
1 Newton’s gravitational theory

It was occasioned by the fall of an apple,
As he sat in a contemplative mood . . .

William Stukeley,Memoirs of Sir Isaac Newton’s Life

Few theories can compare in the accuracy of their predictions with Newton’s theory of
universal gravitation. The predictions of celestial mechanics for the positions of the major
planets agree with observation to within a few arcseconds over time intervals of many
years. The discovery of Neptune and the rediscovery of Ceres are among the spectacular
successes that testify to the accuracy of the theory. But Newton’s theory is not perfect:
The predicted motions of the perihelia for the inner planets deviate somewhat from the
observed values. In the case of Mercury the excess perihelion precession amounts to
43 arcseconds per century. This small deviation was discovered through calculations by
LeVerrier in 1845, and it was confirmed by Newcomb in 1882. The explanation of this
perihelion precession became one of the early successes of Einstein’s relativistic theory
of gravitation.

Telescopic observations of planetary angular positions stretching over hundreds of
years are needed to detect the excess perihelion precession. However, with the develop-
ment of radar astronomy it has become possible to measure the distances to the inner
planets directly and very accurately by means of the travel time of a radio signal sent
from the Earth to the planet and reflected back. With such radar observations of dis-
tances, the small deviations from Newton’s theory can be detected after just a few years
of observation.

Although Newton’s theory is not perfect, it is in excellent agreement with obser-
vation in the limiting case of motion at low velocities in a weak gravitational field.
Any relativistic theory of gravitation ought to agree with Newton’s theory in this lim-
iting case. We therefore begin with a brief exposition of some aspects of Newton’s
theory.

1.1 The law of universal gravitation

According to Newton, the law governing gravitational interactions is “that there is a
power of gravity pertaining to all bodies, proportional to the several quantities of matter
which they contain . . . The force of gravity towards the several equal parts of any body
is inversely as the square of the distance of places from the particles” (Newton, 1686).
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2 Newton’s gravitational theory

If one particle (m′) is at the origin and the other (m) is at a distance r, then the force is
in radial direction, and it has a magnitude

F = Gmm′

r2
(1.1)

The value of the gravitational constant in Eq. (1.1) is G = 6.6743 × 10−8 dyne · cm2/g2.
Strictly speaking, the masses that enter the force law (1.1) are the gravitational masses,

which are the sources and the “receptors” of gravitation, in the same way that the
electric charge is the source and the receptor of electromagnetic forces. In principle, the
gravitational mass is distinct from the inertial mass, which enters on the left side of
the equation of motion, ma = F . Experimentally, these two kinds of masses are found
to be equal, and we will examine the experimental evidence for this equality in Section
1.6. In the following discussion of gravitational fields and potentials (Sections 1.1–1.4),
the masses are always gravitational.

If we adopt a naive interpretation of the force law (1.1), gravitation is action-at-
distance: A mass at one point acts directly and instantaneously on another mass even
though the other mass is not in contact with it. Newton had serious misgivings about
such a ghostly tug-of-war of distant masses and suggested that the interaction should be
conveyed by some material medium. The modern view is that gravitation, like electro-
magnetism and all other fundamental interactions, acts locally through fields: A mass at
one point produces a field, and this field acts on whatever masses with which it comes
into contact. The gravitational field may be regarded as the material medium sought by
Newton; the field is material because it possesses an energy density. The description of
interactions by means of local fields has the further advantage of leading to a relativistic
theory in which gravitational effects propagate at finite velocity. Instantaneous action-at-
distance makes no sense as a relativistic theory because of the lack of an absolute time;
what is instantaneous propagation in one reference frame need not be instantaneous
in another. Of course, in the case of static or quasi-static mass distributions, retarda-
tion effects are insignificant, and there is then no practical distinction between local
interaction and action-at-distance.

In our Solar System, Newton’s theory is an excellent approximation. The condition
for the validity of Newton’s theory can be conveniently stated in terms of the potential
energy V(r), which for the inverse-square force (1.1) is

V (r) = −Gmm′

r
(1.2)

In general, we can say that relativistic effects will be small, provided that the potential
energy of the moving particle is much less than the rest-mass energy and that the speed
is much less than the speed of light. For a mass m orbiting with speed v around a central
mass m′, we can express these conditions as

|V (r)| � mc2 and v � c (1.3)

where c is the speed of light. Note that the condition on the potential energy is equivalent
to r 	 Gm′/c2. Hence the deviations from Newton’s theory are expected to be very
small if the distance from the central mass is sufficiently large and the speed sufficiently
low. For the Sun, with a mass m′ = M� ∼= 2.0 × 1033 g, we have Gm′/c2 ∼= 1.5 km,
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3 1.1 The law of universal gravitation

Table 1.1 Some laboratory measurements of the gravitational constant*

Experimenter(s) Year Method G (10−8 dyne · cm2/g2)

Cavendish 1798 Torsion-balance deflection 6.75(±5)**

Poynting 1891 Beam balance 6.70(±4)
Boys 1895 Torsion-balance deflection 6.658(±7)
Eötvös 1896 Torsion-balance period 6.66(±1)
Luther and Towler 1982 Torsion-balance period 6.6726(±5)
Gundlach and Merkowitz 2000 Torsion-balance acceleration 6.6742(±1)
Quinn et al. 2001 Torsion balance deflection 6.6756(±3)
Armstrong and Fitzgerald 2003 Torsion balance, compensated 6.6738(±3)
Schlamminger et al. 2006 Beam balance 6.6743(±1)

* Full references for experiments before 1909 are given by Poynting (1911) and by de Boer
(1984). Other references are given by Schlamminger et al. (2006).

** The number in parentheses is the experimental uncertainty in the last decimal listed.

and the condition r 	 1.5 km is obviously very well satisfied, even for comets with a
perihelion close to the surface of the Sun.

The gravitational constant G that appears in Eq. (1.1) is not known with the high
precision of other fundamental constants. Whereas the values of e and h̄ are known
to eight significant figures, the value of G is known to only five significant figures.
Measurements of G are difficult because of the extreme weakness of the gravitational
force between masses of laboratory size. The gravitational force between masses of
planetary size is not weak, but this is of no help in determining G, because only the
combination Gm′ (where m′ is the mass of the attracting body) appears in the equations
of motion of bodies with purely gravitational interactions; hence, planetary observations
cannot determine the separate values of G and m′.

Table 1.1 gives selected values of laboratory measurements of G. The values are listed
in chronological order; the earlier ones are included for their historical interest, and the
more recent values are the best available today. Figure 1.1 shows the torsion balance
used by Cavendish in his pioneering measurements of G late in the 18th century. A
beam with two small masses (B, B) is suspended from a thin fiber. These small masses
are gravitationally attracted by the two large lead spheres (W, W), and this results in
a measurable deflection of the beam through some angle around the vertical. From the
known torsional constant of the fiber and the geometry of the balance, the gravitational
constant can then be calculated.

The recent measurements by Gundlach and Merkowitz (2000) and by Schlamminger
et al. (2006) have given the most precise value for G. Surprisingly, these determinations
agree almost exactly, although they were performed by entirely different methods.

Gundlach and Merkowitz used a small, delicate torsion balance with four “large”
masses of 8 kg each mounted on a rotating turntable. During each experimental run, the
turntable was accelerated at exactly the rate needed to keep the small-mass beam at a
fixed angular distance from the large masses, with the torsion fiber in equilibrium (no
twist in the fiber). This procedure eliminates “noise” from the gravitational background
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4 Newton’s gravitational theory

Fig. 1.1 The apparatus used by Cavendish. The large lead spheres (W, W) attract the small spheres (B, B) which are
attached to the beam of the torsion balance. (From Cavendish, 1798)

and errors arising from irregularities in the torsion contributed by the twisted fiber of
the Cavendish arrangement.

In contrast, the apparatus of Schlamminger et al. was colossal, with two large masses
of 7.5 metric tons, consisting of pure mercury in two large cylindrical tanks, placed
alternatively below or above two test masses of copper of about 1 kg each. The test
masses were hung from the beam of an accurate beam balance, which registered the
change in force on the test masses when the large masses were shifted from below the test
masses to above them (see Fig. 1.2). Mercury was selected as the material for the large
masses because its uniform density permits accurate calculation of the gravitational
force exerted by each large mass on each test mass. The observed magnitude of the
change in force between the two alternative configurations shown in Figure 1.2 then
permits the evaluation of the gravitational constant G.

1.2 Tests of the inverse-square law

Is it possible that there are deviations from the inverse-square law at large distances or at
small distances? By “large distances” we mean distances of up to 104 or 105 light-years;
such distances are large compared with the dimensions of the Solar System, but small
compared with the typical dimensions of the universe.1 To investigate deviations from
the inverse-square law, it is expedient to begin with the general mathematical constraints
that relativistic field theory imposes on possible alternatives to the inverse-square law.

1 At very large distances (more than 107 light-years), there may be cosmological deviations from the 1/r2

force (see Section 7.3). These deviations are not our concern in the present context.
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5 1.2 Tests of the inverse-square law

Fig. 1.2 The apparatus used by Schlamminger
et al. The two test masses are
suspended by wires from the balance
arm at the top, and these wires pass
through the axial holes of the two large
mercury-filled tanks (gray). (a) In the
first configuration, the two tanks are
adjacent, and the gravitational pull is
downward on the upper test mass,
upward on the lower test mass. (b) In
the second configuration, the two
tanks are widely separated, and the
pulls on the test masses are reversed.
The beam balance detects this change
of pull on the test masses. (From
Schlamminger et al., 2006)

It is easiest to express these constraints in terms of the potential. The inverse-square
law has the special potential given by Eq. (1.2), whereas the general potential consistent
with field theory turns out to be

V (r) = −α
Gmm′

r
e−r/λ (1.4)

where α and λ are constants. This is called a Yukawa potential; obviously, the 1/r
potential (1.2) is a special Yukawa potential with α = 1 and λ = ∞. The constant λ is
called the range of the potential – if the distance r appreciably exceeds λ, the potential
and the force it produces become negligible. Besides (1.4), the only other possibility
is some superposition of several Yukawa potentials, which would mean that we are
dealing with several gravitational fields. In this case, the long-distance behavior of the
net potential is dominated by the Yukawa potential of the largest λ, because this potential
will linger to the largest distance.

If we focus on the Yukawa potential of the longest λ, what do the available observa-
tional data tell us about the value of this λ? We know that the range of the gravitational
force is very long – we know that our Galaxy as well as clusters of galaxies are held
together by gravitation, which implies that the gravitational potential does not deviate
much from 1/r out to distances of r ∼= size of cluster ∼= 1024 cm. From this we can
conclude that λ > 1024 cm.

Incidentally, the value of λ is related to the mass of the graviton, a (hypothetical)
particle of spin two, which is to gravitation what the photon is to electromagnetism.
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6 Newton’s gravitational theory

According to relativistic quantum theory, the mass of the graviton is inversely propor-
tional to the range of the Yukawa potential,

m� = h̄/λc (1.5)

If the gravitational force is inverse-square, the range of the force is infinite, and the mass
of the graviton is zero. If we rely on the observational limit λ > 1024 cm, we obtain
m� < 10−62 g for the graviton mass (Goldhaber and Nieto, 2010).

However, this mass limit rests on the assumption that the observed discrepancies
between the observed orbital velocities of stars in the outer reaches of galaxies and the
visible mass of these galaxies are accounted for by dark, invisible, mass (sometimes
called “missing mass”). This extra dark mass supposedly makes a large contribution to
the total mass M of the galaxy, and thereby endows the orbiting stars with a larger orbital
velocity, according to the usual relation between centripetal acceleration and gravita-
tional force, v2/r = GM/r2. The existence of such dark mass has been challenged, and
several schemes have been proposed for modifications of the behavior of gravity at large
distances. For instance, the MOND scheme (MOdified Newtonian Dynamics) proposed
by Milgrom (1983) conjectures that at large distances the strength of the gravitational
force is modified from 1/r2 to 1/r , so in the outer reaches of galaxies the force of gravity
remains much stronger than expected from Newton’s law. As a purely ad hoc scheme,
MOND has not found much favor among astronomers, who reckon that invisible, dark
mass is the lesser of two evils. In any case, for galaxies, the proposed modification of
gravity would come into play only at distances of about 1022 cm, so for shorter distances
we can still rely on the 1/r2 law.

It is of some interest to compare the 1024 or 1022-cm limit with the analogous observa-
tional limit on the mass of the photon that can be set by examination of galactic magnetic
fields. Such magnetic fields are known to extend over distances of 1021 cm, and with
this limit on λ we obtain mγ < 10−59 g for the photon mass. The mass of the graviton is
constrained to a smaller value than the mass of the photon because gravitational fields
are observed over larger distances than electromagnetic fields.

Because the value of λ for the long-distance part of the gravitational potential is
certainly very large, and because a value λ = ∞ is consistent with our observational data,
we will hereafter assume throughout this chapter that at large distances the gravitational
potential reduces to the Newtonian 1/r potential, so there are no long-distance deviations
from the inverse-square law.

There remains the question of possible deviations from the inverse-square law at
short distances, generated by an additional Yukawa potential with a short range λ.
Such deviations arise in speculative theories involving extra dimensions, such as string
theories. These extra dimensions are supposed to be tightly curled up on a short scale of
distance, so they remain unobservable. The extra dimensions probably come into play
only on a distance scale of 10−33 cm, the Planck distance that characterizes the scale
of gravitational quantum fluctuations. However, according to some radical conjectures,
one or more of the extra dimensions might have a distance scale much larger than
10−33 cm, maybe as large as a fraction of a millimeter. An extra dimension with such a
length scale would escape observation if all the familiar particles are somehow confined
to three dimensions (or, more precisely, four dimensions, if we count the time dimension),
and only gravity spreads into the extra millimetric dimension. In our 3-D space, the only
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7 1.2 Tests of the inverse-square law

observable effect would then be a modification of the behavior of gravity at millimeter
distances. For distances larger than the size of the extra dimension, the modification
of gravity can be approximately represented by a superposition of the Newtonian 1/r
potential and an extra Yukawa potential with a finite value of λ,

V (r) = −Gmm′

r
− α

Gmm′

r
e−r/λ (1.6)

In theories with an extra dimension, the constant λ is expected to be of the order of
magnitude of the size of the extra dimension, and α is expected to be of the order of
magnitude of 1.

Independently of the motivation underlying Eq. (1.6), experimenters often use this
equation to parametrize deviations from the Newtonian potential, not only on millimetric
scales but also on Solar-System scales. Note that Eq. (1.6) gives an inverse-square force
at large distances, but a complicated behavior for distances smaller than λ. However, for
r � λ the potential reduces to

V (r) ∼= −Gmm′

r
(1 + α) (1.7)

so the force reverts to an inverse-square force, with a modified value (1 + α)G for the
gravitational constant. If the range λ of the Yukawa potential in Eq. (1.6) is of the order
of, say, a few hundred meters, then the gravitational constant measured in laboratory
experiments is (1 + α)G, whereas the gravitational constant for interplanetary forces
is G.

Limits on λ and on α can be extracted from a variety of orbital, geophysical, and
laboratory observations and experiments.

Orbital Observations. High-precision measurements of the distances to Mercury,
Venus, Mars, and Jupiter have been obtained by radar ranging, either with radar signals
directly reflected by the surface of the planet or with signals returned by a transponder
on a spacecraft during a flyby or while in orbit around the planet. In combination
with determinations of planetary orbital periods, obtained by traditional astronomical
observations, the distance data permit a rigorous test of Kepler’s third law and therefore
a test of the inverse-square law. A recent analysis of all the available data imposes a tight
limit on the strength of the extra Yukawa potential, |α| < 10−8 for λ between 1010 and
1014 cm (Fischbach and Talmadge, 1999).

An analogous test can be performed for the orbits of the Moon or of artificial satellites
around the Earth. The distance to the Moon has been measured with high precision by
laser ranging, by means of laser pulses reflected by corner reflectors placed on the Moon
during the Apollo 11 mission. Such precise measurements have also been performed
on the LAGEOS artificial satellite. The lunar laser-ranging data show no detectable
deviations from the inverse-square law and set a tight limit of |α| < 10−10 for λ ≈ 1010

cm (Fischbach and Talmadge, 1999; also reviews by Adelberger, Heckel, and Nelson,
2003; Adelberger et al., 2009; and Newman, Berg, and Boynton, 2009).

Geophysical measurements. Geophysical investigations of the inverse-square law
hinge on a method for the determination of G first proposed by Airy in 1856. This
method exploits the variation of the acceleration of gravity with depth below the surface
of the Earth (or height above the surface). If we descend into a deep mine shaft, we find
that g varies with depth. For a uniform-density sphere, g would decrease linearly with
depth. However, the Earth is not of uniform density, and g at first increases with depth and
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8 Newton’s gravitational theory

then decreases. For illustrative purposes, assume that the mass distribution of the Earth
is spherical, with a density ρ(r) and a mass M(r) enclosed within the radius r. According
to the familiar Gauss law (which applies to gravitation as it applies to electrostatics), the
acceleration g(r) depends only on the mass enclosed within the radius r,

g(r) = G
M(r)

r2
(1.8)

and
dg

dr
= −2G

M(r)

r3
+ G

r2

dM(r)

dr

= − 2g(r)

r
+ G

r2
4πr2ρ(r) (1.9)

With this equation, the value of G can be calculated from the measured values of g(r) and
dg/dr, provided we know the density ρ. Equation (1.9) is only a rough approximation;
for an accurate determination of G via this method, we must also take into account the
rotation of the Earth and its ellipsoidal shape.

The Airy method cannot achieve the precision of laboratory determinations of G.
However, it can be exploited to test the inverse-square law, as follows. Find some region
where the density ρ is known, and measure g as a function of depth in the ground; then
calculate G from g and dg/dr, by means of Eq. (1.9) or, rather, by means of the accurate
version of this equation. If the result of this determination of G agrees with the laboratory
value G = 6.6743 × 10−8 dyne · cm2/g2, then the result verifies the inverse-square law;
if not, then it disproves the inverse-square law. Attempting to apply the Airy method,
experimenters have measured gravity as a function of depth in mine shafts (Stacey et al.,
1987), in boreholes in the ground (Thomas and Vogel, 1990), in the Greenland icecap
(Ander et al., 1989; Zumberge et al., 1990), and underwater in the ocean (Stacey and
Tuck, 1981; Zumberge et al., 1991). In a variant of the Airy method, experimenters have
also measured gravity as a function of height on TV transmitter towers several hundred
meters high (Eckhardt et al., 1988; Thomas et al., 1989).

Unfortunately, such geophysical tests of the inverse-square law are bedeviled by the
presence of underground density variations. In all these experiments, the investigators
seek to detect a deviation from the inverse-square law by comparing their measured
values of g with the values calculated from the inverse-square law. However, the calcula-
tions hinge on explicit or implicit assumptions about the homogeneity of the underground
material, and it is almost always easy to construct models of slightly inhomogeneous
mass distributions that account for the measured data without invoking any deviation
from the inverse-square law (Parker and Zumberge, 1989).

The measurements of the 1980s were mostly motivated by a proposal by Fischbach
et al. (1986), who resuscitated an earlier discarded proposal by Lee and Yang for a “fifth
force” proportional to baryon number. In contrast to Lee and Yang – who had assumed
that their baryon force was a 1/r2 force, with a 1/r potential – Fischbach et al. assumed
that their baryon force was based on a Yukawa potential. Such a baryon force would
produce two observable effects: It would alter the behavior of the force with distance
[as in Eq. (1.6)], and it would cause inequalities in the free-fall accelerations of bodies
toward the ground, because samples of equal masses but different baryon numbers
would experience different net forces. The fifth-force proposal stirred up considerable
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9 1.2 Tests of the inverse-square law

interest, especially when some measurements of weight as a function of height on
towers suggested a deviation from inverse-square. This deviation was later found to be
an illusion arising from problems with the data analysis, and the fifth force was finally
laid to rest by comparisons of different mass samples by means of torsion balances,
which showed that there was no effect attributable to baryon number (Adelberger et al.,
2009; Gundlach, Schlamminger, and Wagner, 2009).

Laboratory Measurements. A simple way to test the inverse-square law is to compare
the results of determinations of G by different experimenters. Most of these determina-
tions were made with torsion balances. If the force between the masses deviates from
the inverse-square law, then the result of a determination of G will depend on the size
of the torsion balance. Cavendish used a large balance, with a beam of about 2 m and
a distance of more than 10 cm between the attracting masses; modern versions of the
experiment used beams as small as 2 cm and a correspondingly smaller distance between
the attracting masses. The agreement between such determinations of G suggests that
there are no substantial deviations from inverse-square. However, in view of the rather
large experimental uncertainties in the determinations of G, the comparison does not
yield any stringent limits (de Boer, 1984).

Better limits on deviations from the inverse-square law have been obtained by exper-
iments specifically designed for this purpose. An elegant experiment by Spero et al.
(1980) used a torsion balance to explore the force field inside a long cylindrical shell
(see Fig. 1.3). If, and only if, the inverse-square law is valid, the force that such a
cylindrical shell exerts on a small spherical mass in its interior is exactly zero. In the
experiment, the small mass in Fig. 1.3 was moved back and forth relative to the cylin-
drical shell, to see whether it experiences any force when near the wall of the cylinder.
The absence of any detectable force set a limit of about |α| < 10−4 for λ ≈ a few
centimeters.

Fig. 1.3 Torsion balance with one mass suspended in the
interior of a long cylindrical shell. (From Spero et al.,
1980)
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10 Newton’s gravitational theory

Fig. 1.4 In this torsion balance the upper perforated plate (gray) is attached to a
cylinder, which is suspended from the torsional fiber (a short segment of fiber
can be seen at the top). The three spherical balls are used for fine adjustments
of the instrument. (From Kapner et al., 2007)

Similar results were obtained by torsion-balance experiments that compared the force
exerted by a small mass placed near a torsion balance with the force exerted by a
larger mass placed farther from the torsion balance (Chen, Cook, and Metherell, 1984).
Somewhat larger ranges of λ, reaching somewhere above 10 m, were explored with a
“gravity gradiometer” that directly tested that the gradients in the gravitational field of
a mass are those appropriate to a 1/r2 force (Hoskins et al., 1985).

Less stringent limits on |α|, but for larger hypothetical values of λ, were obtained by
experiments performed with hydroelectric pumped-storage reservoirs. The water level
of such reservoirs often rises or falls by tens of meters in just a few hours, and the change
of gravity that this produces in the region above the water depends on α and λ. The
change of gravity can be measured with a beam balance that has one of its pans above
the water level and the other pan below water level, all in a long waterproof tube (Stacey
et al., 1987). Alternatively, the change of gravity can be measured with a high-precision
gravimeter, that is, a delicate spring balance (Müller et al., 1990).

Several recent experiments were designed to search for Yukawa potentials with values
of λ of a millimeter or less, which are the values of greatest interest for theories with
extra dimensions. An experiment by Kapner et al. (2007) used a torsion balance of
a special design (see Fig. 1.4) in which the beams holding the small and the large
masses of the Cavendish balance are replaced by plates with circular holes around their
circumferences. The upper plate is suspended from a torsional fiber, but is placed very
close to the lower plate (0.05 mm, in some experimental runs). Whenever the holes in the
upper, suspended, plate are not aligned with those in the lower plate, the masses in the
interstices between the holes in the upper and lower plates attract each other and exert
a detectable torque on each other (this torque can be conveniently described as due to
an effective repulsion of the holes). However, below the bottom plate, there is a second,
hidden bottom plate (its edge is barely visible in Fig. 1.4), also with circular holes. This
second bottom plate has its holes aligned with the interstices of the first bottom plate;
furthermore, this second bottom plate is more massive, in proportion to the square of
the distance from the upper, suspended, plate. The net result is that the bottom plates in
combination exert (almost) no torque on the suspended plate. But this cancellation of
the effects of the two bottom plates fails if the force is not inverse square, and thus the
torsion balance is able to detect deviations from the inverse-square law.

This experiment established that |α| < 10−2 for λ > 0.2 mm, from which it can be
concluded that the size of the extra dimension, if any, is smaller than that. The experiment
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