterfactuals8.3.2 Formulating conjunctural directional expectations	212 215			
	8.3	Theory-Guided Enhanced Standard Analysis: complementary strategies for dealing with logical remainders	211			

10	Variants of QCA			253
	10.1	The tw	253	
	10.2	Multi-	value QCA	255
		10.2.1	Principles of mvQCA: notation and logical	
			minimization	256
		10.2.2	An assessment of mvQCA	258
	10.3	Set-the	eoretic methods and time	263
		10.3.1	Forms of causally relevant notions of time	264
		10.3.2	Informal ways of integrating notions of time	
			into set-theoretic methods	265
		10.3.3	Sequence elaboration	266
		10.3.4	Temporal QCA	269
11	Data analysis technique meets set-theoretic approach			275
	11.1	Recipe	e for a good QCA	275
		11.1.1	The appropriateness of set-theoretic methods	276
		11.1.2	The choice of the conditions and the outcome	276

χi

Contents

		11.1.3	The choice of the QCA variant	277
		11.1.4	Calibration of set-membership scores	277
		11.1.5	Analysis of necessary conditions	278
		11.1.6	Analysis of sufficient conditions	278
		11.1.7	Presentation of results	280
		11.1.8	Interpretation of results	280
		11.1.9	Reiteration of the research cycle	281
		11.1.10	The use of software	282
	11.2	Robust	tness and uncertainty in QCA	284
		11.2.1	How do we see robustness in set-theoretic methods	
			when it is there?	285
		11.2.2	The effects of changing calibration	287
		11.2.3	The effects of changing consistency levels	291
		11.2.4	The effect of dropping or adding cases	293
	11.3	The ev	aluation of theories in set-theoretic methods	295
		11.3.1	Why standard hypothesis testing does not fit into	
			set-theoretic methods	296
		11.3.2	The basics of theory evaluation in set-theoretic methods	297
		11.3.3	Extending theory evaluation by integrating consistency	
			and coverage	300
		11.3.4	Summarizing set-theoretic theory evaluation	304
	11.4	Set-the	eoretic methods and case selection	305
		11.4.1	Types of cases after a QCA	306
		11.4.2	Forms and aims of (comparative) within-case studies	
			after a QCA	308
		11.4.3	Post-QCA case selection principles	310
12	Looking back, looking ahead			313
	12.1	Lookir	ng back: the main topics of this book	313
	12.2		and misunderstandings	316
	12.3	•	ng ahead: tasks and developments in the coming years	318
	Gloss	arv		322
		ography		336
	Index			
	ınaex	,		346

Figures

0.1	Venn diagram for relation of sufficiency	page 5
0.2	Set-theoretic approaches in the social sciences	10
1.1	Membership in fuzzy set of <i>Länder</i> with underdeveloped all-day schools	
	plotted against percentage of pupils enrolled in all-day schools	36
3.1	Two-by-two table – sufficiency	59
3.2	Venn diagram – sufficiency	60
3.3	XY plots in crisp-set analysis – distribution of cases for	
	sufficient conditions	66
3.4	XY plot – distribution of cases for sufficient condition X	67
3.5	XY plot – fully consistent sufficiency solution	69
3.6	Two-by-two table – necessity	71
3.7	Venn diagram – necessity	72
3.8	XY plot – distribution of cases for necessary condition X	76
3.9	XY plot – non-consistent necessary condition	77
3.10	Two-by-two table – necessity and sufficiency	84
3.11	XY plot – contrasting perfect set relation with perfect correlations	86
4.1	Venn diagram with three conditions	94
4.2	Three-dimensional property space	98
4.3	Logical minimization of primitive expressions to prime implicants	110
4.4	Venn diagram with logically redundant prime implicant	112
5.1	Venn diagrams - consistent and inconsistent sufficient conditions	124
5.2	XY plot - consistent and inconsistent sufficient conditions	125
5.3	Venn diagrams - different levels of coverage sufficiency	130
5.4	XY plot - different levels of coverage sufficiency	132
5.5	Venn diagram - equifinal solution term and types of coverage	135
5.6	XY plot – condition STOCK, outcome EXPORT	142
5.7	Venn diagrams - trivial and non-trivial necessary conditions	145
5.8	XY plot – condition MA+STOCK, outcome EXPORT	147
5.9	XY plot - the tension between consistency and coverage of	
	sufficient conditions	149
6.1	Conservative, intermediate, and most parsimonious solution terms	172
6.2	Venn diagram - types of counterfactuals in Standard Analysis procedure	176

χij

xiii	List of figures				
7.1	XY plot for path C~P	189			
7.2	Steps in the Truth Table Algorithm	190			
7.3	XY plot combined with two-by-two table	192			
8.1	Venn diagram – types of counterfactuals, extended list	200			
9.1	Venn diagram - different sources of trivialness necessity	234			
9.2	XY plot - trivial necessary condition	235			
9.3	XY plots for condition PSR and outcomes U and ~U	242			
9.4	XY plot – four areas and eight potential subset relations	245			
10.1	Logical minimization of sequence of events	272			
11.1	XY plot with two-by-two table and types of cases	308			

Tables

1.1	Verbal description of fuzzy-set membership scores	page 29
1.2	Calibration of condition "many institutional veto points"	34
1.3	QUALITATIVE versus direct method of calibration for set	
	"many institutional veto points"	39
2.1	Important operations in set-theoretic methods	43
2.2	Determining membership in complex sets	52
2.3	Basic operations and notations in set-theoretic approaches	54
3.1	Sufficiency: stylized data matrix	59
3.2	Hypothetical data matrix with ten cases and set-membership scores	
	in three conditions and the outcome	61
3.3	Hypothetical data matrix with complements of three conditions	63
3.4	Hypothetical data matrix with some conjunctions	64
3.5	Hypothetical data matrix with fuzzy-set membership scores	68
3.6	Data matrix – necessity	71
3.7	Hypothetical data matrix with all complements of single conditions	
	and conjunction ~A+C	73
4.1	Data matrix with ten cases, three conditions, and outcome	95
4.2	Hypothetical truth table with three conditions	96
4.3	Hypothetical data matrix with fuzzy-set membership scores	97
4.4	Fuzzy-set data matrix with two cases	100
4.5	Fuzzy-set membership in ideal types for hypothetical data matrix	101
4.6	Fuzzy-set ideal types for hypothetical data matrix	101
4.7	Fuzzy-set membership in rows and outcome	102
4.8	Truth table derived from hypothetical fuzzy-set data	104
4.9	Example of hypothetical truth table	106
4.10	Prime implicant chart	111
5.1	Two-by-two tables – consistent and inconsistent sufficient conditions	124
5.2	Two-by-two tables - different levels of coverage sufficiency	131
5.3	Fuzzy-set membership in solution and outcome (Vis 2009)	136
5.4	Fuzzy-set membership in path PS and outcome (Vis 2009)	138
5.5	Two-by-two tables – consistent and inconsistent necessary conditions	140
5.6	Analysis necessity, single conditions (Schneider et al. 2010: 255)	142

xiv

χv

List of tables

5.7	Analysis necessity, functional equivalents (Schneider et al. 2010: 255)	146
6.1	Truth table with three conditions and limited diversity	162
6.2	Truth tables with all logically possible combinations of simulated values	
	for logical remainders	163
6.3	Hypothetical truth table with five conditions and limited diversity	170
7.1	Fuzzy values data matrix, 44 cases	180
7.2	Distribution of cases to ideal types	181
7.3	Fuzzy-set membership scores of cases in ideal type ~C~P~NR	183
7.4	Consistency values of ideal types	186
7.5	Truth table based on fuzzy-set data matrix	187
8.1	Truth table for outcome ~U (Vis 2009)	202
8.2	Truth table Lipset data (Ragin 2009)	205
8.3	Truth table, outcome CA (Ragin et al. 2003)	208
8.4	Truth table (Koenig-Archibugi 2004)	213
8.5	Types of assumptions included in Standard Analysis	
	vis-à-vis additional strategies	218
9.1	Truth table (Stokke 2004)	222
9.2	Truth table with logical contradictions and hidden necessary condition	225
9.3	Test of necessity, outcome Y	226
9.4	Crisp-set membership scores (Vis 2009)	229
9.5	Truth table, outcome U (Vis 2009)	230
9.6	Simultaneous consistent subset relation of X with both Y and ~Y	238
9.7	Simultaneous inconsistent subset relation of X with both Y and ~Y	240
9.8	Consistency of truth table rows for outcome and its complement	241
9.9	Consistency, PRI, and PRODUCT for simultaneous subset relation	243
11.1	Synopsis of software packages for performing set-theoretic analyses	283
11.2	Intersections of theory (T) and solution term (S) with types of cases	301
11.3	Post-QCA case selection principles	311

Acknowledgements

This book has a long history. In the process of writing it, we were fortunate to profit from interactions with many of our friends and colleagues. Above all, Charles Ragin has been a "necessary condition" – an extraordinary pleasant one – for writing this book, and not only for the obvious reason that, by inventing QCA, he is the person most singly responsible for putting settheoretic methods on the agenda. Over the past decade, he has also provided us with continuous support, always generously sharing his insights and new ideas

We also owe many thanks to colleagues who helped us in various ways in this enterprise: Damien Bol, Patrick Emmenegger, Daisuke Mori, Benoît Rihoux and Ingo Rohlfing took the enormous effort to read through the whole manuscript and provided us with excellent comments. Daniel Bochsler, Wiebke Breustedt, John Gerring, Gary Goertz, Bernard Grofman, James Mahoney, Dorothee McBride, Leonardo Morlino, Svend-Erik Skaaning, and Alrik Thiem read parts of the book and engaged with us in debates that were sometimes heated, but were always fruitful and friendly. We have also learned much from the many thought-provoking questions (and often intriguing answers) posed by the participants of the set-theoretic methods courses we have taught over the past decade. We are grateful for support on software-related issues provided by Adrian Dusa, Ronggui Huang, Kyle C. Longest, Alrik Thiem, Stephen Vaisey, and Mario Quaranta. In addition, Mario helped us enormously during the editing of the final version of the manuscript. Special thanks go to Colin Brown for his meticulous checking of not just one, but various versions of the English manuscript over the past year and a half.

We owe our thanks to the editors of the Strategies for Social Inquiry series, Colin Elman, John Gerring, and James Mahoney, for their input and their trust in the feasibility of this project, and to John Haslam and his team at Cambridge University Press for their professional support.

We have tried our best to make the most of all this help. All remaining omissions and mistakes are, of course, our sole responsibility.

xvi

xvii

Acknowledgements

Carsten Q. Schneider is grateful for financial support received from The Young Academy (Die Junge Akademie) and the German Academic Exchange Service (DAAD). Our home institutions during the writing period – the Central European University in Budapest and the Minda de Gunzburg Center for European Studies at Harvard University for Carsten, and the Istituto Italiano di Scienze Umane in Florence and New York University Florence for Claudius – made the completion of this book possible by granting us the necessary time and infrastructure.

Last but not least, we owe deep gratitude to our families and friends for their patience and for listening (or at least pretending to) when diverting dinner conversations into discussions on the pros and cons of set relations, untenable pregnant men, and the asymmetries of the world we live in.

