
1 Introduction

1.1 Contents of book

An introduction to the use of anisotropic linear elasticity in determining the static

elastic properties of defects in crystals is presented. The defects possess different

dimensionalities and span the defect spectrum. They include:

� Point defects (vacancies, self-interstitials, solute atoms, and small clusters of

these species),

� Line defects (dislocations),

� Planar defects (homophase and heterophase interfaces),

� Volume defects (inhomogeneities and inclusions).

To avoid confusion, an inclusion is defined as a misfitting region embedded

within a larger constraining matrix body, and, therefore, acts as a source of

stress. It may be either homogeneous (if it possesses the same elastic properties as

the matrix) or inhomogeneous (if its elastic properties differ). On the other hand,

an inhomogeneity is simply an embedded region with different elastic constants

but no misfit.

Following the preliminaries of the present chapter, the book presents

(Chapter 2) a concise account of the basic elements of anisotropic and isotropic

linear elasticity, and, in addition, derivations of a number of special relationships

needed throughout the text. This is followed by a review of methods of solving

defect elasticity problems (Chapter 3), derivations of useful Green’s functions

(Chapter 4) and the basic formulation of interactions between defects and imposed

stress in the form of interaction energies and forces (Chapter 5). In Chapters 6

to 15, attention is focused on the individual defects in the following order:

inclusions, inhomogeneities, point defects, dislocations, and interfaces. In most

cases, the elastic field associated with the defect in an infinite homogeneous region

is treated first. Then, the interaction of the defect with imposed stress is studied.

This sets the stage for analyzing the behavior of the defect in finite homogeneous

regions where interfaces and associated image stresses are present. Finally, in

the concluding chapter (Chapter 16), a selection of interactions between various

pairs of defects is analyzed.
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1.2 Sources

Important sources for the book include the pioneering work of J. D. Eshelby,

especially Eshelby (1951; 1954; 1956; 1957; 1961), who invented imaginary

cutting, straining and bonding operations to create defects in a manner that

greatly expedites the analysis of their elastic properties. By applying potential

theory to the results of these operations and using harmonic and biharmonic

potentials and the divergence theorem (Gauss’s theorem),1 expressions for defect

interaction energies and forces on defects are obtained in the form of integrals

over surfaces enclosing the defects. The approach has connections with classic

electrostatics and electromagnetism and produces an arsenal of general expres-

sions that can be employed to treat specific defect problems. Other sources

include the indispensable treatise of Bacon, Barnett, and Scattergood (1979b),

which demonstrated that the anisotropic elasticity theory can often be applied to

defects with almost the same ease as isotropic theory, and the more recent book,

Elastic Strain Fields and Dislocation Mobility, edited by V. L. Indenbom and

J. Lothe (1992). Additional valuable sources include the books of Leibfried and

Breuer (1978) on point defects, of Teodosiu (1982) on point defects and disloca-

tions, of Hirth and Lothe (1982) on dislocations and of Mura (1987) on inclu-

sions, dislocations, and cracks. The book of Sutton and Balluffi (2006) provided

a source for material on interfaces. Finally, many journal articles must be cited,

especially those of J. Lothe and D. M. Barnett, dealing with the anisotropic

theory.

1.3 Symbols and conventions

The Roman and Greek symbols that are used most frequently are identified in

lists before the main text. Components of vectors and tensors are generally

indicated by subscripts, while the entities to which various quantities refer to

are usually indicated by superscripts: the superscripts of most importance are

also listed.

Cartesian coordinates and index notation involving either Latin or Greek

subscripts are mainly employed. For Latin subscripts, which run from 1 to 3

(unless noted otherwise), the standard repeated index summation convention is

employed. Here, any indexed quantity possessing a repeated subscript is automat-

ically summed with respect to that subscript as it runs from 1 to 3, e.g.,

xii ¼ x11 þ x22 þ x33; xixi ¼ x1x1 þ x2x2 þ x3x3; yjkzk ¼ yj1z1 þ yj2z2 þ yj3z3:

ð1:1Þ

1 Eshelby has been quoted (Bilby, 1990) as saying about this work, “Amusing applications of the

theorem of Gauss.”
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For Greek subscripts, this convention does not apply. Instead, summation of

quantities with Greek subscripts is indicated explicitly by the usual summation

symbol, e.g.,

X3

a¼1

xaa ¼ x11 þ x22 þ x33 6¼ xaa: ð1:2Þ

Cylindrical (r, y, z) and spherical (r, y,f) orthogonal curvilinear coordinates are

also employed, and basic formulae referred to these coordinates, rather than

Cartesian coordinates, are presented in Appendices A and G.

Complete descriptions of the elastic fields derived throughout the book, i.e., the

displacements, strains, and stresses, are normally not all presented together.

Instead, to save space, results are presented in forms that can be used to obtain

the complete descriptions relatively easily by employing standard relationships

between the various quantities. For example, when only the displacement field is

given, the corresponding strain field can be determined by simple differentiation,

and then the stress field can be obtained using Hooke’s law.

Unless noted otherwise, it can be assumed that the results presented throughout

the book are valid for general anisotropic systems. Results that are valid only for

isotropic elasticity are clearly identified to avoid any confusion.

1.4 On the applicability of linear elasticity

Linear elasticity is an approximation that describes a homogeneous crystal as a

uniform continuum in which the stress is proportional to the strain via constant

elastic coefficients. For many defect applications, this approximation is quite

adequate. It is most reliable in regions that are large enough to span a significant

number of atoms and where the atom displacements are small and consequently

proportional to the forces exerted on them. With this assumption, the effects of

the displacements associated with the solution for one elastic displacement field on

the solution for a superposed second displacement field can be neglected. The

stresses and strains obtained as a solution of one boundary value problem can

then be simply added to the solution of another problem involving other boundary

conditions; i.e., linear superposition holds for both the boundary conditions and

the solutions.

However, many of the defects of interest, such as point defects and dislocations,

possess core regions of atomic dimensions where the atoms have undergone

relatively large displacements out of the linear elastic range and find themselves

in alien atomic environments. As discussed by Read (1953), such highly disturbed

material, in which atoms are not surrounded by their usual neighbors, and for

which the linear continuum model breaks down, may be regarded as bad material,

in contrast to good material, which corresponds to defect-free crystalline material

that is, at most, elastically strained. The core region of a vacancy, for example,
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consists of a small roughly spherical region of bad material centered on the vacant

site, where neighboring atoms have relaxed and undergone relatively large dis-

placements. The core of a dislocation line consists of a long narrow cylindrical

region of bad material, and the core of an incoherent grain boundary consists of a

thin plate-like region of bad material in the transition region between the two

adjoining bulk crystals.

In view of this, the displacement field of the defect can be broken down into the

relatively small core region, where the linear theory cannot be applied, and the

much larger surrounding matrix region, where it serves as a good approximation.

A quite reliable solution can then be obtained by employing a hybrid approach, in

which the displacements in the core are determined by means of atomistic calcula-

tions and are matched to the displacements in the adjoining bulk matrix region

determined by using linear elasticity. Fortunately, such a complex calculation can

be avoided in many situations by realizing that the displacements due to the defect

generally decrease rapidly with distance into the matrix, and, at distances several

times the relevant core dimension, become insensitive to the detailed nature of the

conditions at the core–matrix interface. An acceptable solution for the elastic field

in the matrix region beyond a few core dimensions can then be obtained by the

exclusive use of linear elasticity with the core described, at most, by a few simple

parameters. Since the relevant core dimensions are relatively small, the regions

that can be treated in this manner in bodies containing defects typically extend

over essentially the entire body and have dimensions corresponding to length

scales that are of major interest. This limitation is therefore not a major drawback

under many circumstances. The difficulties of dealing with the large non-linear

displacements at defect cores can be mitigated to a degree by employing non-linear

elasticity, but this will not be considered in this book.

A further complication with the use of linear elasticity occurs when abrupt step-

like changes in bulk elastic constants are present in a system, as, for example, at

the interface between an inhomogeneous inclusion and the matrix. The assump-

tion that the bulk elastic constants in the matrix and inclusion are truly constant

right up to the interface is an approximation, since at small distances from the

interface the elastic constants of the inclusion and matrix must be affected to at

least some degree by their altered local environments, even under conditions when

the atomic displacements are relatively small. This problem can be dealt with by

employing size-dependent elasticity, where it is assumed that the elastic constants

depend upon the local environment over a specified length scale (Eringen, 2002;

Sharma and Ganti, 2003). This approach introduces additional complexities,

however, and will not be considered in this book.
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2 Basic elements of linear elasticity

2.1 Introduction

The basic elements of anisotropic linear elasticity are presented in concise form.

First, the deformation of an elastically strained body is described in terms of the

local displacements, strains, and rotations that occur throughout the body.

Requirements on the strains that ensure compatibility of the medium are then

described. Next, the forces acting throughout the body are described in terms of

surface tractions, body forces, and stresses. Conditions for mechanical equilib-

rium are derived. The stresses and strains are then linearly coupled via elastic

constants, and various stress–strain relationships are derived. Finally, the energy

stored in an elastically strained medium is formulated. Elements of the theory for

the special case when the medium is elastically isotropic are included,1 along with

several formulations of additional elastic quantities required for treating crystal

defects.

References include: Love (1944); Sokolnikoff (1946); Muskhelishvili (1953);

Nye (1957); Lekhnitskii (1963); Bacon, Barnett and Scattergood (1979b);

Soutas-Little (1999); Hetnarski and Ignaczak (2004) and Asaro and Lubarda

(2006).

2.2 Elastic displacement and strain

2.2.1 Straining versus rigid body rotation

When a body is elastically deformed, points within the body are generally dis-

placed by differing degrees: local regions must therefore be strained (deformed) in

various ways. To analyze the connection between the displacements and the

strains, a Cartesian coordinate system is adopted with unit base vectors êi and

coordinates xi and its origin fixed in the material. As illustrated in Fig. 2.1, a point

1 The theory of elasticity presented in this chapter holds for systems in which all displacements and

strains are purely elastic. In Chapter 3, stress-free transformation strains are introduced as a means of

mimicking crystal defects. For systems containing transformation strains the present purely elastic

formulation must therefore be modified as described in Section 3.6.
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initially at the position P� ¼ x�i êi is then displaced by the vector u� ¼ u�i êi to the

position P0� ¼ x0�i êi, while a closely adjacent point initially at P ¼ xiêi is displaced

by u ¼ uiêi to P0 ¼ x0iêi. The difference between the initial positions is A = P � P�

and between the final positions A0 ¼P0 �P0�. The difference between the differ-

ences is then

dA ¼ A0 � A ¼ u� u�: ð2:1Þ

The displacement of any point in the body is a function of its original position,

so that

u�i ¼ u�i ðx�1; x�2; x�3Þ
ui ¼ uiðx1; x2; x3Þ

ð2:2Þ

and by expanding to first order around ðx�1; x�2; x�3Þ,

dAi ¼ ui � uoi ¼ uoi þ
qui
qx1

A1 þ qui
qx2

A2 þ qui
qx3

A3

� �
� uoi ¼ qui

qxj
Aj: ð2:3Þ

Then, rewriting Eq. (2.3) in the equivalent form,

dAi ¼ 1

2

qui
qxj

þ quj
qxi

� �
þ 1

2

qui
qxj

� quj
qxi

� �� �
Aj; ð2:4Þ

and introducing the symmetric quantity, eij, and the skew-symmetric quantity, oij,

defined by

eij ¼ eji � 1

2

qui
qxj

þ quj
qxi

� �

oij ¼ �oji � 1

2

qui
qxj

� quj
qxi

� �
:

ð2:5Þ

x3
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u°

u
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P′°
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Figure 2.1 Displacements u� and u of points initially located at the vector positions
P� and P, respectively.
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Equation (2.4) becomes

dAi ¼ eijAj þ oijAj; ð2:6Þ
which can be written in vector-tensor form as2

dA ¼ «AþvA; ð2:7Þ
or, in matrix form as

½dA� ¼ ½e�½A� þ ½o�½A�

¼
dA1

dA2

dA3

2

64

3

75 ¼
e11 e12 e13
e12 e22 e23
e13 e23 e33

2

64

3

75
A1

A2

A3

2

64

3

75 þ
0 �o21 o13

o21 0 �o32

�o13 o32 0

2

64

3

75
A1

A2

A3

2

64

3

75 :

ð2:8Þ
The quantities qui/qxj are termed distortions, and as now shown, the eij Aj portion

of dAi represents local straining, while the oij Aj portion represents local rigid body

rotation. Therefore, « is termed the strain tensor.

2.2.1.1 Local straining and components of strain
To reveal the effect of the « tensor on A to produce the new vector, A0, we write

A0 = A + d A, where d Ai = eij Aj, so that

A0
1

A0
2

A0
3

2

4

3

5 ¼
A1

A2

A3

2

4

3

5 þ
e11 e12 e13
e12 e22 e23
e13 e23 e33

2

4

3

5
A1

A2

A3

2

4

3

5 ¼
ð1þ e11ÞA1 þ e12A2 þ e13A3

e12A1 þ ð1þ e22ÞA2 þ e23A3

e13A1 þ e23A2 þ ð1þ e33ÞA3

2

4

3

5:

ð2:9Þ
Then, according to Eq. (2.9), if A lies along ê1, as illustrated in Fig. 2.2a, it will be

transformed into the vector A0 ¼ ð1þ e11ÞAê1 þ e12Aê2 þ e13Aê3, as shown in

Fig. 2.2b. Dropping second-order terms, its length will be increased by e11A and

it will be sheared in the direction ê2 by the distance e12A, and in the direction ê3
by e13A. Similar results will be obtained when A lies initially along ê2 or ê3.

The components e11, e22, and e33 are seen to be the fractional extensions of the

local medium in the ê1, ê2, and ê3 directions, respectively, and are termed normal

strains. On the other hand, as evident in Fig. 2.2, the quantity e12 is a measure of

the extent by which the local material is sheared through the angles f1 = f2 = e12
in the ê2 and ê1 directions, respectively. It can therefore be expressed in the form

e12 = (f1 + f2)/2 = f12/2, where f12 is the total angle of shear that converts the

square cross section in Fig. 2.2 into a parallelogram. Similar results are obtained

for e13 and e23. The quantities e12, e13, and e23 are therefore identified as half the

2 The quantities eij and oij are the components of the second-rank tensors, « and v, respectively.

A second-rank tensor possesses nine components and maps one vector into another, as in Eq. (2.7),

where A is linearly transformed into d A (Nye, 1957).
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total shear angles experienced by the local material in the x3 = 0, x2 = 0, and x1 = 0

planes, respectively, and are termed shear strains.3 The local deformation in the

immediate vicinity of a point is therefore completely described by six independent

components of «, i.e., the three normal strains, e11, e22, and e33, and the three shear

strains, e12 = e21, e13 = e31, and e23 = e32.

2.2.1.2 Local rigid body rotation
To reveal the effect of applying the skew-symmetric v tensor to A, as in Eq. (2.8),

we consider the general matrix equation that yields the change in A, i.e., dA, owing
to an infinitesimal right-handed rotation of A by the angle dy around an axis

parallel to the unit vector v̂. This can be written as

dA ¼ dv� A; ð2:10Þ
where dv is an infinitesimal rotation vector given by

dv ¼ dyv̂: ð2:11Þ
The vector dA is perpendicular toA and, to first order, (Aþ d A) · (Aþ d A) =A ·A.

Therefore, A remains of constant length but is rotated through the angle dy ¼
j d v � AjA�1. Then, writing out the expression for dA in full,

dA ¼ dv� A¼ð�do3A2 þ do2A3Þê1 þ ðdo3A1 � do1A3Þê2 þð�do2A1 þ do1A2Þê3
ð2:12Þ

or, alternatively,

dA1

dA2

dA3

2

4

3

5 ¼
0 �do3 do2

do3 0 �do1

�do2 do1 0

2

4

3

5
A1

A2

A3

2

4

3

5: ð2:13Þ

x2

x1

(a)

A

A 

x2
e12A

e12A

f2

f1

x1

(b)

(1+ e22)A

(1+ e11)A

Figure 2.2 Deformation of vector A, lying initially along either x1 or x2: (a) before strain,
(b) after strain.

3 The shear strain, eij (i 6¼ j), employed in this book, is a component of the strain tensor, «, and is equal

to half the “engineering shear strain,” which is often employed in the literature (e.g., Timoshenko and

Goodier, 1970) and is not the component of a tensor.
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The rotation matrix in Eq. (2.13) and the [o] matrix in Eq. (2.8), where

do1 ¼ o32 ¼ 1

2

qu3
qx2

� qu2
qx3

� �
do2 ¼ o13 ¼ 1

2

qu1
qx3

� qu3
qx1

� �

do3 ¼ o21 ¼ 1

2

qu2
qx1

� qu1
qx2

� � ð2:14Þ

are seen to have the same form, thus confirming that the latter matrix indeed

represents rigid body rotation.

2.2.2 Relationships for strain components

2.2.2.1 Transformation of strain components due to rotation
of coordinate system
When a strain tensor is known in a given coordinate system it is often necessary to

find an expression for the same strain when it is referred to a new coordinate

system rotated with respect to the original system. This can be accomplished after

first finding the relationship between a given vector displacement referred to the

old system and then to the new system.

Let u ¼ uiêi and u0 ¼ u0iê
0
i represent the same displacement vector referred

to the old and new coordinate systems, respectively. The components of

the vector in the new system in terms of its components in the old system

are then

u0i ¼ ðu1ê1 þ u2ê2 þ u3ê3Þ � ê0i ¼ ujðêj � ê0iÞ ¼ lijuj or ½u0� ¼ ½l�½u�; ð2:15Þ

where lij is the cosine of the angle between ê0i and êj. Conversely, the old components

in terms of the new components are given by

ui ¼ ðu01ê01 þ u02ê
0
2 þ u03ê

0
3Þ � êi ¼ u0jðê0j � êiÞ ¼ ljiu

0 or ½u� ¼ ½l�T½u0�: ð2:16Þ

Solving Eq. (2.15) for [u],

½u� ¼ ½l��1½u0� ð2:17Þ

and, by comparing Eqs. (2.16) and (2.17),

½l�T ¼ ½l��1: ð2:18Þ
Therefore,

½l�½l�T ¼ ½l�T½l� ¼ ½I�: ð2:19Þ

Every column vector and row vector in [l] is a unit vector, and every pair of

column vectors and every pair of row vectors is orthogonal. Therefore, [l] is

termed a unitary orthogonal matrix.
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The deformation of the vector A in the old coordinate system and in the new

system by the strain tensor will be of the respective forms

½dA� ¼ ½e�½A� ½dA0� ¼ ½e0�½A0� : ð2:20Þ
The transformation matrix [l] for the vector u in Eq. (2.15) will also apply to the

vectors d A0 and A0 in Eq. (2.20), and therefore

½dA0� ¼ ½e0�½A0�
½l�½dA� ¼ ½e0�½l�½A�
½dA� ¼ ½l�T½e0�½l�½A�:

ð2:21Þ

Then, comparing this result with Eq. (2.20), the strain tensors referred to the two

systems are related by

½e� ¼ ½l�T½e0�½l� ð2:22Þ
and, by inverting Eq. (2.22) by use of Eq. (2.18),

½e0� ¼ ½l�½e�½l�T: ð2:23Þ
The transformations given by Eqs. (2.22) and (2.23) may also be expressed in the

component forms:

e0ij ¼ limljnemn; ð2:24Þ

eij ¼ lmilnje0mn: ð2:25Þ
All second-rank tensors follow these transformation laws.

2.2.2.2 Principal coordinate system for strain tensor
Using these results it is now shown that for any state of strain it is always possible

to find a coordinate system, termed the principal coordinate system, that causes the

strain tensor to take the simple diagonal matrix form4

~e½ � ¼
~e11 0 0
0 ~e22 0
0 0 ~e22

2
4

3
5; ð2:26Þ

where the diagonal elements are known as the principal strains. When the principal

coordinate system is employed, and the strain tensor, in the form of Eq. (2.26), is

applied to various vectors in the medium, it is readily seen that a vector lying along

any one of the three coordinate axes (i.e., the three principal directions) remains

non-rotated and simply undergoes a fractional change in length corresponding to

the principal strain along that axis. The principal directions are therefore special

directions in which vectors embedded in the medium are simply changed in length

4 All quantities referred to a principal coordinate system in this section are distinguished by a tilde, as

in Eq. (2.26).
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