Introduction to Elasticity Theory for Crystal Defects

An understanding of the elastic properties of crystal defects is of fundamental importance for materials scientists and engineers. This book presents a self-sufficient and user-friendly introduction to the anisotropic elasticity theory necessary to model a wide range of crystal defects.

With little prior knowledge of the subject assumed, the reader is first walked through the required basic mathematical techniques and methods. This is followed by treatments of point, line, planar, and volume type defects such as vacancies, dislocations, grain boundaries, inhomogeneities, and inclusions. Included are analyses of their elastic fields, interactions with imposed stresses and image stresses, and interactions between defects, all employing the basic methods introduced earlier. This step-by-step approach, aided by numerous exercises with solutions provided, strengthens the reader's understanding of the principles involved, extending it well beyond the immediate scope of the book.

As the first comprehensive review of anisotropic elasticity theory for crystal defects, this text is ideal for both graduate students and professional researchers.

R. W. Balluffi is Emeritus Professor of Physical Metallurgy at Massachusetts Institute of Technology. He has previously published two books and more than 200 articles in the field. He is a member of the National Academy of Sciences and has received numerous awards, including the Von Hippel Award, the highest honor of the Materials Research Society. "This is a very nice, self-contained and inclusive book. It should provide a foundation for the anisotropic elastic theory of defects and their interactions for years to come."

John Hirth, Ohio State University

"This is a wonderful book on the elastic foundations of point, line and surface defects in crystals. It is well written by a master experimental and theoretical craftsman who has spent a long professional life in this field. The mathematical coverage of crystal defects and their interactions unfolds in classic style." Johannes Weertman, Northwestern University

"Professor Balluffi has had a long and distinguished career in physics and materials science as a researcher and educator and made numerous landmark contributions to the theory of crystal defects and diffusion mechanisms. He taught discipline oriented graduate lecture courses on these subjects at both Cornell University and at MIT. In his present book he provides a detailed and comprehensive presentation of the Elasticity Theory of Crystal Defects in full anisotropic form. While mechanistic understanding of complex mechanical phenomena in crystalline solids can generally be had with isotropic elasticity, a full understanding of the ranges of applicability of mechanisms often necessitates the use of anisotropic elasticity employing advanced mathematical methodology. Such methodology is presently available only in scattered journal publications going back many years or in special treatises using advanced mathematical language of a large variety of forms and often involving frustrating statements of "it can be shown that". In his book Balluffi provides detailed and compassionate developments, that skip little detail, permitting the reader to obtain a rare and penetrating view into complex methodology with a uniform mathematical language that is familiar to most advanced students and professionals. This is certain to make this book a standard reference for years to come to physicists, materials scientists and practitioners in applied mechanics."

Ali Argon, MIT

Cambridge University Press 978-1-107-01255-4 - Introduction to Elasticity Theory for Crystal Defects R. W. Balluffi Frontmatter More information

Introduction to Elasticity Theory for Crystal Defects

R. W. BALLUFFI Massachusetts Institute of Technology

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107012554

© R. W. Balluffi 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Balluffi, R. W.
Introduction to elasticity theory for crystal defects / Robert Balluffi.
p. cm.
ISBN 978-1-107-01255-4 (Hardback)
1. Crystallography, Mathematical. 2. Elasticity. 3. Crystals–Defects.
4. Elastic analysis (Engineering) I. Title.
QD399.B35 2012
548.7–dc23

2011020303

ISBN 978-1-107-01255-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

3

Contents

Prefe	ice	<i>page</i> xiii
Ackn	owledgements	XV
List of frequently used symbols		
Intro	duction	1
1.1	Contents of book	1
1.2	Sources	2
1.3	Symbols and conventions	2
1.4	On the applicability of linear elasticity	3
Basi	elements of linear elasticity	5
2.1	Introduction	5
2.2	Elastic displacement and strain	5
	2.2.1 Straining versus rigid body rotation	5
	2.2.2 Relationships for strain components	9
2.3	Traction vector, stress tensor, and body forces	15
	2.3.1 Traction vector and components of stress	15
	2.3.2 Body forces	18
	2.3.3 Relationships for stress components and body forces	18
2.4	Linear coupling of stress and strain	21
	2.4.1 Stress as a function of strain	21
	2.4.2 Strain as a function of stress	24
	2.4.3 "Corresponding" elastic fields	25
	2.4.4 Stress-strain relationships and elastic constants for	
	isotropic systems	27
2.5	Elastic strain energy	29
	2.5.1 General relationships	30
	2.5.2 Strain energy in isotropic systems	31
2.6	StVenant's principle	31
Meth	ods	32
3.1	Introduction	32
3.2	Basic equation for the displacement field	32

vi	Cont	ents	
	3.3	Fourier transform method	34
	5.5 3.4	Green's function method	34
	3.5		38
	5.5	3.5.1 Sextic formalism	38
		3.5.2 Integral formalism	52
	3.6	Elasticity theory for systems containing transformation strains	55
		3.6.1 Transformation strain formalism	56
		3.6.2 Fourier transform solutions	59
		3.6.3 Green's function solutions	59
	3.7	Stress function method for isotropic systems	60
	3.8	Defects in regions bounded by interfaces – method	
		of image stresses	61
	Exe	rcise	63
4	Gree	en's functions for unit point force	64
	4.1	Introduction	64
	4.2	Green's functions for unit point force	64
		4.2.1 In infinite homogeneous region	66
		4.2.2 In half-space with planar free surface	72
		4.2.3 In half-space joined to dissimilar half-space along	
		planar interface	75
	4.3	Green's functions for unit point force in isotropic systems	78
		4.3.1 In half-space joined to dissimilar half-space along	
		planar interface	78
		4.3.2 In infinite homogeneous region	85
		4.3.3 In half-space with planar free surface	86
	Exe	rcises	88
5	Inter	ractions between defects and stress	93
	51	Introduction	93
	5.2	Interaction energies between defect source of stress and various	25
		stresses in homogeneous finite body	94
		5.2.1 Interaction energy with imposed internal stress	95
		5.2.2 Interaction energy with applied stress	98
		5.2.3 Interaction energy with defect image stress	100
	5.3	Forces on defect source of stress in homogeneous body	103
		5.3.1 General formulation	103
		5.3.2 Force obtained from change of the total system energy	103
		5.3.3 Force obtained from change of the interaction energy	111
	5.4	Interaction energy and force between inhomogeneity	
		and imposed stress	113
	Exe	rcises	114

			Contents	vii
6	Inclu	isions ir	n infinite homogeneous regions	116
	6.1	Introd	luction	116
	6.2	Chara	acterization of inclusions	116
	6.3	Coher	rent inclusions	117
		6.3.1	Elastic field of homogeneous inclusion by Fourier	
			transform method	118
		6.3.2	Elastic field of inhomogeneous inclusion	
			with ellipsoidal shape	126
		6.3.3	Strain energies	128
	6.4	Coher	ent inclusions in isotropic systems	129
		6.4.1	Elastic field of homogeneous inclusion by Fourier transform	
			method	129
		6.4.2	Elastic field of homogeneous inclusion by Green's function	
			method	130
		6.4.3	Elastic field of inhomogeneous ellipsoidal inclusion	
			with uniform $\varepsilon_{ii}^{\mathrm{T}}$	140
		6.4.4	Strain energies	142
		6.4.5	Further results	145
	6.5	Coher	rent \rightarrow incoherent transitions in isotropic systems	147
		6.5.1	General formulation	147
		6.5.2	Inhomogeneous sphere	149
		6.5.3	Inhomogeneous thin-disk	150
		6.5.4	Inhomogeneous needle	150
	Exer	rcises		151
7	Inter	actions	between inclusions and imposed stress	159
	71	Introd	luction	159
			ction between inclusion and imposed stress	159
	1.2	7.2.1	Homogeneous inclusion	159
		7.2.2	Inhomogeneous ellipsoidal inclusion	162
	Exer	rcises	internegenceus empseidar metasteri	167
8	Inclu	icione ir	n finite regions – image effects	171
0	mon	1910119 11	n mine regions – maye enecis	1/1
	8.1		luction	171
	8.2		ogeneous inclusion far from interfaces in large finite body	
		in isot	tropic system	171
		8.2.1	Image stress	171
		8.2.2	Volume change due to inclusion – effect of image	
			stress	172
				174
	8.3		ogeneous inclusion near interface in large region	174
	8.3	8.3.1	Elastic field Force due to image stress	174 174

viii	Conte	ints	
	0.4		
	8.4	Elastic field of homogeneous spherical inclusion near surface	177
	0 5	of half-space in isotropic system	177
	8.5 Exerc	Strain energy of inclusion in finite region	179 180
	Liter		100
9	Inhon	nogeneities	187
	9.1	Introduction	187
	9.2	Interaction between uniform ellipsoidal inhomogeneity	
		and imposed stress	187
		9.2.1 Elastic field in body containing inhomogeneity	
		and imposed stress	188
		9.2.2 Interaction energy between inhomogeneity and	
		imposed stress	189
		9.2.3 Some results for isotropic system	192
	9.3	Interaction between non-uniform inhomogeneity	
		and non-uniform imposed stress	196
	Exerc	cises	198
10	Point	defects in infinite homogeneous regions	201
	10.1	Introduction	201
	10.2	Symmetry of point defects	202
	10.3	Force multipole model	203
		10.3.1 Basic model	203
		10.3.2 Force multipoles	205
		10.3.3 Elastic fields of multipoles in isotropic systems	208
		10.3.4 Elastic fields of multipoles in general anisotropic	
		systems	210
		10.3.5 The force dipole moment approximation	210
	10.4		213
	Exerc	cises	214
11	Point	defects and stress – image effects in finite bodies	215
	11.1	Introduction	215
	11.2	Interaction between a point defect (multipole) and stress	215
	11.3		217
	11.4	Statistically uniform distributions of point defects	218
		11.4.1 Defect-induced stress and changes in volume of finite body	y 218
		11.4.2 Defect-induced changes in shape of finite	
		body – the $\underline{\lambda}^{(p)}$ tensor	221
		11.4.3 Defect-induced changes in X-ray lattice parameter	222
	Exerc	cises	224

			Contents	ix
12	Dislo	cations ir	n infinite homogeneous regions	229
	12.1	Introd	uction	229
			etrical features	229
	12.3		ely long straight dislocations and lines of force	233
			Elastic fields	233
			Strain energies	238
	12.4		ely long straight dislocations in isotropic system	240
			Elastic fields	240
			Strain energies	244
	12.5		hly curved dislocation loops	245
			Elastic fields	245
	12 (Strain energies	263
	12.6		hly curved dislocation loops in isotropic system Elastic fields	264
		12.6.1	Strain energies	264 270
	12.7		nted dislocation structures	270
	12.7	e	Elastic fields	270
			Strain energies	271
	12.8		nted dislocation structures in isotropic system	278
	12.0	-	Elastic fields	279
		12.8.2		287
	Exer		Strain chorgies	292
13	Dislo	cations a	nd stress – image effects in finite regions	304
	13.1	Introd	uction	304
			tion of dislocation with imposed internal or applied	501
	1012		the Peach–Koehler force equation	304
	13.3		ction of dislocation with its image stress	307
		13.3.1	-	307
		13.3.2	Straight dislocations parallel to free surfaces	309
		13.3.3	Straight dislocation parallel to planar interface between	
			dissimilar half-spaces	317
		13.3.4	Straight dislocation impinging on planar free surface	
			of half-space	325
		13.3.5	Dislocation loop near planar free surface of half-space	333
		13.3.6	Dislocation loop near planar interface between dissimilar half-spaces	335
	Exer	cises	-	335
14	Interf	aces		340
	14.1	Introd	uction	340
	14.2		etrical features of interfaces – degrees of freedom	341
				1

X	Conte	Contents			
	14.3		341		
		14.3.1 Geometrical features	342		
		14.3.2 The Frank–Bilby equation	345		
		14.3.3 Elastic fields of arrays of parallel dislocations	353		
		14.3.4 Elastic fields of arrays of parallel dislocations			
		in isotropic systems	355		
		14.3.5 Interfacial strain energies in isotropic systems	357		
	14.4	Hetero-elastic interfaces	359		
		14.4.1 Geometrical features	359		
		14.4.2 Elastic fields	360		
	Exer	cises	373		
15	Intera	actions between interfaces and stress	377		
	15.1	Introduction	377		
	15.2	The energy-momentum tensor force	378		
	15.3		380		
		15.3.1 Small-angle symmetric tilt interfaces	380		
		15.3.2 Small-angle asymmetric tilt interfaces	381		
		15.3.3 Large-angle homophase interfaces	383		
		15.3.4 Heterophase interfaces	384		
	Exer		385		
16	Intera	actions between defects	386		
	16.1	Introduction	386		
	16.2	Point defect-point defect interactions	386		
		16.2.1 General formulation	386		
		16.2.2 Between two point defects in isotropic system	387		
	16.3	Dislocation–dislocation interactions	388		
		16.3.1 Interaction energies	388		
		16.3.2 Interaction energies in isotropic systems	393		
		16.3.3 Interaction forces	396		
		16.3.4 Interaction forces in isotropic systems	398		
	16.4	Inclusion–inclusion interactions	399		
		16.4.1 Between two homogeneous inclusions	399		
		16.4.2 Between two inhomogeneous inclusions	401		
	16.5	Point defect-dislocation interactions	401		
	10.5	16.5.1 General formulation	401		
		16.5.2 Between point defect and screw dislocation in	101		
		isotropic system	402		
	16.6	Point defect–inclusion interactions	402 404		
	10.0				
		16.6.1 General formulation	404		
		16.6.2 Between point defect and spherical inhomogeneous inclusion with $aT = aT S$ in jacktonic system	405		
		inclusion with $\varepsilon_{ij}^{T} = \varepsilon^{T} \delta_{ij}$ in isotropic system	405		

	Contents	xi
16 7	Dislocation-inclusion interactions	405
	16.7.1 General formulation	405
	16.7.2 Between dislocation and spherical inhomogeneous	405
	inclusion with $\varepsilon_{ii}^{T} = \varepsilon^{T} \delta_{ij}$ in isotropic system	406
Exerc	5	406
Appendix A: Relat	ionships involving the $ abla$ operator	411
A.1	Cylindrical orthogonal curvilinear coordinates	411
A.2	Spherical orthogonal curvilinear coordinates	411
Appendix B: Integ	ral relationships	413
B.1	Divergence (Gauss') theorem	413
B.2	Stokes' theorem	413
B.3	Another form of Stokes' theorem	414
Appendix C: The t	ensor product of two vectors	416
Appendix D: Prop	erties of the delta function	417
Appendix E: The a	alternator operator	419
Appendix F: Fouri	er transforms	420
Appendix G: Equa	tions from the theory of isotropic elasticity	421
G.1	Cylindrical orthogonal curvilinear coordinates	421
G.2	Spherical orthogonal curvilinear coordinates	423
Appendix H: Com	ponents of the Eshelby tensor in isotropic system	424
Appendix I: Airy	stress functions for plane strain	426
Appendix J: Devia	atoric stress and strain in isotropic system	427
Refer	rences	428
Index	x	434

Cambridge University Press 978-1-107-01255-4 - Introduction to Elasticity Theory for Crystal Defects R. W. Balluffi Frontmatter More information

Preface

A unified introduction to the theory of anisotropic elasticity for static defects in crystals is presented. The term "defects" is interpreted broadly to include defects of zero, one, two, and three dimensionality: included are

- Point defects (vacancies, self-interstitials, solute atoms, and small clusters of these species),
- Line defects (dislocations),
- Planar defects (homophase and heterophase interfaces),
- Volume defects (inhomogeneities and inclusions).

The book is an outgrowth of a graduate course on "Defects in Crystals" offered by the author for many years at the Massachusetts Institute of Technology, and its purpose is to provide an introduction to current methods of solving defect elasticity problems through the use of anisotropic linear elasticity theory. Emphasis is put on methods rather than a wide range of applications and results. The theory generally allows multiple approaches to a given problem, and a particular effort is made to formulate and compare alternative treatments.

Anisotropic linear elasticity is employed throughout. This is now practicable because of significant advances in the theory of anisotropic elasticity for crystal defects that have been made over the last 35 years or so, including the development of Green's functions for unit point forces in infinite anisotropic spaces, half-spaces and joined dissimilar half-spaces. The use of anisotropic theory (rather than the simpler isotropic theory) is important, since, even though the results obtained by employing the two approaches often agree to within 25%, or so, there are many phenomena that depend entirely on elastic anisotropy. Unfortunately, however, the results obtained with the anisotropic theory are usually in the form of lengthy integrals that can be evaluated only using numerical methods and so lack transparency. To assist with this difficulty, isotropic elasticity is employed in parallel treatments of many problems where sufficiently simple conditions are assumed so that tractable analytic solutions can be obtained that are more transparent physically. Sections in the book where isotropic elasticity is employed are clearly distinguished to avoid confusion.

The results for the various defects are developed in a sequence of increasing complexity starting with their behavior in isolation in infinite homogeneous regions, where their elastic fields are derived, along with, in many cases, corresponding xiv Preface

elastic strain energies and induced volume changes. The treatment then progresses to interactions between the defects and imposed applied and internal stresses as well as the image stresses that arise when the defects are in finite homogeneous regions in the vicinity of interfaces. Finally, elastic interactions between the defects themselves are considered in terms of interaction energies and corresponding forces. Owing to the breadth of the subject and the impossibility of including all important topics in detail, a selection is made of representative material. This should provide the reader with the background to master omitted topics.

The book is designed to be self-sufficient. Included is a preliminary chapter on the basic elements of linear elasticity that includes essentially all of the elements of anisotropic and isotropic theory necessary to master the material that follows. A number of appendices contain other essentials. A particular effort has been made to write the book in a pedagogical manner useful for graduate students and workers in the field of materials science and engineering. Essentially, all results are fully derived, and as many intermediate steps as practicable are written out in full, and the use of the phrase "it can be shown" is avoided. Numerous exercises, with solutions, are provided, which, in many cases, expand the scope of the subject matter.

Requirements for use of the book are a familiarity with undergraduate materials science, including the structural aspects of the various defects, and knowledge of linear algebra, vector calculus, and differential equations. To avoid long unwieldy expressions, the repeated index summation convention is employed. Consistent sign conventions are used, and introductory lists of the common symbols employed throughout the text are provided. To keep the notation as simple as possible, additional symbols are employed locally in various sections of the book and are identified in brief lists in the relevant chapters for the convenience of the reader.

Acknowledgements

I am particularly indebted to Professor David M. Barnett for permission to include his previously unpublished derivations of the anisotropic Green's functions for unit point forces in infinite spaces, half-spaces, and joined dissimilar half-spaces and for providing other valuable assistance. Professor Adrian Sutton offered encouragement and advice, and Professor John Hirth assisted with several questions. I am grateful to the Dept. of Materials Science and Engineering, Cornell University and its Director, Professor Emmanuel Giannelis, for hospitality and support during the writing of this book.

Frequently used symbols

Roman

<i>a</i> : <i>A</i>	Scalar quantities (light face)
$a^*: A^*$	Complex conjugate of a or A
$\bar{a}:\bar{A}$	Fourier transform of a or A
a : A	Vectors (bold face)
$a_i: A_i$	Components of a or A
â	Unit vector
$ \mathbf{a} = a$	Magnitude of a
<u>a</u> : <u>A</u>	Second-rank tensors (bold face, underlined)
a_{ij} : A_{ij}	Components of <u>a</u> or <u>A</u>
<u>a</u> : <u>A</u>	Fourth-rank tensors (bold face and double underlined)
$\overline{a_{ijkl}}: A_{ijkl}$	Components of fourth-rank tensor $\underline{\mathbf{a}}$ or $\underline{\mathbf{A}}$
[a] : [A]	Matrices
$a_i: A_i$	Elements of [a] or [A] if 1×3 or 3×1 matrix
a_{ij} : A_{ij}	Elements of [a] or [A] if 3×3 matrix
$a_{ijkl}:A_{ijkl}$	Elements of [a] or [A] if 9×9 matrix
$(aa)_{jk}$	Notation used for element of matrix representing Christoffel tensor:
	defined by $(aa)_{jk} \equiv a_i C_{ijkl} a_l$ (employs curved brackets rather than the
	square brackets used for matrices elsewhere throughout book)
(<i>aa</i>)	Matrix representing Christoffel tensor
$[A]^{-1}$	Inverse of [A]
$[A]^{\mathrm{T}}$	Transpose of [A]
b	Burgers vector of dislocation
$\underline{\underline{\mathbf{C}}}$: C_{ijkl}	Elastic stiffness tensor
e_{ijk}	Alternator symbol: $e_{ijk} \equiv \hat{\mathbf{e}}_i \cdot (\hat{\mathbf{e}}_j \times \hat{\mathbf{e}}_k)$
$\hat{\mathbf{e}}_i$	Base unit vector of Cartesian, right-handed, orthogonal coordinate
	system
e	Dilatation: (sum of the normal elastic strain components: $e = \varepsilon_{mm}$)
E	Modulus of elasticity (or Young's modulus)
Ε	Total elasto-mechanical energy, i.e., elastic strain energy plus potential
Б	energy of applied forces
F L	Force
f	Force per unit length

List of frequently used symbols	xvii
---------------------------------	------

${\mathcal F}$	Force per unit area
f	Force density
H(x)	Heaviside step function: $H(x) = 0$, when $x < 0$; $H(x) = 1$, when $x > 0$
K	Bulk elastic modulus
$\hat{l}: \hat{l}_i$	Unit directional vector: component of <i>l</i> (direction cosine)
Ν	Number
n	Number per unit volume (density)
ñ	Unit vector normal to surface (taken to be positive for a closed
	surface when pointing outwards)
Р	Hydrostatic pressure (positive when compressive)
k	Fourier transform vector
r	Radius
r, θ, z	Cylindrical coordinates (see Fig. A.1a)
$r, \ heta, \ \phi$	Spherical coordinates (see Fig. A.1b)
R	Radius of curvature: distance between source point at \mathbf{x}' and field
	point at x
S	Arc length along line: distance
S^E_{ijkl} S \hat{S} \hat{S}	Eshelby tensor
S	Region of surface
S	Surface area
	Surface of unit sphere
$\underline{\mathbf{S}}:S_{ijkl}$	Elastic compliance tensor
sgn(x)	sgn(x) = 1, if $x > 0$: $sgn(x) = -1$, if $x < 0$
î	Unit vector tangent to dislocation
Т	Traction
u	Elastic displacement
u ^T	Displacement associated with transformation strain
u ^{tot}	Total displacement $((\mathbf{u}^{tot} = \mathbf{u} + \mathbf{u}^T))$
γ	Region of volume
V	Volume
W: w: W	Elastic strain energy: elastic strain energy density: strain energy per
2.4	unit length
W	Work
x_1, x_2, x_3	Cartesian coordinates
x : x_i : x	Field vector in Cartesian coordinates: component of x : magnitude
, , ,	of x , i.e., $x = \mathbf{x} = (x_1^2 + x_2^2 + x_3^2)^{1/2}$
$\mathbf{x}':x_1':x'$	Source vector in Cartesian coordinates

Greek

δ_{ij}	Kronecker delta operator ($\delta_{ij} = 1$, when $i = j$: $\delta_{ij} = 0$, when $i \neq j$)
$\delta(\underline{\mathbf{x}} - \underline{\mathbf{x}}_{o})$	Dirac delta function
$\underline{\mathbf{\epsilon}}$: ε_{ij}	Elastic strain tensor: component of $\underline{\mathbf{\varepsilon}}$

xviii List of frequently used symbols

$\varepsilon_{ij}^{\mathrm{T}}$	Transformation strain
$egin{array}{l} arepsilon_{ij}^{\mathrm{T}} & \ arepsilon_{ij}^{\mathrm{T}^*} & \ arepsilon_{ij}^{\mathrm{tot}} & \ arepsilon_{ij}^{\mathrm{tot}} & \ artheta & \ ar$	Transformation strain of equivalent homogeneous inclusion
$\varepsilon_{ij}^{\text{tot}}$	Total strain ($\varepsilon_{ij}^{\text{tot}} = \varepsilon_{ij} + \varepsilon_{ij}^{\text{T}}$)
θ^{i}	Sum of the normal stress components: $(\theta \equiv \sigma_{mm})$
r, θ, z	Cylindrical coordinates (see Fig. A.1a)
$r, heta, \phi$	Spherical coordinates (see Fig. A.1b)
λ	Lamé elastic constant
μ	Lamé elastic constant (elastic shear modulus)
v	Poisson's ratio
<u>σ</u> : σ _{ij}	Stress tensor: component of $\underline{\sigma}$
Φ	Potential energy of forces applied to body
ϕ	Newtonian potential
ψ	Biharmonic potential
Ω	Atomic volume

Frequently used superscripts

D	Defect
DIS	Dislocation
IM	Image
INC	Inclusion
INH	Inhomogeneity
LF	Line force
Μ	Matrix