

	1 1 1 2 6 247 249 269 261 700
active flow control, 305, 401	early developments of, 347–348, 360–361, 709
active flow control on airfoils, see airfoils, flow	flow control devices, 401
control devices	for autogiros
actuator disk, 60, 93, 142, 166, 632, 637, 706, 742	RAF, 709
advance ratio, 95, 97, 98, 129, 159, 160, 162, 207,	Göttingen, 709
219, 220, 223, 261, 262, 284, 293, 294, 295,	for wind turbines, 747–750
303, 304, 318, 359, 575, 579, 580, 658	future design goals, 401
definition for a wind turbine, 732	Göttingen, 360, 709
definition of, 95	laminar flow type, 363, 401
effect on airframe airloads, 663	modifications to NACA 4- and 5-digit, 362-363
effect on hub wake, 677	NACA 4-digit, 361, 398
effect on local sweep angle, 547	NACA 5-digit, 361–362
effect on wake geometry, 578, 621, 622	NACA 6-series, 363
effect on wake position, 661	NACA HH-series, 363
effect on wake relative to empennage, 680	NASA RC-series, 400
effects on rotor-airframe performance, 661	OA-series, 399
for autogiro, 712	operating requirements for, 348–350
highest value of, 710	profile drag of, 296–300
advancing blade, 57, 58, 129, 146, 152, 162, 183, 208,	RAE-series, 399–400
220, 240, 290, 294, 295, 296, 302, 348, 396,	reverse flow, 408
398, 399, 483, 525, 578, 709	supercritical, 395, 396, 399
aerodynamic center, 375–376, 433, 440, 446, 449,	unsteady, see unsteady aerodynamics
468, 482, 484, 490, 497, 788	VR-series, 398–399
compressibility effects on, 375-376	airframe aerodynamics, 240, 304
definition of, 375	drag, 304
example calculation of, 377	drag reduction, 305
aerodynamic damping, 174, 180, 545-547	modeling of, 798–801
Aerospatiale, see Eurocopter	angle of attack
Agusta, 44	mean value of blades, 155
Agusta–Westland, 34, 44	of airfoil, 55, 156, 158, 184, 244, 361, 366, 369,
airfoils	373, 424
advanced design of, 398-400	compressibility effect on, 373
aerodynamics of, 368, 374	for zero-lift, 373
at high angles of attack, 407-409	unsteady effective, 447
at low angles of attack, 401-403	of rotor disk, 93, 96, 100, 161, 218, 227, 693,
compressibility effects on, see compressibility	698
effects of ballistic damage, 412	importance for autogiro, 699
forces and moments on, 371-374	anti-torque
modeling at high angles of attack, 407-409	coaxial rotor, 17, 28
modeling in attached flow, 401-403	difficulties in achieving, 6
modeling nonlinear characteristics, 403-407	early use of tail rotor, 19
modeling static characteristics, 401-409	pilot's controls for, 203
pressure distributions, 363–367, 370–371,	power required for, 226
392–394	use on VS-300, 32
synthesis of pressure distributions, 365-366	anti-torque devices
circulation controlled, 409–411	fan-in-fin, 43, 321–324
Clark-Y, 360	analysis of, 321–324
design for main rotor, 295-300	relative size of, 315

818 Index

NOTAR, 324-325 first successful, 29, 32 tail rotor, 314-321 height-velocity curve, 249-250 design requirements for, 319-320 ideal autorotation, 91 interactions with main rotor, 682-685 in forward flight, 246-248 power required, 226 means of recovery of safe flight, 91 size of, 315 phenomenon of, 693 types of, 318-319, 320-321 piloting, 93, 245, 246-248 weathercock stability of, 314 rate of descent in, 92, 246 autorotational index, 252 articulated rotor, see rotor, types of articulation, see blade articulation axial force, 368 by integration of pressure, 369 autogiro airfoil sections for, see airfoils azimuth angle, 55, 118, 172, 181, 222, 469, 553, 572, Cierva flying model of, 694 602, 609, 701 Cierva's Autogiros, 20-21 definition of, 55 definition of, 20, 693 intersection of BVI points, 505, 617 development of drag hinge for, 701 on a wind turbine, 737 development of flapping hinge for, 700, 701 directly orientable rotor, 712 bearingless rotor, see rotor, types of ground resonance on, 715 Bell Helicopter, 41-42, 48 jump take-off, 21, 713 HSL-1 tandem, 38 later developments of, 22, 36, 37 Models-30 and -40, 38 loss of interest in, 716 XV-3, XV-15, V-22, 327-328 Berliner, Émile and Henry, 16 low-speed capabilities of, 21 NACA research on, 710 BERP rotor, 44 performance design of, 301-304 effects on flight envelope, 303-304 analogy with a parachute, 703 Cierva-Glauert debate about, 702 tip shape of, 302-303 comparison with the helicopter, 708 wind tunnel experiments with, 295 descent speed, 695 Biot-Savart law, 598, 599-601, 603, 612, 614, 617, 629, 778, 780 disk angle of attack, 696 horizontal flight, 705 accuracy of segmentation approach, 601 propeller efficiency, 706 blade vertical flight, 704 aerodynamic environment at, 55 prerotating the rotor, 701 stalling, see stall towering take off, 714 taper, see taper types of tip shape, see swept tips C-1 Autogiro, 699 blade articulation, 4, 21, 171, 700 C-12 Autogiro, 701 flapping hinges, 21, 57, 171, 700, 701 C-19 Autogiro, 712 lead-lag hinges, 21, 171, 701 C-2 Autogiro, 699 blade element momentum theory (BEMT), 125-152 C-3 Autogiro, 699 application to a wind turbine, 738-741 C-30 Autogiro, 712 fan-in-fin analysis, 323 C-4 Autogiro, 699 fundamental equation for wind turbine, 737 C-6 Autogiro, 701, 702 history of, 125 Groen Brothers Hawk 4 gyroplane, 718 inflow equation, 127 PA-22, PA-36 autogiros, 715 blade element theory PCA-2 autogiro, 707 aerodynamic environment at, 116 Rotodyne gyroplane, 718 application to a wind turbine, 735-738 XV-1 gyroplane, 32, 718 axial flight, 117-124 autorotation, 20, 694 rotor power, 122 actual autorotation, 91, 695 rotor thrust, 119-122 autorotation diagram, 244-245 definition of, 116-117 autorotational index, 251-252 forward flight, 156-166 balance of forces on blades, 244, 697 velocity components, 157-158 blade element considerations, 242-245, 697 fundamental equations of, 118 definition of, 28, 694 history of, 115-116 effect of rotor inertia on, 245 induced velocity field, see inflow estimation of rate of descent in, 246-248 inflow at blade element, see inflow

profile power calculation in, 69, 140–141, 154	Coanda effect, 324, 409
simplifying approximations in, 118	coaxial rotors, 6, 8, 10, 14, 17, 24, 39, 46, 190, 241
blade flapping, see flapping	ABC concept, 328
blade loading coefficient, 77, 258, 285, 287, 303, 712	Cierva's first autogiro, 20
blade pitch, see pitch	definition of, 4
cyclic, 6	forward flight performance of, 240–241
blade twisting, 17	hovering performance of, 101–105
early use of, 25	Sikorsky's first design, 12
servo-tabs, 27	collective pitch, see pitch
stabovators, 27	complete induced velocity curve, see inflow
blade vortex interaction, 58, 488–489, 491–492,	compound helicopters, 47, 325–327
578–581	speed of, 325
CFD modeling of, 790	vertical drag on, 307
blade wake, see wakes	compound rotorcraft, 36, 47, 267, 287, 307, 338, 718
Bleecker, Maitland, 27	comprehensive rotor analyses, 805–808
Boeing Company, 38, 48	compressibility
CH-46 and CH-47 models, 38	tip relief, see tip relief
Boeing-Vertol, see Boeing Company	compressibility effects
boundary layers, 352–357	aerodynamic center, 375–376
equations of, 780–782	lift-curve-slope, 373–374
flow visualization of, 355, 356	Mach tuck, 395–396
pressure gradient effects on, 355–356	maximum lift coefficient, 394–395, 709
shear stress, 352–355 types of, 352–357	rotor power, 220–223
_ • •	coning, 183
Breguet	control plane, <i>see</i> reference planes control system, 188, 379
brothers, 12	· · · · · · · · · · · · · · · · · · ·
Louis, 21, 28	loads on, 318, 321, 525, 531, 710
Brennan, Louis, 17 Printal Haliconters, 28	Coriolis effects, 171, 173, 197 Cornu, Paul, 11
Bristol Helicopters, 38 Sycamore, 34	cyclic pitch, see pitch
BVI, see blade vortex interaction	cyclic pitch, see pitch
DV1, see blade voitex interaction	d'Amécourt, Ponton, 10
CAMRAD, 806	D'Ascanio, Corradino, 27
Cayley, Sir George, 9	Da Vinci, Leonardo, 8
ceiling, 216, 238	De Bothezat, Georges, 25
center of pressure, 377, 453, 484, 534, 545, 709	Deadman's curve, <i>see</i> autorotation
during dynamic stall, 526, 528, 559	density altitude, 214, 215, 216, 217, 229, 231, 232,
on airframe, 664	238, 250, 259, 733
on swept tip, 293	definition of, 214
relationship to aerodynamic center, 377	design
centrifugal forces, 171, 173, 174, 176, 178, 183, 195,	empennage, 311–313
700	horizontal stabilizer, 311–312
CFD	vertical stabilizer, 312–313
Euler equations, 776–777	fuselage, 304–311
finite-difference methods, 775	general requirements for, 277–278
finite-volume methods, 775	high-speed rotorcraft, 325–329
grids for, 790, 791, 794, 798	main rotor, 280–304
Navier–Stokes equations, 773–776	airfoil selection, see airfoils
vorticity transport equations, 777–779	blade twist, 290–292
chord force, see axial force	diameter, 281–283
Cierva, Juan de la, 20, 22, 693, 695, 697, 699, 700,	number of blades, 288–290
701, 702, 709, 712, 713, 715	planform and tip shape, 292–295
books of, 21, 704	solidity, 285–287
death of, 716	tip speed, 283–285
circulation control, 324, 325, 328, 409	performance guarantees on, 278–279
circulation controlled airfoils, see airfoils, circulation	specifications for, 278
controlled	tail rotor, see anti-torque devices
climb power, see power	tip shape, see swept tips

disk area, 62, 63, 64, 67, 69, 75, 80, 107, 110, 118,	effects of
225, 268, 285, 328, 727	airfoil shape, 551–553
fan-in-fin, 323	Mach number, 533–534
tail rotor, 318	mean angle of attack, 532-533
disk loading, 63, 64, 65, 70, 80, 144, 161, 282, 290,	reduced frequency, 533
315, 695, 696, 703	sweep angle, 547–551
definition of, 65	three-dimensionality, 553–556
design requirements, 281	time-varying velocity, 556–557
effect on autorotation, 246, 250	flow morphology of, 527–529
effect on autorotational rate of descent,	modeling, 535–543
92	by CFD, 526, 535, 541, 557
effect on height velocity diagram, 250	capabilities of, 541–543
effect on speed for minimum power, 235	semi-empirically, 536–540
effect on vortex ring state, 91, 255	occurence on wind turbines, 761
effective value, 75	on the rotor, 529–531
for a coaxial rotor, 104	stall flutter, 526, 545
for autogiro, 712	
human-powered helicopter, 332	Edison, Thomas, 10
of tail rotor, 319	Ellehammer, Jens, 14
of tilt-rotors, 327	endurance, 237–238
relationship to figure of merit, 71, 77	engines, 240, 278
relationship to power loading, 80	efficiency, 232
trends versus helicopter weight, 283	failure of, 246, 249
uniform, 130	gas turbine, 6, 40
values for VTOL aircraft, 65	reciprocating, 6, 25, 239
variable diameter rotor, 328	selection of number of, 233
Dorand, René, 28	specific fuel consumption, 232
download recovery, see drag	steam, 6, 24
drag	turboshaft, 6, 40, 239
airfoil	equivalence of feathering to flapping, 182
by integration of pressure, 368–371	equivalent flat-plate area, see drag
divergence, 396–398	equivalent solidity, see solidity, weighted
Mach number effects on, 396	Euler equations, 776–777
Reynolds number effects on, 133-134	Eurocopter, 43
viscous shear, 353–354	•
wave, 359	Fairey Aviation Company, 37
airframe, 240	fan-in-fin, see anti-torque devices
equivalent flat-plate area, 306, 307	blade element momentum theory analysis of,
fuselage, 304–310	323
parasitic, 304	simple momentum theory analysis of, 323
fuselage	fantail, see anti-torque devices, fan-in-fin
download recovery, 309–310	feathering, see pitch
minimization of, 304–305	fenestron, see anti-torque devices, fan-in-fin
prediction of, 305–310	figure of merit, 15, 70–71, 77, 138, 216, 280, 282,
strip method of estimation, 308–309	298, 299, 300, 412
vertical, 307-310	alternative form, 79, 156
panel methods, 305	comparison to a wind turbine, 733
rotor	definition of, 70
hub, 288, 306–307	effect of airfoil section on, 296
ducted fan, see anti-torque devices, fan-in-fin	effect of blade twist on, 290
Duhamel integral, 446–447, 458–459	effect of losses on, 144
inclusion of time-varying velocity effects,	effect of solidity on, 77, 284
456	effect of stall on, 71
recurrence solution of, 459-462	effect of tip shape on, 292
dynamic stall	effect of twist on, 138
aerodynamic damping in, 545–547	example of use of, 73
CFD modeling of, 791	in blade element theory, 145
definition of, 525–526	maximizing, 146, 298

maximum values of, 298	rotor thrust, 257–259
measured variation, 284, 292	wind tunnels, 261–262
of tilt-rotor, 327	ground resonance, 715
variation in, 70, 78	gyroplane, see autogiro
versus year of rotor development, 280	
flapping	Hafner, Raoul, 19, 22, 38
coning, 183	height-velocity curve, see autorotation
coupled with lead–lag motion, 196–198	helicopter
effect of aerodynamics on, 179–183	aerodynamic complexity of, 57
effects of hinge offset on, 186–188	compound design, 47, 325
equation of motion, 178–179	definition of, 1
equilibrium of, 171, 174–176	difficulties in attaining flight, 5
first studies of, 172	early historical literature on, 5
Fourier series representation of, 180 higher harmonics of, 185	first mass production of, 40 first successes, 26–40
hinge offset, 177, 178, 186–188	hovering flight, 55
lateral flapping, 185	human-powered, 331
longitudinal flapping, 183	limits in forward speed, 47, 58
natural frequency of, 180, 181, 183, 186	origin of name, 10
physical description of, 183–186	time-line of development, 6
with respect to reference planes, 192	high-speed rotorcraft, see design
flaps, 492	Hiller Company, 40
servo flap, 331	Hiller, Stanley, 40
tabs, 381	hingeless rotor, see rotor, types of
trailing edge, 492	horizontal stabilizer, 311–312
unsteady aerodynamics of, 492–502	hover
Flettner, Anton, 31	flow physics of, 55, 572-575
Florine, Nicolas, 28	momentum theory analysis of, 59-81
flow separation	wake modeling, 604-607
leading edge type, 387	hub
trailing edge type, 357, 387	wake, 677
flow visualization	hub drag, see drag
dynamic stall, 527	hub plane, see reference planes
rotor wakes, 568–572	Hughes Aircraft, see McDonnell-Douglas
Focke Achelis, Fa 330 Kite, 23	human-powered helicopter, 331–333
Focke, Henrich, 29	
Forliani, Enrico, 10, 24	ideal power, 67
free-vortex method, 602–604, 779	ideal twist, 122, 123, 128, 129, 130, 131, 133, 740
analysis of wind turbines, 751–757	of a wind turbine blade, 740
governing equation, 602–603	in-ground-effect (IGE), 259, 261
free-wake	airframe download recovery, 309
see free-vortex method, 779	indicial aerodynamics, 457–462
Froude, R. E., 60	chordwise pressure, 446 definition of, 446
Froude, W., 60	
fuel consumption, 47, 65, 80, 233, 235, 237–238, 240, 304	subsonic compressible flow, 465–492 validation with experiment, 480–483
furling, 731	induced power, see power
fuselage	induction ratio, see inflow
design of, see design	inflow, 83, 95, 97, 98, 115, 117, 120, 127, 128, 130
drag of, see drag	154, 179, 217, 219, 300, 610, 698, 699, 703
drag or, see drag	737, 738, 740
Glauert factor, 373, 392, 468	as affected by Prandtl tip loss, 125
ground effect	autogiro, 706
experimental studies of, 259–262	calculation of, 131
general description of, 257	determination by BEM theory, 125
in forward flight, 260–261	dynamic, 631
modeling of, 259–260, 803	effect of tip losses, 123
rotor power, 259	effect on blade coning, 183

inflow (cont.)	lifting-surface model, 598
equation, 95	Lock number, 179, 181
numerical solution of, 97	Loewy's problem, 441–442
validity of, 99, 739	longitudinal flapping, see flapping
evaluation of, 119	
for wind turbine, 727, 736	Mach number
gradient in, 578	critical value of, 364–365, 374
in autorotation, 245	definition of, 357
in decent, 243	effect of increasing, 357–359
in ground effect, 261	Mach tuck, see compressibility effects
induced	maneuvers, 525, 531, 560, 640–644
coefficient of, 67	energy methods, 263
complete induced velocity curve, 83 correction factor, 107	load factor definition, 263 MAV, see micro air vehicles
forward flight, 95	McDonnell–Douglas, 42
hover, 66	mean lift coefficient, 155, 712
inflow ratio, 95	Messerschmitt-Bölkow-Blohm (MBB) see
models	Eurocopter
dynamic, 166, 635–638	micro air vehicles, 300, 334, 351, 411
linear, 158–160	efficiency of, 280
Mangler & Squire, 161–166	Reynolds number effects on, 354
nonuniformity of, 120	Mil Company, 44
of tail rotor, 226, 318	Miles's problem, 450–453
prescribed wake, 604	subsonic flow, 490–492
rigid wake, 608	momentum theory, 60–88
transient, 633, 713	axial climb, 81–83, 87
transient, 633, 713	axial descent, 83–86, 87
Jerome, Ivan, 25	coaxial rotors, 101–105
Joukowski, 14, 25	conservation laws, 61
airfoils, 348	fan-in-fin analysis, 321–323
early helicopter, 14	forward flight, 93–100
Kutta–Joukowski theorem, 138, 786	Glauert's model, 93
Rutta Jourowski theorem, 150, 700	hover, 61–64
Kaman Aircraft Corporation, 39	nonideal effects, 69
Kaman, Charles, 39	predictions of power, 68, 70
Kamov Company, 46	tandem rotors, 106–109
Kellett Aircraft Company, 22, 36	validity of, 86–87
Kutta–Joukowski theorem, 138, 786	turidity or, oo or
Küssner's function, 448–450	natural frequency
approximations to, 450	flapping motion, 180, 186
upproximations to, 100	lead–lag motion, 195
lagging, see lead-lag	Navier–Stokes equations, 773–776
laminar boundary layer, see boundary layers	no feathering plane, <i>see</i> reference planes
laminar separation bubble, see separation bubble	noise, 58, 277, 284, 286, 290, 315, 320, 324, 483, 488
Laplace equation, 465, 783	489, 491, 579, 580
lateral flapping, see flapping	of NOTAR concept, 325
lead-lag	noncirculatory aerodynamics
effect of hinge offset on, 194	contribution to sharp-edged gust problem, 452
equilibrium of, 176–178	definition of, 432–433
natural frequency of, 195	in Theodorsen's result, 435, 436
lift	nonideal effects, 63, 68, 120
by integration of pressure, 368–371	normal working state, 90
coefficient	NOTAR, see anti-torque devices
maximum static value of, 79, 385–398	number of blades, 60, 68, 76, 288–290, 324
compressibility effects	aerodynamic effects of, 141, 288–290
lift-curve-slope, 373–374	effects on wind turbine, 742
maximum lift coefficient, 394–395	numerical diffusion, 777, 790, 797, 803
lifting-line model 598 787–789	prevention of, 795

Œhmichen, Étienne, 26	climbing, 226, 230–231
optimum hovering rotor, 135–138	coaxial rotors, 240-241
solidity of, 154	compressibility losses, 220-223
out-of ground-effect (OGE), 259	in terms of D/L , 100
	induced, 218–219
panel methods	parasitic, 100, 225-226
drag prediction use of, 305	profile, 219–223
for airfoils, 348	tail rotor, 226
for rotor-fuselage interactions, 675	tandem rotors, 241–242
see also surface singularity methods, 783	total, 227–228
parasitic drag, see drag	hover, 63
parasitic power, see power	universal power curve, 88
performance	in the wind, 726
axial climb, 216–217	induced
definition of, 212	correction factor, 68, 101
forward flight, 217–240	profile, 69
ceiling, 238	effect of airfoil shape on, 299–300
density altitude effect on, 229	power coefficient, definition of, 67
endurance, 237	power loading, 80–81
gross weight effect on, 228	actual, 80
in terms of D/L , 229–230	best, 81
maximum speed, 239	definition of, 80
minimum power, 233	ideal, 80
range, 235, 237	relationship to blade loading, 80
ground effect, see ground effect	power settling, see vortex ring state
hovering flight, 215–216	power-off landing, see autorotation
density altitude effect on, 215	
•	precession, 180, 189, 317 precessional stall, 317
gross weight effect on, 216	
Pescara, Raul, 17	precone angle, 173
Petroczy, Stephan, 14	preponderance weights, 320
Philips, W. H., 10	pressure
Piasecki Corporation, 38	distribution on an airfoil, see airfoils
PV-2, PV-3, 38	jump across rotor disk, 64
Piasecki, Frank, 38	pressure altitude
Pitcairn Company, 22, 36	definition of, 213
pitch	pressure coefficient
collective, 202	critical value of, 364–365
cyclic	definition of, 363–364
servo-tabs, 39	profile power, see power
equivalence to flapping, 182 lateral cyclic, 202	pusher tail rotor, see anti-torque devices, tail rotor
longitudinal cyclic, 202	quad tilt-rotor, 329
pilot's controls for, 202	1
pitching moment, 374–383	range, 237–238
aerodynamic center, 375–376	Rankine, William, 60
airfoil shape effects on, 378–383	reduced frequency
by integration of pressure, 368–371	definition of, 427
center of pressure, 377	values of, 427–428
evaluation by thin-airfoil theory, <i>see</i> thin-airfoil	reduced time
· · · · · · · · · · · · · · · · · · ·	
theory	definition of, 427–428
Mach tuck effect on, 396	reference planes
reference point for, 374–375	control plane, 192
tab effects on, 381–382	hub plane, 191
Platt-LePage	no feathering plane, 191
XR-1, 32	tip path plane, 191
potential equations, 783	reseparation, see leading edge stall
power	retreating blade, 57, 162, 184, 208, 295, 296, 302,
forward flight, 99	348, 483, 525, 531, 560

retreating blade stall, <i>see</i> dynamic stall reverse flow, 156, 219, 223, 225, 407,	sharp-edged gust problem calculation by CFD, 490
409	incompressible flow, see Küssner function
effect on rotor power, 223	subsonic compressible flow, 483–486
effect on section drag, 408	shear stress, see boundary layers
unsteady nature of, 409	shock wave
reverse flow theorems, 451–452, 490	interaction with boundary layer, 359
Reynolds number	strength of, 395, 398
definition of, 350	side-by-side rotors, 6, 10, 16, 29, 44
range on a rotor, 350–351	Sikorsky Aircraft, 41
Reynolds number effects on	early production helicopters, 40
drag, 354	RAH-66 Comanche, 41
stall characteristics, 389–392	S-70 (UH-60), 40
Richardson number, 596	VS-300, 32
Richet, Charles, 12	Sikorsky, Igor
root cut-out, 128, 136	early helicopter patent, 32
rotor	first helicopter concept, 12
acoustics	singularity methods
CFD modeling of, 801	see surface singularity methods, 783
aerodynamic environment in forward flight, 55,	sinusoidal gust, see Sears's function
57	•
airframe interference effects on, 58	smart rotor systems, 330
,	smoke flow visualization, 257, 569–570, 575
compressibility effects on, 58	solidity, 77, 118
efficiency, 4, 70	effect of blade sweep on, 153
noise	power/torque weighted, 153
BVI, 58	thrust weighted, 153
high speed impulsive, 58	weighted, 152–155
operational functions of, 4, 55	optimum planform, 154
solidity, 69, see solidity	tapered blades, 154–155
stalling, see stall	speed
tip vortices, see vortices	factors affecting maximum attainable,
torque coefficient	239–240
definition of, 67	to fly for
types of, 172	maximum endurance, 237
articulated, 173	maximum range, 235–236
bearingless, 174	minimum power, 233–235
hingeless, 174	square-cube law, 283, 307
teetering, 172	stabilator, 312
underslung, 173	stall
vibration, 58	effects on a wind turbine, 747
CFD modeling of, 801	flutter, 526
rotor trim, see trim	Mach number effects on, 392–398
rotor wake, see wakes	onset of, 77, 79, 385
CFD modeling of, 797	Reynolds number effects on, 389–392
rotor–airframe interaction, 657–678	types of, 70, 387–398
CFD modeling of, 773, 799, 801	dynamic, see dynamic stall
CI'D modernig of, 773, 799, 601	
C	leading edge, 387–388
Saunders-Roe, 44	shock induced, 359, 394
schlieren, 570	thin-airfoil, 387
Sears's function, 442–446	trailing edge, 387, 389
separation bubble	standard atmosphere, 212
laminar	standard day, 214
long, 387	state-space model
photograph of, 387	compressible flow, 478–480
short, 355, 387, 391	incompressible flow, 463–465
turbulent, 394	static droop, 282
settling with power, see vortex ring state	strakes, 310-311, 673-674
shadowgraphy, 570, 571, 572, 577, 581,	surface singularity methods, 783-786
584	drag prediction, 305

swashplate, 188	formation, 794
description of, 188–189	measurements of, 584-586
early applications of, 20, 28, 29, 188	models of, 586–598
for coaxial rotor, 190	natural condensation in, 55, 568
sweep, 153, 158, 292-294, 547	perturbations of, 582-584
swept tips, 58, 292	tower shaddow, see unsteady aerodynamics, wind
BERP blade, see BERP rotor	turbines
design of, 293–294	tractor tail rotor, see anti-torque devices, tail rotor
experiments with, 294–295	transitional boundary layer, see boundary layers
types of, 292–293	translational lift, 100
swirl, 68	traveling sharp-edged gust, see Miles's problem
synchropter, 31	trim
	equilibrium equation of, 204–207
tabs, see pitching moment	introduction to, 202
tail boom, 304, 310, 311, 674	types of, 203
tail rotors, see anti-torque devices	free-flight, 203
aerodynamic interactions, 682	wind-tunnel, 203
design requirements, 319	variation of control angles in, 207
direction of rotation, 316, 684	TsAGI, 44
precessional stall, 317	turbulence, 86, 572
thrust requirements, 315	airfoils, 385
tandem rotors	hub, 307
overlap, 108	hub wake, 677
performance of, 241–242	in vortices, 593
taper, 154	in wind tunnels, 387
effects on rotor performance, 292, 294	modeling, 535
hyperbolic, 136	turbulent boundary layer, see boundary layers
linear, 136, 137, 138	turbulent wake state, 90
teetering rotor, see rotor, types of	twist, 120, 290–292
flapping motion of, 199	effects of in forward flight, 290
Theodorsen's theory, 431–440	ideal, 122, 123
comparison with experiment, 437–438,	10041, 122, 120
439–440	underslung teetering rotor, see rotor, types of
limitations of, 482	universal power curve, see power
thin airfoil theory, 786–787	unsteady aerodynamics
modeling of trailing edge tabs, 381–382	attached flow, 428–429
pitching moment, 379–380	blade vortex interaction, 488–489
quasi-steady, 429–430	Duhamel integral, 446–447, 458–459
thrust coefficient	of wind turbines, 757–763
alternative definition of, 67	sources of, 424
definition of, 67	state-space modeling of, 463–465, 478–480
tilt-rotors, 47, 48, 66, 327–328	time-varying onset velocity, 453–457
early developments of, 48	wind turbines
XV-15, V-22, 48	dynamic stall, 761
tilt-wings, 47, 48, 328	tower shadow, 760
time-varying velocity, 453–457	to Net shado n, 700
tip loss, 68, 74, 122–124	Verne, Jules, 10
factors, 75–77, 122–124	vertical stabilizer, 312–313
for a wind turbine, 743	von Baumhaeur, A. G., 19
Prandtl method, 75	von Doblhoff, Friedrich, 32, 718
tip path plane, see reference planes	von Kármán, Theodore, 14
tip relief, 221–223	vortex ring state, 90, 252, 638
tip shape, see swept tips	blade twist effects on, 255
tip speed, 320	disk loading effects on, 255
definition of, 66	free-vortex solution for, 638
selection of, 80, 283–285	implications on flight boundary, 255
tip vortices, 584–598	modeling of, 803
aperiodic behavior of, 582	on tail rotor, 682
CFD modeling of, 794	vorticity transport solution for, 638
CID IIIOUCIIIIg OI, 177	vorucity transport solution for, 056

826 Index

vortex wake models, 598-644 Weir Company, 21, 702 acceleration methods, 617-618 autogiros, 22 W-5 & W-6 helicopters, 30 comparison with experiment, 621-627 free-vortex wakes, 614-627 W-9, 35 cost of, 617 Westland Helicopters, see Agusta-Westland numerical characteristics of, 618-620 solution methodologies, 615-616 turbulence in, 735 prescribed wakes wind models, 733 forward flight, 607-614 wind tunnel hover, 604-607 2-D testing, 387 vortices, see tip vortices airfoil interference effects, 370, 387 vorticity transport equations, 777-779 rotor interference effects, 262, see also ground-effect Wagner's function, 446-448 wind turbine approximations to, 447-448 blade element analysis of, 735-738 blade element momentum analysis of, 738-741 wake models, see vortex wake models wakes example of, 725 blade near wake, 424-427 furling, 731 CFD modeling of, 777, 797, 801, history of development of, 724 802 momentum analysis of, 727-731 effects of maneuvers on, 640-644 power features in forward flight, 575-581 control of, 731 features in hover, 572-575 efficiency of, 730 reprentative power curve, 731 hover contraction ratio, 63 power output from, 727 slipstream velocity, 62 yawed flow operation, 750 other features of, 582-584 windmill brake state, 90 tip vortices, see tip vortices visualization techniques for, 568-572 Yak Company, 46 Young, Arthur, 37 natural condensation, 55, 568-569 schlieren, 570-571 Yuriev, Boris, 13 shadowgraphy, 571-572 smoke, 257, 569-570 Zhukovskii, see Joukowski