

absorbing media, in radiation heat transfer,

Index

temperature distribution in, 112f, 118f

205–210	turbulent, 117–120, 122–123
between plane parallel walls, 206f	turbulent effective thermal b.l. thickness, 120
cold media surrounded by hot walls, 205-206	brace, 37f
gas radiation, 207–208	brick, refractory, 102
nonuniform temperatures, 209–210	Brinkman number, 135, 137, 220
uniform temperature hot medium, 207	bulk enthalpy, 131
absorptivity, 172, 175–177	bulk flow model, 129–138
typical values, 177t	bulk enthalpy, 131
accuracy, 5	bulk entropy, 218–219
adiabatic lines, 34f, 37f	bulk temperature, 132–133
adiabatic wall temperature, 120, 141, 219-220	bulk temperature variation, streamwise,
analogies, 38–39	135–138
art of engineering, 1–3	bulk velocity, 130
automobile	dissipation of mechanical energy, 133–135,
air conditioning, 126	219–221
drum brake, 104–105	energy conservation, 130-133
	kinetic energy transport, 131–132
Biot number, 39, 59–65, 70 <i>f</i> , 95	streamwise bulk temperature variation,
black bodies, see also nonblack bodies	135–138
as part of built up wall, 178f	bulk temperature, 120, 132–133
cavity, 173f	dissipative heating in journal bearing, 136–137
definition of, 172	equation for ideal gas, 135–136
electrical analogy, 193f	equation for incompressible liquid, 135
emissive power, 172, 175, 184	solutions for, 137–138
fraction of total black body radiation, 174-175	streamwise variation, 135–138
heat transfer between, 178–180	with significant dissipative heating, 219-221
intensity, 184	bulk velocity, 130
laboratory, 186–187	buoyancy-driven flows, 110-111, 141-143
monochromatic emissive power of, 173-178	coexisting with forced flow, 127, 143
radiation heat transfer between, 24, 192-194	enhanced or impaired heat transfer, 126-128
radiative heat transfer coefficient, 25t	buoyant velocity, 142
boundary layers	
buoyant flow, 142	capacitance, see thermal capacitance
flat plate, 116–117, 119	carbon dioxide
growth in channel inlet, 115	air conditioning cycle, 127f
high speed in gases, 221	emissivity, 208f
laminar, 111–117, 123–124	infrared radiation, absorption of, 174-175
laminar fully developed b.l. thickness, 115	refrigerants, 125–127
laminar momentum b.l. thickness, 116	Carnot efficiency, 11
laminar thermal b.l. thickness, 116	casting, see sand casting

Chvorinov's Rule, 86–87	in journal bearing, 136–137
coefficient of performance, 126	of mechanical energy, 133-135
combined experiments/analysis, 13	neglecting, 134–135
combustion, 154–155	dissipative heating, 136–137
compressible flow, one-dimensional, 132	Dittus-Boelter equation, 217, 218f
condensation, heat transfer coefficient, 24t	double skin facade, 190f
condenser, air-cooled, 29–30	dropwise condensation, 27
conduction, see topical headings, steady-state	duct, non-circular, 121, 123
conduction, transient conduction	Duhamel's theorem, 78
conduction resistance, 21–22, see also thermal	
resistance	Eckert number, 221
conduction shape factors, 47–49	effectiveness, heat exchanger, 161–162
conductivity, see thermal conductivity	eigenvalue, 71
configuration factor, 181–188	electrical analogy for radiation, 201–202
equations for two finite size bodies,	electrical analogy for heat conduction, 21–22
222–223	electromagnetic radiation, 171
two-dimensional approximations, 188–190	emissive power, 172, 183
convection	emissivity, 175, 196
Biot number, 39, 59–60	cases where emissivity and absorptivity are
buoyancy-driven flows, 141–143	equal, 176
coefficient, see heat transfer coefficient	energy balance, 8–9
defined, 110	fin, 40
heat transfer, 23–24, 110–155	glass fiber drawing, 45
laminar boundary layer, 111–117	grey body radiation, 199–200
mass transfer, 143–146	heat exchangers, 157–159
models, 110–155	internal flow, 129–137
bulk flow energy conservation, 129–138	liquid-vapor interface, 88, 91
integral energy conservation, 138–139	sand casting, 86
surface renewal, 139–141	unsteady conduction, 67–69
resistance, 24	energy conservation, 130–133
turbulent boundary layer, 117–120	bulk flow, 129–138
convective mass transfer, 143–146	bulk temperature, 132–133
analogy to heat transfer, 145–146	integral, 138–139
coefficient, 144 in flowing medium, 144–146	mechanical energy, dissipation of, 133–135
convective resistance, 24	energy equation, 32, 90, 130–136, 145, see also hea equation
copying machine, 2–3	engineering approach in modeling, 4–5
counterflow heat exchanger, 159, 162	art of, 1–3
critical point temperature, 125	enthalpy
crossflow heat exchanger, 12, 163f	bulk, 131
cross-strings method, 189–190	function of s and p , 218
cylinder	function of T and p , 132
one-dimensional series solutions for,	thermodynamic fundamental equation, 218
71–75	entry length, 115, 124
semi-infinite body solutions, 82, 87–88	error function, 78
steady conduction shape factors, 48t	estimates of magnitude, 22–32
steady conduction snape meters, for	graphical estimates, 34
Darcy friction factor	evacuated panel, 30f
laminar flow, 134–135	external resistance, 61–62
turbulent flow, 122	extruded cross section, 188f, 189f
deflagration, 154	, , ,
diffuse reflection, 197	filament, light bulb, 103
diffusion coefficient, 6, 144	fins, 39–42, 95–98
diffusive mass flux, 144	efficiency, 40, 43f
dissipation	thermal resistance, 41–42
bulk temperature with significant dissipation,	two-dimensional, 39f
219–221	unsteady, scaling of, 95–98
in developing laminar flow, 134	upper/lower limits to performance, 42
in fully developed pipe flow, 133–134	Fick's Law, 144

First Law of Thermodynamics, 61, 62, 67, see also energy equation	design, 163–167 cooler with separate tube bundlers, 165 <i>f</i>
flame, laminar, 154–155	glass fiber spinning, 166–167
fluidized bed, circulating, 152, 168–169	heat recovery loop, 164f
flux diffusion depth, 85	instability under imbalance, 166, 170
time-mean, 140	liquid coupled, 163–164
foam, 6, 20, 26, 38, 51, 57, 58 <i>f</i> , 214	nonuniform flow, 165–166
forced convection, 24, 60, see also convection	differential area for heat transfer, 160f
Fourier number, 69–70, 95	effectiveness, 161–162
freezing, 86–88	at low NTU, 162
Fourier series, 64, 70–77	energy balance, limiting cases, 157–159
one-dimensional forms, 71, 73–75	flow arrangement, 156
Fourier's Law, 19–20, 112, 144, 217	functions of, 156
fuel rods, see nuclear fuel rods	geometry, 156
friction factor, see Darcy friction factor	heat capacity, heat capacity rate, 157
furnace, 184–185	number of transfer units (NTU), 12, 158
fuser roll, copying machines, 3f	overall heat transfer coefficient, 158, 159
	parallel flow, 156, 159 <i>f</i>
gas coolers, 126	performance relationships, 159–163
gas radiation, 207–208	plate and frame, 157f
gas turbine blade cooling, 27–28	rating, 156
glaciers, 80–82	rotary, 157, 167
glass fiber	schematic diagram, 157f
cooling, 12	shell and tube, 150–151, 156, 157f
cross section, 45f	single-stream limit $(C_{MIN}/C_{MAX} = 0)$, 161–162
insulation, 28–29	heat transfer
specific heat capacity of, 58–59	between black bodies, 178–180
spinning, 8–9, 166–167	convection, 23–24, 110–155
heat transfer during, 43–47	during glass fiber spinning, 43–47
glass globes, cooling, 75–77	electrical analogy for, 25f
initial contact of glass and mold, 83	enhanced or impaired, 126–128
Gnielinski correlation for turbulent internal flow,	Poiseuille flow, 117
122	radiation, 24–26
comparison to old power law correlations, 217,	rate of, 19
218f	scraped surface, 139–141
power law approximations, 119, 123, 146	slug flow, 117
governing equations, 13	through windows, 22–23
nondimensional form, 42–47	total, 72–73
graphical approximations, 13–14, 34–38	transient conduction, 56–109
Grashof number, 142	heat transfer coefficient
gray body	basic concepts for convection, 23, 111–120
definition of, 176	black body radiation, 24–25, 179–180
electrical analogy for fuel rod surfaces, 202–204 multiple gray surfaces, 202–204	boundary layer thickness effect on, 113, 115, 117, 120
one-bounce approximation, 194	bulk temperature effect on, 124f
radiation, diffuse, 199–202	channel inlet, 115f
spacecraft heat sink, 203–204	cooling time and, 62–65
	flat plate, 116, 119
HCFC-134a, 126	fluid velocity effect on, 113, 116, 119
heat capacity, 157, see also specific heat capacity	internal flow, 115–116, 120–129
heat capacity rate, 157	fully developed, 115, 117
heat diffusivity, 78	microchannel, 122
heat equation, 70, 92, see also energy equation	overall heat transfer coefficient, 158, 159
heat exchangers, 156–170	typical values
balanced flow, 159	black bodies, 25t
compact, 157f	convection, 24t
counterflow, 156, 159, 159f, 162f	wall boundary condition effect on, 113–114,
crossflow, 12, 156, 163 <i>f</i>	118–119
defined, 156	hydraulic diameter, 121, 123

ideal gas, 132, 135–136, 220–221	mass transfer, convective, see convective mass
incompressible substance model, 57, 132, 135,	transfer
219	mass transfer coefficient, 144
bulk temperature variation for, 135	maximum/minimum bounds, 9–11
validity of, 135	Maxwell, James C., 38
integral energy conservation models, 138–139	mean beam length, 206
integral methods, 14, 67–68, 138–139	mean temperature, 24–26, 72–73, 178–180
internal energy, 57, 61, 66–68, 130, 172, 219	mechanical energy, dissipation of, 133–135
	microchannel heat transfer, 121–122
internal flow	microprocessor chip, 10
choice of T and p as independent variables,	microturbine, 11
217–218 heat transfer coefficients, 120–129	mixtures, 143–144
developing flow and axially varying boundary	modeling techniques, 7–14 analogies, 12
conditions, 123–124	combined experiments/analysis, 13
enhanced and impaired heat transfer, 128f	energy balance, 8–9
flows with varying physical properties,	engineering approach, 4–5
124–125	governing equations, 13
fully developed, 121–123	graphical approximations, 13–14
supercritical flow in tubes, 125–129	integral methods, 14
kinetic energy, 131–134, 221	known solutions, simplification to, 13
laminar, 121	maximum/minimum bounds, 9–11
turbulent, 122–123	numerical solutions, 14
internal resistance, 62-64	order of magnitude estimates, 7
irradiance, 199	real-world problems, 1–17
isotherms, 34f, 37f	Second Law of Thermodynamics, 11
	monochromatic properties, 173–178
Jakob, Max, 89	
Jakob number, 89	natural convection, 24, 141–143
Jepson surface renewal model, 140	nonblack bodies, see also black bodies
journal bearing, 136–137	diffuse gray body radiation, 199–202
	multiple gray surfaces, 202–204
kinetic energy for internal flow	nondiffuse reflection, 204–205
mass-average, 131, 151	one-bounce, 196–199
transport, 131–132	one-way energy flux, 194
Kirchhoff's Law, 177	radiation heat transfer between, 194–205
KISS (Keep it simple, stupid) rule, 7	nondimensional equations
landings bear damalance and bear damalance	convective mass transfer, 145–146
laminar boundary layer, see boundary layer	general rules for, 42–43
laminar flow boundary layer, 111–117, 141–142	steady state, 43–47
dissipation, 134–5, 220	unsteady conduction, 91–98 nondiffuse reflection, 204–205
flame, 154–155	nonuniform flow, 165–166
internal, 115–117, 120–122, 123–4, 131, 138,	nonuniform temperatures, 209–210
149	nuclear fuel rods, 192–194
modeling, 110	electrical analogy, 193f, 202f
Laplacian, 93	transport container with nonblack rods,
lateral conductivity, 30, 31f	201–202
length scale, 44–47, 79, 90, 92–96	number of transfer units (NTU), 12, 158
liquid coupled heat exchanger, 163–164	numerical solutions, 14
liquid sodium, 122	Nusselt number, 117, 119–120, 142, 146
lower bound, 9–11	laminar flow past flat plate, 114, 116
lumped capacity, 56, 61–62, 64–66, 70f, 97	laminar fully developed flow, 121
general solution, 61	natural convection on vertical flat plate, 142
time constant, 61	slug flow, fully developed, 117
	turbulent flow past flat plate, 119
Mach number, 221	turbulent internal flow, 122
mass average, see bulk	variable property correction, turbulent internal
mass fraction, 143	flow, 125

Ohm's Law, 21	heat transfer coefficient, 24–25, 179–180
oil cooler, 166	geometry, 181–184
one-bounce approximation, 196–199	linearized formation, 178–180
for extruded rectangular object, 198–199	monochromatic properties, 173-178
for parallel gray surfaces, 197–198	one-way radiant energy flux, 181–182
one-term solutions, 73–75	radiation properties approximation, 177–178
one-way energy flux, 181–182, 194	radiosity, 199
order of magnitude estimates, 7	Rankine cycle, 11
order of magnitude of derivatives, 46–47,	Rayleigh number, 143
93–94	reciprocity, 184–188, 197, 200
<i>33 3</i> 1	redesign, 14
packed beds, 148, 152–153	reflection, nondiffuse, 204–205
Péclet number, 46	reflooding, 107–109
pipe, frozen, 101	refrigerants, 125–126
photocopiers, 2–3	resistance
Planck, M., 173	electrical analogy, 21–22
plastic melter, 100	thermal, see thermal resistance
plate and frame heat exchanger, 157f	Reynolds number, 116, 119–120, 128, 142, 145
Poiseuille flow, heat transfer in, 117	Rosseland equation, 209–210
polyurethane foam, see foam	
Prandtl number, 116, 119–120, 123, 128, 145	sand casting, 84–88
property values	cylindrical, 87–88
importance in modeling, 15, 19–20, 57–59	heat transfer, 84–85
simplified approximation to radiation, 177,	planar, 85f
178	spherical, 87–88
pseudocritical temperature, 126	thermal circuit for, 85f
I	thermal resistance, 85
quenching, 107–109	Schmidt number, 145
quenemis, 107 107	scraped surface heat transfer, 139–141
radiation	Second Law of Thermodynamics, 11
electromagnetic, 171	semi-infinite body solutions, 66–69, 70 <i>f</i> , 77–91
9	convection resistance, 83–84
intensity of, 182–184	
natural, 59	cylindrical problem, 82
thermal, 6, 11, 13, 29, 171–172	heat flux, 79t, 140
radiation energy balance, 11	modeling, 83
radiation heat transfer, 24–26, 171–215	penetration depth, 66–69, 79 <i>t</i> , 85
absorbing media, 205–210	periodically varying wall temperature, 79–82
between plane parallel walls, 206f	planar, 79t
cold media surrounded by hot walls, 205–206	sand casting, 84–88
diffusion limit, 209	spherical problem, 82
gas radiation, 207–208	step change in environmental temperature with
nonuniform temperatures, 209–210	convection resistance, 79 <i>t</i> , 80, 81 <i>f</i> , 83–84
uniform temperature hot medium, 207	step change in wall heat flux, 78–80
between black bodies, 178-180, 192-194	step change in wall temperature, 66–69, 78, 79t
between nonblack bodies, 194-205	table of solutions, 79t
diffuse gray body radiation, 199-202	time average, 140
multiple gray surfaces, 202-204	two isothermal bodies brought into contact, 79t,
nondiffuse reflection, 204–205	82
one-bounce approximation, 196-199	series solutions, see Fourier series, transient
configuration factor, 184–191	conduction
crossed strings, 189	shape factors, conduction, 47–49
equations for two finite size bodies, 222–223	shell and tube heat exchanger, 150, 151 <i>f</i> , 157 <i>f</i>
limiting case, 190–191	Sherwood number, 146
numerical approximation, 191	side wall conduction resistance, 31
	,
two-dimensional approximations, 188–190	singular perturbation problem, 98
electrical analogy, 201–202	slab
emissive power, 172, 183	one-dimensional series solutions for, 64, 70–76
fraction of black body energy, 174	semi-infinite body solutions for, 77–87
fundamental concepts, 172–173	transient conduction, 66–70

slug flow, 117, 148	evacuated powder, 30
solar thermal collectors, 185–186	porous materials, 38–39
solid angles, 181	test apparatus, 32–37
spacecraft heat sink, 203–204	values of, 21f, 58f
space shuttle, 106 and front cover	thermal diffusivity, 57, 58f
species conservation equation, 144	thermal effusivity, 78, 140
specific heat capacity, 57–59	thermal energy storage, 57
constant pressure vs. constant volume,	thermal expansion coefficient, volumetric, 132,
57	141
near critical temperature, 126–129	thermal inertia, 3
per unit volume, 57–59	thermal penetration depth, see semi-infinite body
porous materials, 57–59	solutions
specular reflectors, 204f	thermal radiation, 6, 11, 13, 29, 171–172, see also
sphere	radiation heat transfer
one-dimensional series solutions for, 71–75	thermal resistance, 21–22, 24, 25–26, 59–70, 73, 193
semi-infinite body solutions, 82, 87–89	conduction, 21–22
steady conduction shape factors, 48t	convection, 83–84
spherical casting, 87–88	electrical analogy, 21–22
sputtering, 107–109	fin, 41–42
steady-state conduction, 18-54	internal, 62–63
approximate estimates of magnitude,	series resistances, 22f
22–32	short time scales, 66–69
conduction shape factors, 47–49	radiation, 24–25, 193
electrical analogy, 21–22	time dependent, 69, 80, 83, 84, 85
estimation, graphical, 34–35	thermodynamic fundamental equation, 218
fins, 39–42	thermodynamics
general steady-state equation, 32–33	First Law of, 11, 66
governing differential equation,	Second Law of, 11
nondimensional form, 42–47	three-dimensional steady conduction, 32–38
property values, 19–20	time scales, 62–66, 69–70, 94–95
shape factors, 47–49	total heat transfer, 72–73
two- and three-dimensional steady conduction,	transient conduction, 56–109
32–38	lumped capacity, see lumped capacity
estimation, graphical, 34–35	modeling tactics, 73, 83
upper limit, 35–39	nondimensionalization and scaling in, 91–98
vacuum insulation, 30f	characteristic lengths, 92–94
steel envelope, 30	characteristic temperatures, 90–91
Stefan-Boltzmann constant, 24, 173	characteristic times, 62–66, 69–70, 94–95
supercritical flow in tubes, 125–129	physical properties in unsteady conduction,
surface renewal models, 110, 139–141	57–59
swamp coolers, 156	scaling of unsteady fin, 95–97
T. G	semi-infinite body solutions, see semi-infinite
Teflon, 27	body solutions
temperature	series solutions for unsteady conduction, 64,
bulk, 132–133, see also bulk temperature	70–78
changes, propagation of, 66–69	mean temperature, 72–73
critical point, 125	one-term solutions, 73–75
mean, 72–73	total heat transfer, 72–73
pseudocritical, 126	thermal capacitance, 59–70
temperature response charts, 71–72	thermal circuit, 62–63, 65–66, 85
thermal capacitance, 59–70	thermal resistance, 59–70
short time scales, 66–68	time constant, 62–66
two or more, 66	unsteady fin, 95–98
thermal circuits, 21–22, 25 <i>f</i> , 31 <i>f</i> , 32 <i>f</i> , 41 <i>f</i> , 62–63,	tube furnace, 184f
65–66, 85 <i>f</i>	turbulent boundary layer, see boundary layer
in radiation, 201–202	turbulent internal flow, see internal flow
thermal conductivity, 6, 13, 19–20, 21 <i>f</i> , 58 <i>f</i>	two-dimensional steady conduction, 32–38

Index 231

uncertainty, 5–6 unsteady conduction, see transient conduction upper bound, 9–11

vacuum insulation, evacuated panel, 30–32, 41-42 vapor bubble growth, 88-91

velocity, buoyant, 142 volumetric heat generation, 32, 70, 72, 92, 103

wire-heated plate, 10f

Zel'dovich number, 155