Cambridge University Press 978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations William T. Sha Frontmatter More information

NOVEL POROUS MEDIA FORMULATION FOR MULTIPHASE FLOW CONSERVATION EQUATIONS

William T. Sha first proposed the porous media formulation in an article in *Nuclear Engineering and Design* in 1980, and later on with many improvements renamed it the novel porous media formulation (NPMF). The NPMF represented a new, flexible, and unified approach to solving real world engineering problems. Sha introduced a new concept of directional surface porosities and incorporated spatial deviation into the decomposition of all point dependent variables into the formulation. The former greatly improved resolution and modeling accuracy, and the latter made it possible to evaluate all interfacial integrals. A set of conservation equations of mass, momentum, and energy for multiphase flows via time-volume averaging has been rigorously derived for the first time. These equations are in differential-integral form, in contrast to a set of partial differential equations currently used. The integrals arise due to interfacial mass, momentum, and energy transfer.

Dr. William T. Sha is formerly a senior scientist at Argonne National Laboratory and the former director of the Analytic Thermal Hydraulic Research Program and the Multiphase Flow Research Institute. He has published more than 290 papers in the field of thermal hydraulics. He is the recipient of many awards, including the 2005 Technical Achievement Award from the Thermal Hydraulic Division (THD) of the American Nuclear Society (ANS). The highest award given by the THD, "for many outstanding and unique contributions to the field of two phase flow and nuclear reactor design and safety analyses through the development and application of novel computational technique for analyzing thermal hydraulic behavior and phenomena, the development of NPMF of conservation equations used in the COMMIX code, development of boundary fitted coordinates transformation method used in BODYFIT code." He also received the 2006 Glenn T. Seaborg Medal from ANS "for outstanding contributions in understanding multi-dimensional phenomena of natural circulation and fluid stratification in reactor components and systems during normal and off-normal reactor operating conditions" and the 2007 Samuel Untermyer II Medal from ANS "in recognition of pioneering work in the development of significant improvements in NPMF for multiphase flow with far reaching implications and benefits for water cooled reactor components and systems." Most recently he was given the 2008 Reactor Technology Award from ANS "for outstanding leadership and exceptional technical contribution for the U.S. Department of Energy's Industrial Consortium in developing computer codes for intermediate heat exchangers and steam generators of Liquid Metal Fast Breeder Reactors which are based on the NPMF."

Cambridge University Press 978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations William T. Sha Frontmatter <u>More information</u>

Novel Porous Media Formulation for Multiphase Flow Conservation Equations

William T. Sha

Multiphase Flow Research Institute, Director Emeritus Argonne National Laboratory Sha & Associates, Inc., President

Cambridge University Press
978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations
William T. Sha
Frontmatter
More information

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9781107012950

© William T. Sha 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Sha, William T.
Novel porous media formulation for multiphase flow conservation equations /
William T. Sha.
p. cm
Includes bibliographical references and index.
ISBN 978-1-107-01295-0 (hardback)
1. Multiphase flow – Mathematical models. 2. Conservation laws (Mathematics)
I. Title.
TA357.5.M84S52 2011
532'.56-dc22 2011009810

ISBN 978-1-107-01295-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

This book is dedicated to

My Parents

Mr. and Mrs. C. F. Sha, and particularly with great affection to my mother, Yunei Gee Sha, whose love and advice have inspired me to obtain the best education, work hard, and contribute to society.

My Wife

Joanne Y. Sha for understanding that I have been working very hard and have not had much time for her. I am deeply grateful she has helped me for so many years.

My Daughters and Son

Ms. Andrea E. Sha Hunt and her husband, Gregory L. Hunt Dr. Beverly E. Sha and her husband, Dr. Thomas E. Liao, and granddaughter, Grace A. Liao Professor William C. Sha and his wife, Shawna Suzuki Sha, and grandsons, Samuel Sha and Walter Sha

My Friends The late Professors B. T. Chao and S. L. Soo for collaborating tirelessly and working with me for more than 25 years. Their contributions are acknowledged.

Cambridge University Press
978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations
William T. Sha
Frontmatter
More information

Contents

Figures and Table	<i>page</i> xv
Foreword	
by Alan Schriesheim	xix
Foreword	
by Wm. Howard Arnold	xxi
Foreword	
by Charles Kelber	xxiii
Nomenclature	xxvii
Preface	XXXV
Acknowledgments	xliii
1 Introduction	1
1.1 Background information about multiphase	
flow	2
1.2 Significance of phase configurations	
in multiphase flow	6
1.3 Need for universally accepted formulation	
for multiphase flow conservation equations	8
2 Averaging relations	12
	vii

Cambridge University Press
978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations
William T. Sha
Frontmatter
More information

viii Contents 2.1 Preliminaries 13 2.2 Local volume average and intrinsic volume average 14 2.3 Local area average and intrinsic area average 15 2.4 Local volume averaging theorems and their length-scale restrictions 17 2.5 Conservative criterion of minimum size of characteristic length of local averaging volume 21 3 Phasic conservation equations and interfacial 3.1 Phasic conservation equations 23 25 3.2 Interfacial balance equations 4 Local volume-averaged conservation equations 4.1 Local volume-averaged mass conservation equation of a phase and its interfacial balance equation 27 4.2 Local volume-averaged linear momentum equation and its interfacial balance equation 29 4.3 Local volume-averaged total energy equation and its interfacial balance equation 33 4.4 Local volume-averaged internal energy equation and its interfacial balance equation 36 4.5 Local volume-averaged enthalpy equation and its interfacial balance equation 38 4.6 Summary of local volume-averaged conservation equations 41 4.6.1 Local volume-averaged mass conservation equation 41 4.6.2 Local volume-averaged linear momentum conservation equation 42

Cambridge University Press
978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations
William T. Sha
Frontmatter
More information

Contents				ix	
		4.6.3	Local vo	olume-averaged energy	
			conserv	ation equations	43
			4.6.3.1	In terms of total energy E_k ,	
				$E_k = u_k + \frac{1}{2}\underline{U}_k \cdot \underline{U}_k$	43
			4.6.3.2	In terms of internal energy u_k	44
			4.6.3.3	In terms of enthalpy h_k	45
	4.7	Summ	ary of lo	cal volume-averaged interfacial	
		balanc	e equation	ons	45
		4.7.1		olume-averaged interfacial mass	
		. – .		equation	45
		4.7.2		olume-averaged interfacial	16
linear momentum balance equation			-	46	
4.7.3 Local volume-averaged interfacial energy balance equation			-	46	
				-	40
				Total energy balance (capillary	47
				energy ignored)	47
				Internal energy balance	
	(dissipation and reversible work				
			j	ignored)	47
			4.7.3.3	Enthalpy balance (capillary	
			(energy ignored)	47
5	Tim	e aver:	aging of	local volume-averaged	
				tions or time-volume-averaged	
			-	tions and interfacial balance	
					48
			postulate		48
	5.2	Usefu	l observa	ition	53
	5.3	Time-	volume-a	averaged mass	
		conser	vation e	quation	54

Cambridge University Press
978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations
William T. Sha
Frontmatter
More information

x			Contents
	5 4		
	5.4	Time-volume-averaged interfacial	50
		mass balance equation	59
	5.5	8	60
	56	conservation equation Time-volume-averaged interfacial linear	00
	5.0	e	72
	5.7	momentum balance equation Time-volume-averaged total energy	73
	5.7	conservation equation	75
	5.8	Time-volume-averaged interfacial total ener	
	5.0	balance equation (capillary energy ignored)	.gy 88
	5.9	Time-volume-averaged internal energy	00
	5.9	conservation equation	90
	5 10	Time-volume-averaged interfacial internal)0
	5.10	energy balance equation	100
	5 11	Time-volume-averaged enthalpy	100
	0.11	conservation equation	101
	5.12	Time-volume-averaged enthalpy balance	101
	0.112	equation (capillary energy ignored)	109
	5.13	Summary of time-volume-averaged	
		conservation equations	110
		5.13.1 Time-volume-averaged conservation	
		of mass equation	110
		5.13.2 Time-volume-averaged linear	
		momentum conservation equation	111
		5.13.3 Time-volume-averaged total energy	
		conservation equation	112
		5.13.4 Time-volume-averaged internal energy	gy
		conservation equation	113
		5.13.5 Time-volume-averaged enthalpy	
		conservation equation	113
	5.14	Summary of time-volume-averaged interfact	ial
		balance equations	114

Cambridge University Press
978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations
William T. Sha
Frontmatter
More information

Con	tents	6		xi
		5.14.1	Time-volume-averaged interfacial mass	
			balance equation	114
		5.14.2	Time-volume-averaged interfacial	
			linear momentum balance equation	115
		5.14.3	Time-volume-averaged interfacial total	
			energy balance equation	115
		5.14.4	Time-volume-averaged interfacial	
			internal energy balance equation	115
		5.14.5	Time-volume-averaged enthalpy	
			balance equation	116
6	Tim	ne avera	aging in relation to local volume	
	ave	raging	and time-volume averaging versus	
	volu	ıme-tir	ne averaging	. 117
			averaging in relation to local volume	
		averag	ging	117
	6.2	Time-	volume averaging versus volume-time	
		averag	ging	121
7	Nov	vel nor	ous media formulation for single phase	
		-	phase with multicomponent	
		-		. 125
	~ ~		MIX code capable of computing detailed	
			flow fields with fine computational mesh	
	and high-order differencing scheme			128
			Case (1): Von Karmann vortex	
			shedding analysis	128
		7.1.2	Case (2): Shear-driven cavity flow	
			analysis	134
		7.1.3	Some observations about higher-order	
			differencing schemes	138

Cambridge University Press
978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations
William T. Sha
Frontmatter
More information

xii		C	ontents
	7.2	COMMIX code capable of capturing essential	
	,.2	both macroflow field and macrotemperature	
		distribution with a coarse computational mesh	140
		7.2.1 Case (6): Natural convection	
		phenomena in a prototypical	
		pressurized water reactor during a	
		postulated degraded core accident	140
		7.2.1.1 Heat transfer	144
		7.2.1.2 Natural convection patterns	145
		7.2.1.3 Temperature distribution	145
		7.2.2 Case (7): Analysis of large-scale tests	
		for AP-600 passive containment cooling	5
		system	149
		7.2.2.1 Circumferential temperature	
		distribution	152
		7.2.2.2 Condensation and evaporation	
		rate	154
		7.2.2.3 Air partial pressure and	
		containment pressure	155
		7.2.2.4 Condensation and evaporating	100
		film thickness	156
			150
		7.2.2.5 Temperature distributions at	150
	72	various locations Conclusion	156 158
	1.3	Conclusion	138
8	Dis	cussion and concluding remarks	160
	8.1	Time averaging of local volume-averaged	
		phasic conservation equations	161
		8.1.1 Length-scale restriction for the local	
		volume average	162
		8.1.2 Time scale restriction in the time	
		averaging	163

Cambridge University Press
078-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations
Villiam T. Sha
Frontmatter
Aore information

Contents	S		xiii
	8.1.3	U	
	8.1.4	equations are in differential-integral form Unique features of	165
		time-volume-averaged conservation equations	166
8.2	Novel	porous media formulation	168
	8.2.1	Single-phase implementation	169
	8.2.2	Multiphase flow	171
8.3	Futur	e research	172
8.4	Summ	nary	176
APPEN	DIX A:	Staggered-grid computational system	. 179
APPEN	DIX B:	Physical interpretation of	
		$\nabla \alpha_k = -v^{-1} \int_{A_k} \underline{n}_k dA \text{ with } \gamma_v = 1 \dots$	184
APPEN	DIX C:	Evaluation of ${}^{t}\langle {}^{3i}\langle \underline{\underline{\tau}}_{k}\rangle\rangle$ for non-Newtonian fluids	188
APPEN	DIX D:	Evaluation of ${}^{t}\langle {}^{2i}\langle \underline{J}_{qk}\rangle\rangle$ for isotropic conduction with variable conductivity	191
Referenc	ees		193
Index			201

Figures and Table

Figures

1.1	Significance of phase configurations in multiphase	
	flows	page 7
2.1	Multiphase flow system with stationary and solid	
	structures (local averaging volume v with	
	enveloping surface A)	13
6.1	Volume fraction in one-dimensional flow	119
6.2	Variation of f_k with time at fixed point	122
7.1	Configuration of experimental facility and	
	computational modeling for Von Karmann vortex	
	shedding analysis	129
7.2	Velocity vector plot from Von Karmann vortex	
	shedding analysis	130
7.3	Experimentally determined streakline and	
	predicted velocity vector	130
7.4	Experimentally determined and predicted	
	streaklines from Von Karmann vortex shedding	
	analysis	131
7.5	Enlarged view of computed streaklines shown in	
	Fig. 7.4	131

xvi

Cambridge University Press
978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations
William T. Sha
Frontmatter
More information

Figures and Table

7.6 Time variation of fluctuating axial velocity in wake	
region at $Re = 550$ during Von Karmann vortex	
shedding analysis	132
7.7 Strouhal numbers experimentally determined and	
computed by Davis et al. [38] and predicted by	
current LECUSSO [40]	132
7.8 Time variation of fluctuating axial velocity in wake	
region at $Re = 251$ during Von Karmann vortex	
shedding analysis	134
7.9 Computational region for shear-driven cavity flows	135
7.10 Velocity vector at $Re = 1,000 (40 \times 40 \text{ meshes})$ for	
shear-driven cavity flows	136
7.11 Lateral velocity component from present	
calculations and from calculation of Ghia et al. [39]	
at $Re = 1,000 (40 \times 40 \text{ meshes})$ for shear-driven	
cavity flows	136
7.12 Velocity vector at $Re = 5,000 (40 \times 40 \text{ meshes})$ for	
shear-driven cavity flows	137
7.13 Velocity vector at $Re = 10,000$ for shear-driven	
cavity flows	137
7.14 Streamline pattern for primary, secondary, and	
additional corner vortices obtained by Ghia	
et al. [39]	139
7.15 Schematic diagram for Westinghouse natural	4.44
convention test	141
7.16 Schematic layout of three-dimensional model of	1 1 1
Westinghouse experiment	141
7.17 Axial partitioning used in numerical model $(I = 0)$	140
(I=8)	142
7.18 Numerical models of right-side steam generator:	
(a) previous model and (b) new model of tubular	142
steam generator	143

Figures and Table	xvii
7.19 Horizontal partitioning used in numerical model	
(K=9)	143
7.20 Horizontal partitioning of secondary cooling	
system ($K = 12$)	144
7.21 Velocity field in plane $(I = 8)$	146
7.22 Velocity field in plane $(I = 9)$	146
7.23 Isotherms showing temperature distribution in	
plane $(I = 8)$, °C	147
7.24 Isotherms showing temperature distribution in	
plane $(I = 9)$, °C	147
7.25 AP-600 passive containment cooling system (PCCS)	149
7.26 Computational mesh representation for LST on	
<i>R-Z</i> cross section	150
7.27 Computational mesh representation for LST on	
$R-\theta$ cross section with $J_{\text{max}} = 8$	151
7.28 (a) Velocity distribution at $J = 4$ of test 1, (b)	
Normalized temperature distribution at $J = 4$ of test	
1, and (c) Steam mass fraction (%) distribution at	
J = 4 of test 1	151
7.29 Calculated and measured normalized	
circumferential wall temperature distribution of	
inside surface at top of cylindrical vessel of test 1	152
7.30 Calculated and measured normalized	
circumferential wall temperature distribution of	
inside surface at middle of cylindrical vessel of	
test 1	152
7.31 Calculated and measured normalized	
circumferential wall temperature distribution of	
inside surface at bottom of cylindrical vessel of	
test 1	153
7.32 Calculated and measured normalized temperature	
distribution of moist air in annulus at various	
elevations of test 1	153

ambridge University Press
78-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations
Villiam T. Sha
rontmatter
fore information

xviii

Figures and Table

7.33	Calculated and measured condensation rate	154
7.34	Calculated and measured evaporation rate	154
7.35	Calculated and measured air partial pressure at	
	upper and lower dome	155
7.36	Calculated and measured air containment pressure	155
7.37	Streamwise variation of condensation and	
	evaporating film thickness at $J = 4$ of test 1	156
7.38	Streamwise normalized temperature distribution	
	of inside and outside vessel wall surfaces,	
	condensation, and evaporation film interfaces	156
A.1	Construction of cell volumes	180
A.2	Cell volume around point 0. in i , j , k notation	180
A.3	Staggered grid	181
A.4	Momentum control volumes	182
B .1	Physical interoperation of Eq. 2.4.9 for $\gamma_v = 1$	184

Table

7.1	Comparison of simulated and measured heat	
	transfer	144

Cambridge University Press 978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations William T. Sha Frontmatter More information

Foreword

Dr. William T. Sha's longstanding technical achievements and outstanding contributions in the nuclear reactor field are well known both in the United States and abroad. As the director of the Argonne National Laboratory (ANL), I had the privilege of working with Dr. Sha for more than a decade during which he markedly enhanced the reputation of ANL's international reactor programs as the director of the Analytical Thermal Hydraulic Research Program and Multiphase Flow Research Institute. Over many years, his rare combination of analytical rigor and creative insight allowed him to earn international recognition as a leader in the field of thermal hydraulics in both theoretical formulation and reactor design and safety analysis.

His recent work on novel porous media formulation for multiphase flow conservation equations is the subject of this book. "A set of conservation equations of mass, momentum, and energy for two-phase and multiphase flows via time-volume averaging has been rigorously derived for the first time. These equations are in differential-integral

xix

Cambridge University Press 978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations William T. Sha Frontmatter <u>More information</u>

Foreword

form, in contrast to a set of partial differential equations used currently. The integrals arise due to interfacial mass, momentum, and energy transfer." This is an important discovery that will have far reaching implications for both academic and industrial applications. The recent tragic accident at the Fukushima Nuclear Reactor in Japan, which is a boiling-water reactor involving two-phase or multiphase flows, makes the subject of this book even more timely and important.

I have been most impressed by the depth of Dr. Sha's technical knowledge in the area of thermal hydraulics of nuclear reactors. Most importantly, he has always been at the cutting edge of innovation and shares his knowledge with fellow workers, thus advancing the state of the art of thermal hydraulics. His enthusiasm and zest for technical challenges was amazing. It was a real pleasure to work with him.

Dr. Alan Schriesheim, Director Emeritus Argonne National Laboratory Member, National Academy of Engineering

ХΧ

Cambridge University Press 978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations William T. Sha Frontmatter More information

Foreword

When I was the manager of reactor physics in the Westinghouse Atomic Power Division [later called the Pressurized Water Reactor (PWR) Division], Dr. William T. Sha worked for me and was instrumental in our development of the first multi-dimensional integral calculation of nuclear-thermalhydraulic interaction named THUNDER code for the commercial PWRs. The reactivity feedbacks due to thermalhydraulics, including local subcooled and bulk boiling, control rod insertion, dissolved boron poison in the moderator, and fuel pellet temperature (Doppler effect) were explicitly accounted for. We were then designing Yankee Rowe, Connecticut Yankee, Edison Volta, and Chooz 1. He was clever, indefatigable, and a great asset in our development of the THUNDER codes (WCAP-7006, 1967) and designing these reactors. Plants based on this design are now found in more than half of the world's nuclear power plants. This code represented a quantum jump in design and performance of PWRs when it was successfully completed in 1967.

xxii

Foreword

Once again, Dr. Sha demonstrates innovation and lays the theoretical foundation to develop the novel porous media formulation for multiphase flow conservation equations. The starting point of the novel porous media formulation is Navier-Stokes equations and their interfacial balance equations; the local-volume averaging is performed first via local-volume-averaged theorems, followed by time averaging. A set of conservation equations of mass, momentum, and energy for multiphase systems with internal structures is rigorously derived via time-volume averaging. This set of derived conservation equations has three unique features: (1) the internal structures of the multiphase system are treated as porous media formulation - it greatly facilitates accommodating the complicated shape and size of the internal structures; (2) the concept of directional surface porosities is introduced in the novel porous media formulation and greatly improves modeling accuracy and resolution; and (3) incorporation of spatial deviation for all point dependent variables make it possible to evaluate interfacial mass, momentum, and energy transfer integrals. The novel porous media formulation represents a unified approach for solving real world multiphase flow problems.

Dr. Wm. Howard Arnold Retired Vice President of Westinghouse Electric Corp. Member, National Academy of Engineering Member, U.S. Nuclear Waste Technical Review Board (Presidential Appointee)

Foreword

Dr. William (Bill) T. Sha is insightful, inventive, and the epitome of professionalism in his technical work.

I have had extensive contacts with Bill Sha, first at Argonne National Laboratory, and later at the U.S. Nuclear Regulatory Commission's Office of Nuclear Regulatory Research. In the latter capacity, I was charged, following the accident at TMI-2, with developing and executing a plan of reactor safety research focused on severe accidents. A major problem facing us was that of knowing whether, when, and how a badly damaged nuclear reactor core could be cooled by natural convection. The obvious problem was that the coolant flow paths were not readily described analytically, even if we knew precisely what they were. We turned to Bill Sha for help with this problem. The response, in a refreshingly short time, was the COMMIX code.

Dr. Sha is the father of the COMMIX code. The code employs the (then) new porous media formulation pioneered by Dr. Sha. The formulation used concept of volume

xxiii

xxiv

Foreword

porosity, directional surface porosities, distributed heat source and sink, and distributed resistance and allowed computational analysis of complex geometries critical to power reactor safety analysis. Both conventional porous media and continuum formulations are subsets of this formulation. Dr. Sha's formulation represents a flexible and unified approach to computational fluid dynamics and heat transfer for solving practical engineering problems. Exemplifying Bill's insight, the COMMIX code has proved to be useful for a wide range of engineering design and analysis problems not limited to reactor safety.

The COMMIX code is widely used in the United States and internationally. It has received great attention because of its unique capabilities and features for analyzing inherently multidimensional phenomena such as fluid stratification, natural circulation, coupling effects between reactor core and upper and lower plenums, and so forth. Many foreign countries such as Germany, France, the United Kingdom, Italy, Finland, Japan, China, and South Korea have requested and adopted the COMMIX code and its formulation.

Dr. Sha and his group had the broad range of knowledge, skill, and inventiveness to solve critical engineering problems and acted on behalf of USNRC for an independent verification of the design and performance of passive containment cooling systems of AP-600 or 1000. His novel porous media formulation for multiphase flow conservation

Cambridge University Press
978-1-107-01295-0 - Novel Porous Media Formulation for Multiphase Flow Conservation Equations
William T. Sha
Frontmatter
More information

Foreword

equations made significant contributions in the area of reactor design and safety analysis.

Dr. Charles Kelber Retired Judge United States Nuclear Regulatory Commission (USNRC)

xxv