Applied Soils and Micromorphology in Archaeology

Applied Soils and Micromorphology in Archaeology provides the most up-to-date information on soil science and its applications in archaeology. Based on more than three decades of investigations and experiments, the volume demonstrates how description protocols and complementary methods (SEM/EDS, microprobe, micro-FTIR, bulk soil chemistry, micro-, and macrofossils) are used in interpretations. It also focuses on key topics, such as palaeosols, cultivation, and occupation surfaces, and introduces a range of current issues, such as site inundation, climate change, settlement morphology, herding, trackways, industrial processes, funerary features, and site transformation. Structured around important case studies, *Applied Soils and Micromorphology in Archaeology* is thoroughly illustrated, with color plates and additional figures available at www.cambridge.org/9781107648685. Chapter appendices can be accessed separately by visiting www.geoarchaeology.info/asma. This book will serve as an essential volume for all archaeological inquiry about soil.

Richard I. Macphail is Senior Research Fellow at the Institute of Archaeology, University College London. He is coauthor of *Soils and Micromorphology in Archaeology* (Cambridge University Press, 1989) and *Practical and Theoretical Geoarchaeology* (2006). Macphail was an associate editor for *Geoarchaeology* (1990–2014), Professor Invité at Tours in 2004, and gained the Rip Rapp Award from the Geological Society of America in 2009.

Paul Goldberg is Professor Emeritus at the Department of Archaeology at Boston University and Professorial Research Professor at the University of Wollongong, Australia. He is coauthor of *Soils and Micromorphology in Archaeology* (Cambridge University Press, 1989) and *Practical and Theoretical Geoarchaeology* (2006). He received the Rip Rapp Award from the Geological Society of America in 2002, the Fryxell Award in 2008, and the Pomerantz Award from the Archaeological Institute of America for Scientific Contributions to Archaeology in 2010. In 2004 and 2013 he was the recipient of the Alexander von Humboldt Senior Award at Eberhard-Karls-Universität Tübingen, Germany.
Cambridge Manuals in Archaeology

General Editor
Graeme Barker, University of Cambridge

Advisory Editors
Elizabeth Slater, University of Liverpool
Peter Bogucki, Princeton University

Cambridge Manuals in Archaeology is a series of reference handbooks designed for an international audience of upper-level undergraduate and graduate students and professional archaeologists and archaeological scientists in universities, museums, research laboratories, and field units. Each book includes a survey of current archaeological practice alongside essential reference material on contemporary techniques and methodology.

Books in the series
Vertebrate Taphonomy, R. Lee Lyman
Alluvial Geoarchaeology, A. G. Brown
Shells, Cheryl Claassen
Sampling in Archaeology, Clive Orton
Excavation, Steve Roskams
Teeth, 2nd edition, Simon Hillson
Lithics, 2nd edition, William Andrefsky, Jr.
Geographical Information Systems in Archaeology, James Conolly and Mark Lake
Demography in Archaeology, Andrew Chamberlain
Analytical Chemistry in Archaeology, A. M. Pollard, C. M. Batt, B. Stern and S. M. Young
Zooarchaeology, 2nd edition, Elizabeth J. Reitz and Elizabeth S. Wing
Quantitative Palaeozoology, R. Lee Lyman
Paleopathology, Tony Waldron
Birds, Dale Serjeantson
Pottery in Archaeology, 2nd edition, Clive Orton and Michael Hughes
Applied Soils and Micromorphology in Archaeology

Richard I. Macphail
University College London, Institute of Archaeology

Paul Goldberg
Department of Archaeology, Boston University
The book is dedicated to our previous coauthor Marie-Agnès Courty and the late Nick Fedoroff with whom we worked for so many years.

From RIM: to Jill, Flora, Pete and Sue, Steve and Marilyn, and NHS Luton and Dunstable University Hospital.

From PG: to my folks
CONTENTS

List of Figures page xi
List of Tables xvi
List of Boxes xviii
Preface xix
Acknowledgments xxiv

PART I BACKGROUND APPROACH AND METHODS 1

1 Applied Principles from Geology and Soil Science 3
 1.1 Introduction 3
 1.2 Sediment Types and Geological Processes 14
 1.3 Facies and Microfacies 21
 1.4 Examples of Sedimentary Geology 24
 1.5 Coastal and Terrestrial Soil-Sediments Examples 27
 1.6 Soils 27
 1.7 Soils and Experiments, Including Archaeological Reconstructions and History of Research 28
 1.8 Reference Materials and Their Study 30
 1.9 Fieldwork, Sampling, and Laboratory Processing 31
 1.10 Conclusions 38

2 Complementary Analyses 39
 2.1 Introduction 39
 2.2 Macro- and Microfossil Studies (Including In Situ Identifications) 43
 2.3 Soil Micromorphology and Associated Chemical, Macro-, and Microfossil Studies 46
 2.4 Use of Instrumental Methods 54
 2.5 Conclusions 65

3 Systematic Soil Micromorphology Description 66
 3.1 Introduction 66
 3.2 Development of Soil Micromorphology Description 66
 3.3 Sample Listing and Organization 69
viii CONTENTS

3.4 Observational Steps 74
3.5 Estimations and Numerical Data 93
3.6 Recording Soil Micromorphology 95
3.7 Conclusions 96

PART II SOILS AND SEDIMENTS 97

4 Soils and Burial (Horizon Types and Effects of Burial in the Temperate and Boreal Regions) 99
4.1 Introduction 99
4.2 Mull Humus Horizons and Their Variants, and Effects of Burial 100
4.3 Moder and Mor Humus Topsoils, and Effects of Burial 118
4.4 Upper Subsoils 125
4.5 Subsoils 128
4.6 Conclusions 134

5 Soil-Sediments 135
5.1 Introduction 135
5.2 Alluvium and Alluvial Soils 136
5.3 Colluvium 166
5.4 Colluvial Palaeosols – Examples from Last Late Glacial Windermere (~Allerød) Interstadial, UK 174
5.5 Examples of Colluvia Resulting from Clearance and Agriculture (e.g., Hillwash) 179
5.6 Ponds, Lakes, and Associated Wetland 183
5.7 Conclusions 185

6 Inundated Freshwater and Coastal Marine Sites 186
6.1 Introduction 186
6.2 Inundation by Freshwater (Upper Palaeolithic and Early Mesolithic Three Ways Wharf, Uxbridge, Middlesex as Example of an “Inland” Site; after Macphail et al., 2010) 187
6.3 Inundation by Freshwater at Sites Later Affected by Marine Alluviation (Lower Thames Valley and the Fens, UK) 188
6.4 Experimental Marine Inundation at Wallasea Island, Essex 190
6.5 General Effects of Marine Inundation (Archaeological Sites on the River Blackwater and River Severn) 198
6.6 Sediment Ripening and Freshwater Inundation at Boxgrove (Units 4b, 4c, and 5a) 201
6.7 The Middle Pleistocene Kirkhill Quarry Palaeosol, Buchan, Scotland 207
6.8 Conclusions 208

PART III ARCHAEOLOGICAL MATERIALS 209

7 Archaeological Materials and Deposits 211
7.1 Introduction 211
7.2 Constructional Materials 212
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Prepared Constructional Materials</td>
<td>229</td>
</tr>
<tr>
<td>7.4</td>
<td>Some Effects of Fire on Building Materials and Archaeological Deposits in General</td>
<td>234</td>
</tr>
<tr>
<td>7.5</td>
<td>Industrial, Material Processing, and Artisan Activity Traces</td>
<td>237</td>
</tr>
<tr>
<td>7.6</td>
<td>Fecal Waste (Coprolites, Dung, Excrement, and Cess)</td>
<td>247</td>
</tr>
<tr>
<td>7.7</td>
<td>Conclusions</td>
<td>268</td>
</tr>
<tr>
<td>PART IV</td>
<td>FEATURES AND ACTIVITIES IN THE LANDSCAPE</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>First Records of Human Activity</td>
<td>271</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>271</td>
</tr>
<tr>
<td>8.2</td>
<td>Sampling Strategies in Sites Where Natural Processes Predominate (the Pleistocene Examples of Chongokni, Korea and Boxgrove, UK)</td>
<td>277</td>
</tr>
<tr>
<td>8.3</td>
<td>The Freshwater Occupation Pond Sediments at Boxgrove, UK</td>
<td>279</td>
</tr>
<tr>
<td>8.4</td>
<td>Southfleet Elephant Site, Ebbsfleet, Kent</td>
<td>280</td>
</tr>
<tr>
<td>8.5</td>
<td>Open Air Sites (Camps and Middens)</td>
<td>282</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusions</td>
<td>289</td>
</tr>
<tr>
<td>9</td>
<td>Clearance and Cultivation</td>
<td>290</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>290</td>
</tr>
<tr>
<td>9.2</td>
<td>Clearance</td>
<td>290</td>
</tr>
<tr>
<td>9.3</td>
<td>Cultivation</td>
<td>304</td>
</tr>
<tr>
<td>9.4</td>
<td>Experiments in Ancient Cultivation</td>
<td>308</td>
</tr>
<tr>
<td>9.5</td>
<td>Cultivation without (Evident) Manuring</td>
<td>312</td>
</tr>
<tr>
<td>9.6</td>
<td>Cultivation with Manuring, Including Horticulture</td>
<td>316</td>
</tr>
<tr>
<td>9.7</td>
<td>Worldwide Cultivation</td>
<td>330</td>
</tr>
<tr>
<td>9.8</td>
<td>Conclusions</td>
<td>340</td>
</tr>
<tr>
<td>10</td>
<td>Occupation Surfaces and Use of Space</td>
<td>342</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>342</td>
</tr>
<tr>
<td>10.2</td>
<td>Ethnoarchaeological Studies and Experiments</td>
<td>346</td>
</tr>
<tr>
<td>10.3</td>
<td>Stabling and Semi-Intact Stabling/Byre Waste Deposits</td>
<td>354</td>
</tr>
<tr>
<td>10.4</td>
<td>Domestic Space Including Hearths</td>
<td>368</td>
</tr>
<tr>
<td>10.5</td>
<td>Industrial and Craft Activities</td>
<td>379</td>
</tr>
<tr>
<td>10.6</td>
<td>Conclusions and Recognizing Different Uses of Space</td>
<td>383</td>
</tr>
<tr>
<td>11</td>
<td>Settlement Morphology</td>
<td>386</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>386</td>
</tr>
<tr>
<td>11.2</td>
<td>Constructions</td>
<td>394</td>
</tr>
<tr>
<td>11.3</td>
<td>Trackways and Roads</td>
<td>412</td>
</tr>
<tr>
<td>11.4</td>
<td>Animal Management</td>
<td>436</td>
</tr>
<tr>
<td>11.5</td>
<td>Waste Disposal I (Middening)</td>
<td>456</td>
</tr>
<tr>
<td>11.6</td>
<td>Waste Disposal II (Cess Pits and Latrines)</td>
<td>458</td>
</tr>
<tr>
<td>11.7</td>
<td>Water Management and Control (Wells, Reservoirs, Ditches, and Moats)</td>
<td>461</td>
</tr>
<tr>
<td>11.8</td>
<td>Specialist Domestic, Artisan, and Industrial Activity</td>
<td>466</td>
</tr>
</tbody>
</table>
X CONTENTS

11.9 Funerary Features (Graves, Cremations, and Excarnation Features) 478
11.10 Conclusions 489

12 Site Transformation 490
 12.1 Introduction 490
 12.2 Decay, Destruction, and Razing Effects 490
 12.3 European Dark Earth 494
 12.4 Maya Dark Earth at Marco Gonzalez, Ambergris Caye, Belize 505
 12.5 Conclusions 515

13 Final Remarks 517

Color plates and additional figures are available at www.cambridge.org/9781107648685

Site Gazetteer 519
References 529
Index 585
FIGURES

1.1 Pompeii, Italy, AD 79; volcanic ash road fill, plane-polarized light (PPL)
1.2 Oslo harbor, Norway; fourteenth-century B13 shipwreck remains
1.3 As Figure 1.2, harbor sediment and pyrite concentrations, flatbed scan (FS)
1.4 As Figure 1.2, harbor sediment and wood remains (FS)
1.5 As Figure 1.2, harbor sediment, pyrite, X-ray backscatter image (BSE)
1.6 As Figure 1.2, pyrite X-ray spectrum
1.7 As Figure 1.2, seaweed in harbor sediment (PPL)
1.8 Gokstad Ship Burial Mound, Vestfold, Norway; motor-coring
1.9 As Figure 1.8, location map of Norway, Gokstad and Heimdal (Heimdaljordet) sites
1.10 As Figure 1.8, coring map
2.1 Chongokni, Hantan River, Republic of Korea; XRD analysis of sediments
2.2 Åmot øvre, Lok 11 E18 road project, Vestfold, Norway; micro-FTIR analyses of burnt clay
2.3 As Figure 2.2, micro-XRF analyses of burnt clay
2.4 Stanford Wharf, River Thames, Essex, UK; Late Roman “green glaze” coated salt-working briquetage ceramic (FS)
2.5 As Figure 2.4, “green glaze” (BSE)
2.6 As Figure 2.4, Late Roman “green glaze” coated salt-working briquetage ceramic; micro-FTIR analyses
2.7 (A) Overton Down Experimental Earthwork, Wiltshire, UK; (B) comparison of manual counts with image analysis data
2.8 West Stow Anglo-Saxon Village, Suffolk, UK; amorphous phosphate in Saxon grubenhäuser (BSE)
2.9 As Figure 2.8, phosphate-stained charcoal
3.1 Soil micromorphology description guide
3.2 Stainton West (CNDR), Carlisle, Cumbria, UK; plant remains in palaeochannel (FS)
xii LIST OF FIGURES

4.1 Overton Down Experimental Earthwork, Wiltshire, UK, 1992; optical counts of chalk bank-buried soil 102
4.2 As Figure 4.1, field photo of chalk bank-buried soil 103
4.3 As Figure 4.1, control soil outside enclosure (FS) 103
4.4 As Figure 4.3, turf-buried soil (FS) 104
4.5 Wareham Experimental Earthwork, Dorset, UK; control profile 104
4.6 As Figure 4.5, subsoil Bb and Bhs horizon (FS) 105
4.7 As Figure 4.5, earthwork section drawing 105
4.8 As Figure 4.5, compilation of control soil example, bank-buried and turf-buried soils (FS) 106
4.9 As Figure 4.5, changes to thickness of buried Ao horizon through time 107
4.10 As Figure 4.5, bank colluvium (FS) 107
4.11 Butser Ancient Farm, Hampshire, UK; pasture soil (FS) 111
4.12 Easton Down, Wiltshire, UK; Neolithic buried soil (FS) 111
4.13 As Figure 4.12, chalk bank-buried soil 112
4.14 Gokstad Ship Burial Mound, Vestfold, Norway; vivianite concentration (BSE) 114
4.15 As Figure 4.14, vivianite X-ray spectrum 114
4.16 Short Dykes Project, Powys, Wales, UK; Short Ditch Dyke bank-buried soil (FS) 124
4.17 As Figure 4.16, Upper Short Ditch Dyke bank-buried soil (FS) 124
5.1 River Itchen paleochannel pollen diagram 141
5.2 As Figure 5.1, peat Contexts 1312 and 1313 (FS) 142
5.3 Map of Gubrandsdalen site locations, River Lågan, Norway 150
5.4 As Figure 5.3, field photo of Fryasletta alluvium containing charcoal layer 151
5.5 As Figure 5.3, Monolith P42 employed for thin sections M42A and M42B 151
5.6 As Figure 5.3, sample M63A, laminated mull horizon (PPL) 154
5.7 As Figure 5.3, iron-stained organic matter (BSE) 154
5.8 As Figure 5.3, X-ray SEM Spectrum 155
5.9 Huizui, Henan Province, China; site map 156
5.10 As Figure 5.9, Middle Neolithic (M239B) alluvium sediment sequence (FS) 157
5.11 Chongokni, Hantan River, Republic of Korea; site location 158
5.12 As Figure 5.11, alluvial soil sediments (FS) 160
5.13 As Figure 5.11, overbank flooding clayey channel fill (PPL) 160
5.14 As Figure 5.11, overbank flooding clayey channel fill (XPL) 161
5.15 As Figure 5.11, sampling below quartzite core 163
5.16 As Figure 5.11, core-buried soil sediments (FS) 163
5.17 Boxgrove, West Sussex, UK; sequence of marine and terrestrial sediments, including cool-climate path gravels 169
5.18 As Figure 5.17, example of cool-climate soil-sediment sampling 173
5.19 As Figure 5.17, horizontally fissured soil sediment (FS) 173
5.20 As Figure 5.17, horizontal clay coated fissures (PPL) 174
List of Figures

6.1 Three Ways Wharf, Uxbridge, UK; Upper Paleolithic and early Mesolithic stratigraphy 188
6.2 Wallasea Island on the River Crouch, Essex, UK; site location map 191
6.3 As Figure 6.2, example of tidal mudflat foraminifera (PPL) 195
6.4 Goldcliff, Gwent, Wales, UK; marine sediment-sealed Mesolithic “soil” (FS) 200
6.5 Boxgrove, West Sussex, UK; borehole survey location map 206
7.1 Gokstad, Vestfold, Norway; Viking ship burial within mound 213
7.2 As Figure 7.1, robber trench disturbance and soil inwash (PPL) 213
7.3 Bordașani-Popină, Borcea River, Romania; Chalcolithic tell 214
7.4 As Figure 7.3, loess-based construction and occupation surfaces (FS) 214
7.5 Whittington Ave., City of London, UK; first-century AD Roman spade dug brickearth destruction levels (FS) 215
7.6 London Guildhall (GYE), London, UK; early medieval brickearth floors and trample (FS) 215
7.7 Dragon Hall, Norwich, UK; medieval mortar floor and occupation deposits (Composite FS and BSE images) 232
7.8 As Figure 7.7, siliceous plant stem remains and charcoal (PPL) 235
7.9 Åmot øvre, Vestfold, Norway; Iron Age burnt clay (FS) 236
7.10 Hol, Buskerud, Norway; medieval vesicular iron spherule (BSE) 243
7.11 Butser Ancient Farm, Hampshire, UK; reference sheep-goat dung (FS) 256
7.12 Bedfordshire, UK; reference badger excrement (PPL) 258
7.13 El Morro de Arica, Chile; Chinchorro mummy intestinal contents (PPL) 265
8.1 Boxgrove, West Sussex, UK; refitting flints within cool-climate sediments 273
8.2 As Figure 8.1, mammilated excremental soil (XPL) 274
8.3 As Figure 8.1, calcite root pseudomorph in pond deposits (PPL) 280
8.4 Southfleet (Pleistocene Elephant Site), Ebbsfleet, Kent, UK; lacustrine sediments (FS) 281
8.5 Unnerstvedt and Ragnhildroð, Vestfold, Norway; twig-lined cooking pit fill (FS) 286
8.6 As Figure 8.5, charred twigwood section (PPL) 286
8.7 Helganes, Haugesund airport, North Rogaland, Norway; prehistoric cooking pit char 287
8.8 La Cotte de St Brelade, Jersey, UK; Fe and Zn rich guano (BSE) 288
8.9 As Figure 8.8, X-ray spectrum 288
9.1 Bagbøle Experimental Farm, Umeå, Västerbotten, Sweden; conifer woodland control topsoil (FS) 298
9.2 As Figure 9.1, slash-and-burn topsoil (FS) 298
9.3 As Figure 9.1, manured and cultivated: 0–80 mm (FS) 299
9.4 As Figure 9.1, 80–160 mm (FS) 299
9.5 Kilham, Yorkshire Wolds, North Yorkshire, UK; Neolithic long barrow-buried soil (PPL) 304
9.6 As Figure 9.5, XPL 304
List of Figures

9.7 Ashcombe bottom, near Lewes, East Sussex, UK; Beaker ard-ploughed colluvium (PPL)
9.8 Hørdalsåsen, Vestfold, Norway; Iron Age to Migration Period cultivation soil accumulation
9.9 As Figure 9.8, dung-enriched fine soil (PPL)
9.10 Avaldsnes Royal Manor (near Haugesund), Rogaland, Norway; dung fragment in plough soil colluvium
9.11 Hesby, Vestfold, Norway; footslope colluvium
9.12 As Figure 9.11, layered cultivation colluvium (FS)
10.1 Bedouin camp, Beer Sheva, Israel; tented floor surface (PPL)
10.2 Ha Roa, Negev Highlands, Israel; recent bedouin stabling surface
10.3 Ramon Crater, Mitzpe Ramon, Negev Desert, Israel
10.4 Winchester, Hampshire, UK; medieval organic refuse in cathedral precincts (FS)
10.5 As Figure 10.4, layered stabling waste (PPL)
10.6 Tønsberg, Vestfold, Norway; medieval "silting" below plank floor (PPL)
11.1 Bordsuani-Popina, Borcea River, Romania (near River Danube); site location
11.2 Stanford Wharf, River Thames estuary, Essex, UK; charred remains in plant-tempered clay oven (PPL)
11.3 Jarlsberg, Vestfold, Norway; contour map of Migration Period longhouse
11.4 Grytting, Gudbrandsdalen, Oppland, Norway; Iron Age clay hearth (FS)
11.5 White Horse Stone, Kent, UK; Early Neolithic long house posthole fill (PPL)
11.6 As Figure 11.5, bone inclusion – Blue Light (BL)
11.7 Lyminge, Thanet, Kent, UK; Saxon grubenhaus
11.8 As Figure 11.7, iron (plough) coulter
11.9 As Figure 11.7, iron-stained remains of grubenhaus plank floor (BSE)
11.10 Brougham Castle, Penrith, Cumbria, UK; Iron Age trackway silts (PPL)
11.11 Ware, Essex, UK; pre-Roman road trackway sediments
11.12 As Figure 11.11, Roman road surface
11.13 E18, road project map, Vestfold, Norway
11.14 Whitefriars, Canterbury, UK; diagrammatic Roman and Saxon bulk data profiles
11.15 As Figure 11.14, elemental microprobe maps of road deposits
11.16 Cevennes mountains, southern France; troupeau transhumance
11.17 As Figure 11.16, dung concentration
11.18 Niederhummel, Bavaria, Germany; Early LBK feature fill – (a) plots of P$_2$O$_5$ vs MnO; (b) plots of P$_2$O$_5$ vs FeO
11.19 Arene Candide, Liguria, Italy; Middle Middle Neolithic stabling layers
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.20</td>
<td>West Stow Anglo-Saxon Village, Suffolk, UK; pig pasture and pig pen areas</td>
</tr>
<tr>
<td>11.21</td>
<td>As Figure 11.20, pigs and pig trample</td>
</tr>
<tr>
<td>11.22</td>
<td>Heimdaljordet (Heimdal), Vestfold, Norway; Viking coastal settlement map</td>
</tr>
<tr>
<td>11.23</td>
<td>As Figure 11.22, fishbone in cess-rich parcel ditch fill (BSE)</td>
</tr>
<tr>
<td>11.24</td>
<td>Hesby, Vestfold, Norway; base of Viking well fill (FS)</td>
</tr>
<tr>
<td>11.25</td>
<td>Stanford Wharf, Thames Estuary, Essex, UK; site location</td>
</tr>
<tr>
<td>11.26</td>
<td>As Figure 11.25, Romano-British salt working – siliceous plant residue (PPL)</td>
</tr>
<tr>
<td>11.27</td>
<td>As Figure 11.25, lead stained Late Roman floor (BSE)</td>
</tr>
<tr>
<td>11.28</td>
<td>Marco Gonzalez, Ambergris Caye, Belize; regional location map</td>
</tr>
<tr>
<td>11.29</td>
<td>As Figure 11.28, Maya settlement map</td>
</tr>
<tr>
<td>11.30</td>
<td>As Figure 11.28, Maya salt-working levels with lime floor and debris including pot fragments</td>
</tr>
<tr>
<td>11.31</td>
<td>As Figure 11.28, burnt intertidal marine sediment (PPL)</td>
</tr>
<tr>
<td>11.32</td>
<td>As Figure 11.28, Coconut Walk ware pottery coating (BSE)</td>
</tr>
<tr>
<td>11.33</td>
<td>Bjørnstad sondre, Sarpsborg, Østfold, Norway; Iron Age inhumation</td>
</tr>
<tr>
<td>11.34</td>
<td>As Figure 11.33, coffin remains</td>
</tr>
<tr>
<td>11.35</td>
<td>As Figure 11.33, wood residues and vivianite (PPL)</td>
</tr>
<tr>
<td>11.36</td>
<td>Heimdaljordet, Vestfold, Norway; Viking boat grave – mineralized gut remains (BSE)</td>
</tr>
<tr>
<td>11.37</td>
<td>Hørdalen, Vestfold, Norway; Iron Age grave mound – cremated bone (PPL)</td>
</tr>
<tr>
<td>11.38</td>
<td>As Figure 11.37, OIL</td>
</tr>
<tr>
<td>12.1</td>
<td>Courages Brewery site, Southwark, London, UK; collapsed Roman brickearth structure and sealed floor deposits</td>
</tr>
<tr>
<td>12.2</td>
<td>Butser Ancient Farm, Hampshire, UK; reconstructed villa interior</td>
</tr>
<tr>
<td>12.3</td>
<td>Prosper-Mérimée Square, Tours, France; fourth- to sixth-century AD occupation surface (FS)</td>
</tr>
<tr>
<td>12.4</td>
<td>As Figure 12.3, twelfth-century AD dark earth (FS)</td>
</tr>
<tr>
<td>12.5</td>
<td>As Figure 12.3, earthworm granules in dark earth (PPL)</td>
</tr>
<tr>
<td>12.6</td>
<td>Tarquimpol, La Moselle, France; section through Late Antique rampart and dark earth</td>
</tr>
<tr>
<td>12.7</td>
<td>Marco Gonzalez, Ambergris Caye, Belize; Maya dark earth</td>
</tr>
<tr>
<td>12.8</td>
<td>As Figure 12.7, lime floor fragment in dark earth (PPL)</td>
</tr>
<tr>
<td>12.9</td>
<td>As Figure 12.7, OIL</td>
</tr>
<tr>
<td>12.10</td>
<td>As Figure 12.7, modern woodland surface soil formed over dark earth (FS)</td>
</tr>
</tbody>
</table>
TABLES

1.1 Common sedimentary environments and their subdivisions – site examples page 5
1.2 Calcium carbonate (CaCO₃) formations, features, and inclusions 6
1.3 Coastal environments 8
1.4 Soil horizons, soil types, and studied examples 10
2.1 Examples of selected (and sometimes generalized) particle size data and texture class (<2 mm) 41
2.2 Examples of shared sampling of the same cores for soil micromorphology and complementary studies 50
2.3 Examples of SEM/EDS data 62
3.1 Suggested outline for presenting soil micromorphological information 68
3.2a Description Protocol 2: Examples of count sheet – Neolithic soil 70
3.2b Description Protocol 2: Examples of count sheet – complex society site 71
3.3 Description Protocol 1: Fine fraction 77
3.4 The most commonly occurring single and compound mineral grains 79
3.5 Frequency and abundance semi-quantitative estimates as employed on count sheets 93
4.1 Wareham – changes in the buried soil 108
4.2 Gokstad Mound soil micromorphology 116
4.3 Particle size analysis of Roman truncated and sealed in situ Argillic Brown Earth soils (Luvisols) and “Brickearth clay” used in Roman constructions 130
5.1 Sediment types at Lower Paleolithic and Middle Pleistocene Boxgrove 147
5.2 White Horse Stone, Kent: summary of late glacial stratigraphic history based upon soil micromorphology 148
5.3a Gudbrandsdalen, Oppland, Norway; particle size analysis 152
5.3b Gudbrandsdalen, Oppland, Norway; five parameter analysis 152
5.3c Fryasletta, River Lågan alluvium Gudbrandsdalen, Oppland, Norway; palynological study of Bronze Age charcoal-rich Context 1150 153
6.1 Wallasea Island; basic soil characterization and magnetic susceptibility data 193
6.2 Wallasea Island; particle size analysis 196
List of Tables

6.3 Summary of some taphonomic effects noted in sites influenced by rising groundwater, freshwater inundation, rising saline groundwater, and estuarine mudflat inundation and sedimentation 199

7.1 Archaeological materials associated with construction 217

7.2 “Clay floors” 227

7.3 Experiments on ovens, furnaces, and heated bone 238

7.4 EDS and microprobe analysis of some metal working traces and associated materials 242

7.5 Dung, coprolites, and cess 248

8.1 Boxgrove archaeology and associated depositional environments 275

8.2 Bronze Age/Pre-Roman Iron Age pit fill (Helganes, Norway); selected EDS data 288

9.1 Sites with soil micromorphological evidence of tree-throw and clearance 291

9.2 Changes to microfabrics when soils previously under natural vegetation were cultivated employing modern methods 306

9.3 Sites of experiments in "ancient agriculture" 309

9.4 Some ancient cultivated soils 318

9.5 Comments on the identification of cultivation microfeatures and recognition of agriculture 341

10.1 General characteristics and basic interpretations of the three distinct units identified in activity surfaces 343

10.2a–c Key microstratigraphic features in the Moel-y-gar stable 1990, and after burial (1995), and in the Pimperne domestic roundhouse Butser Ancient Farm 350

10.3 Seasonal cycle residues from over-wintering of stock in Mediterranean caves – stabling deposits 356

10.4 Roman and Medieval stabling floors and deposits UK 363

10.5 Mediterranean cave site; typical domestic occupation deposits 369

10.6 Common difference between stable/ byre and domestic floors, and indications of industrial and artisan activities 384

11.1 A model of settlement composition as selectively studied and identified through soil micromorphology 387

11.2 Summary of site formation processes and events in the history of the Gokstad Mound according to soil micromorphology 396

11.3 Iron Age road sequence; Sharpstone Hill, near Shrewsbury, Shropshire, UK 416

11.4 Iron Age rutted trackway, Södra Sallerup, Sweden 422

11.5 Raunds, Northamptonshire, UK. Landscape and land use stages, based on soil data 425

11.6 West Stow pig husbandry bulk chemical studies 453

12.1 Examples of dark earth development trajectories from England, and Tarquimpol (La Moselle) and Square Prosper-Mérimée, Tours (France) 499

12.2 Marco Gonzalez; summary of soil micromorphology and bulk soil findings – both generalized and context specific 507
1.1 Marine harbor sedimentation in Oslo Fjord, Norway; the fourteenth-century “B13” wreck excavation; Figures 1.2–1.7
4.1 Experimental Earthwork Studies at Overton Down and Wareham, UK (1980–1996 results)
5.1 Late glacial and Holocene alluviation in England
5.2 Gudbrandsdalen Valley sediments
5.3 Sequence of Late Pleistocene lacustrine and alluvial sediments along the Imjin and Hantan Rivers, Korea, with Special Reference to the Chongokni Site
11.1 The Chalcolithic tell site of Bordușani-Popină, Borcea River, Romania
11.2 Whitefriars, Canterbury
11.3 An example of early animal husbandry: Raunds (Northamptonshire, UK)
11.4 Experimental pig husbandry at West Stow, Suffolk, 2008
11.5 Salt working at (1) the Romano-British and Late Roman Thames coastal site of Stanford Le Hope, UK and (2) Maya Marco Gonzalez Island, Belize
Soils and Micromorphology in Archaeology written by Marie-Agnès Courty, Paul Goldberg, and Richard Macphail during the 1980s and published in 1989 by Cambridge University Press (Courty et al., 1989), summarized the state of the discipline at that time. To some extent this book was made possible and user-friendly because of the standardization of soil micromorphological descriptive terms and personal collaborations with Peter Bullock and Nicholas Fedoroff, for example (Bullock et al., 1985). While it owed a great deal to earlier works, especially by Ian Cornwall, Romans and Robertson (Cornwall, 1953; Limbrey, 1975; Romans and Robertson, 1975a, 1983c), it can be suggested that this 1989 book was largely responsible for the expansion of the technique as a requisite method in geoarchaeology, especially in Europe. From being a minor player in mainstream soil micromorphology in the early 1980s (Bullock and Murphy, 1983), it slowly began to compete with traditional agronomy and palaeosol studies in the numbers of papers submitted (Douglas, 1990; Fedoroff et al., 1987). In 1990 a specialist working group (Archaeological Soil Micromorphology) was formed, and instead of a working-meeting every four years, participants met and continue to meet once or twice a year, usually in the UK or Europe (Arpin et al., 1998; Macphail, 2014a). The most recent (fourteenth) meeting of the International Working Meeting on Soil Micromorphology led to the publication of thirteen papers from Session 5 “Site Formation Processes in Archaeology” held at Lleida, Spain July 2012 (Macphail, 2013).

There are of course other books on geoarchaeology where there has been a focus on the application of archaeological soil micromorphology (French, 2003, 2015; Goldberg and Macphail, 2006b; Lewis, 2012), and the most recent volume on the interpretation of micromorphology features includes sections on anthropogenic materials and features (Stoops et al., 2010). In addition, the Archaeological Soil Micromorphology working group is currently producing their own guide to archaeological materials and features (Nicosia and Stoops, In press 2017).
It is now more than twenty-five years since *Soils and Micromorphology in Archaeology* was published, and many more archaeological sites, materials, experiments, and processes have been studied by soil micromorphologists. The need of students and workers to improve and widen their knowledge first led to the establishment of a working group, as noted earlier. The many site studies and experiments also produced an extensive reference collection which, although used in part at workshops, was not employed systematically for training. It was therefore decided to utilize this asset for an Intensive Training Course in Archaeological Soil Micromorphology at the Institute of Archaeology, University College London, and this has been delivered annually for the last ten years. The course comprised nine thematic sessions and one test session utilizing hundreds of reference thin sections from around the world. In addition, this book *Applied Soils and Micromorphology in Archaeology* was written to accompany this course and use of the thin section collection. The book is not, however, intended to be a review of the state of the science, because it would be impossibly long and unpublishable, and other reviews have already been published (Goldberg and Macphail, 2006b; Macphail and Goldberg, 2010). Nevertheless, discussions are fulsomely supported by literature citations, including some suggested by a series of reviewers in 2015. In order to make the bibliography a manageable size for publication, a fuller bibliography that includes numerous unpublished reports and other gray literature is available online, along with chapter appendices and other supportive material, including color plates and color images supporting the black and white figures in the printed book (www.geoarchaeology.info/asma).

The book is composed of twelve chapters in four main sections. In Part I, applied soil micromorphology in archaeology is introduced alongside its fundamental soil, geological, and experimental background in Chapter 1 (Applied Principles from Geology and Soil Science). As many of the developments within archaeological soil micromorphological reconstruction of past site formation processes have been aided by complementary analyses, a selection of these are presented in Chapter 2. These methods, which provide a holistic basis to soil micromorphological endeavors, contribute to the characterization of microfacies, and include correlated background bulk analysis for chemistry and microfossil remains for example, as already introduced in Chapter 1. These complementary data also involve the gathering of information from thin section (e.g., SEM/EDS, microprobe, micro-FTIR and occasional identifications of biological remains within the thin section). Descriptions are carried out using a petrological microscope employing standard lighting techniques and methods: plane-polarized light (PPL), crossed-polarized light (XPL), oblique incident light (OIL) and fluorescence microscopy (in our case, mainly
blue light – BL). Also, as detailed in Chapter 3 (Systematic Soil Micromorphology Description), the observational sequence from field to impregnated block and to thin section digital scanning are recommended. In reality, thin section description and photographic recording are carried out ahead of any instrumental studies for practical reasons and in order to be scientifically objective. It is emphasized that systematic and accurate thin section description always leads the study, and no amount of complementary analyses and/or “blue sky thinking” can achieve a well-founded data-based interpretation without it.

Parts II–IV give thematic-based case studies on the number of ways that soil micromorphology contributes to archaeological investigations; sites are listed alphabetically in the Site Gazetteer. In the first instance (Part II, Chapter 4 – Buried Soils) the pedological and/or geogenic effects of burial on soils is described so that the accurate analysis of different buried soil types can be utilized in order to aid the reconstruction of past landscapes. There is also a focus here on earth-based constructions and many kinds of soil formation processes are detailed. In depositional environments, sedimentation is the chief process. Chapters 5 and 6 concentrate on sediments and sedimentary processes in environments where exposure to subaerial weathering of the regolith is often ephemeral, and pedological development is likely to be very weak. Part II, Chapter 5 (Soil-Sediments) thus examines different kinds of sediment – alluvium, colluvium, and mass-movement deposits – in relationship to human activity. In the case of clearances and cultivation (see Chapter 9), human-induced colluviation is a primary mechanism. On the other hand, sometimes human impact is negligible and natural formation processes are totally dominant. Nevertheless, the place of humans in such environments still needs to be understood. When sediment-buried old land surfaces are studied, the transformation of these has to be considered. Barrow-buried soils are described in Chapter 4, but when a river floods or the sea inundates coastal areas as in the early Holocene of western Europe, a different kind of effect is recognized. Thus, the last chapter in Part II (Chapter 6 – Inundated Sites) discusses how we can interpret microfeatures accurately that are present in flooded terrestrial sites (freshwater alluvium) and in the present-day intertidal zone (marine alluvium). Just to note: both the examples of Early Paleolithic Boxgrove (West Sussex, UK) and the Romano-British Stanford Wharf salt-working site (Essex, UK) can only be understood according to our knowledge of how marine inundation affects sites.

In Parts III–IV the emphasis of the book shifts to anthropogenic features and artifacts produced by humans, both as hunters and gatherers and as formed by complex societies. This also includes the pattern of archaeological deposit formation at both types of sites. The second half of the book therefore commences with the study of
Archaeological Materials in Part III, Chapter 7, and is aimed to be as comprehensive as possible within the constraints of a printed book chapter. Chapter 7 thus embraces everything from constructional to industrial materials, and human latrine waste to animal coprolites, and includes many examples gathered from our reference collections and well-studied site examples. Part IV considers human occupation and the effects of this, commencing with Chapter 8 (First Records of Human Activity). In addition to noting some hunter and gatherer culture sites, features that can be associated with activities peripheral to complex society settlements are also noted. Some aspects of Paleolithic human activity are described in Chapters 5 and 6. Part IV continues with Chapter 9 on how to recognize and differentiate major human impacts on the landscape, in the form of clearance and cultivation. Closer analysis of complex societies, however, also warrants a clear idea of how occupation surfaces (Chapter 10) reflect use of space by humans and stock, by the way trampled surface deposits can be characterized. Such analyses and identifications are fundamental building blocks to the spatial study of both rural and urban space. In Chapter 11 the various components that contribute our comprehension of settlement morphology are elucidated. Chapter 11 also includes many feature types, such as ditches, water holes and wells, graveyards, and middening areas. Lastly, Chapter 12 deals with site transformation studies on how once recognizable occupation layers and farmed soils, for instance, became reworked after abandonment or through a land use change; structures can collapse or be razed by fire. This is a key aspect of investigation on any archaeological site, and Courty et al. (1989) coined the term, “post-depositional processes” for this very reason. In fact, there has been a major focus on these kinds of studies on some of the most challenging archaeological deposits worldwide, such as European dark earths and Amazonian and “Maya” dark earths of the New World.

Please note that soil micromorphology is often carried out alongside chemical and magnetic susceptibility analyses on complementary and often exactly correlated bulk samples (Goldberg and Macphail, 2006b, chapter 16). Magnetic susceptibility is reported in the standard way as χ_{LF} (low frequency) units (10^{-8} m3 kg$^{-1}$). Organic matter data is presented as %Organic C (carbon) or %LOI (Loss-On-Ignition) according to the methods employed; the former by wet chemistry, the latter by ignition in a furnace, although different temperatures are employed (e.g., 375°C for 16 hours or 550°C for 2 hours). Phosphate analysis also employs different methods and is reported by chemists either as P or as the oxide (P_2O_5) as mg g$^{-1}$ or mg P (P_2O_5)/100 g. Chapter reviewers have suggested that all data should be given as % or ppm (parts per million). Often this has been done, but it can be seen why chemists use their own recording methods when small amounts of phosphorus (element)/
phosphate (oxide) and very small quantities of heavy metals (μg g⁻¹; micrograms of substance per gram of dry mass of sample) and trace elements (ng g⁻¹; nanogram of substance per gram of dry mass of substance = parts per billion) have been measured. Data from SEM/EDS (Scanning Electron Microscopy and Energy Dispersive X-ray Spectrometry) and X-ray microprobe studies on thin sections are given as %Element or %Oxide (e.g., Al or Al₂O₃). Some conversions are given below:

- \(100.0 \text{ mg g}^{-1} = 1.0\% \text{ or } 10,000 \text{ ppm (e.g., P)}\)
- \(100.0 \text{ mg/100 g} = 0.1.0\% \text{ or } 1,000 \text{ ppm (e.g., P)}\)
- \(100.0 \text{ μg g}^{-1} = 0.100\% \text{ or } 100 \text{ ppm (e.g., for Cu, Pb and Zn)}\)
- \(100.0 \text{ ng g}^{-1} = 0.0001\% \text{ or } 0.100 \text{ ppm (e.g., Hg)}\).
I gratefully acknowledge a personal grant from The Leverhulme Trust that supported the writing of this book, and equally, my brother Steve’s contribution to the writing of the application for this grant. Coauthor, friend, and colleague Paul Goldberg has been stalwart in his support of this project, and I owe him big time. Numerous colleagues commented on aspects of this book, and special thanks go to Charly French, Takis Karakanas, and Ruty Shahack-Gross. Various directors, academic managers, and colleagues at the Institute of Archaeology, University College London were especially supportive of the research that has contributed to this volume – namely, Sandra Bond, Barbara Brown, Jo Dullaghan, Ian Freestone, Liz Graham, Tom Gregory, Sue Hamilton, Fiona McLean, John Merkel, Mike Parker Pearson, Kevin Reeves, Mark Roberts, Thom Rynsaard, Tim Schadla-Hall, Stephen Shennan, Thilo Rehren, the late Peter Ucko, and Tim Williams. Numerous colleagues, nationally and internationally, have helped, and for example some eighty academics are listed who have provided personal communications. There are many others, too numerous to mention, including the members of the Archaeological Soil Micromorphology Working Group (1990–2015), but some have gone out of their way to be supportive – namely, Mike Allen, Nick Barton, Martin Bates, Martin Bell, Anne Gebhardt, Chris Carey, John Crowther, G. M. Cruise, Yannick Devos, Mark Dixon, Roger Engelmark, Samuel Ericsson, Henri Galinié, Julie Gardner, Ole Grøn, Costel Haită, Joachim Henning, Vance Holliday, Johan Linderholm, Elisabeth Lorans, Rolfe Mandel, Carolina Mallol, Herman Műcher, Peter Murphy, Cristiano Nicosia, Sofi Östman, Rosa Maria Poch, Philippe Rentzell, the late John Romans, Arlene Rosen, Steve Rosen, Sarah Sherwood, Chris Stringer, Karin Viklund, Luc Vrydaghs, Pat Wiltshire, Alasdair Whittle, and Seonbok Yi. Seonbok also kindly supplied free accommodation and lab space for an extra two weeks while flights were blocked by the volcanic ash cloud of 2010. I also acknowledge the contribution of Eyjafjallajökull to the writing of this book. Further worthy of note are the chief contributors of complementary
data and discussion found in the book: John Crowther, G. M. Cruise, Johan Linderholm, and Pat Wiltshire. More than thanks are due to the continuous support of Marie-Agnès Courty and the late Nicholas Fedoroff. Archaeological companies and their associates have also contributed greatly to this book and ongoing research, and are gratefully acknowledged. These include Canterbury Archaeological Trust (Enid Alison, Paul Bennett, Alison Hicks, Mark Houlistan), Cotswold Archaeology (Chris Ellis), Geo-Marine (Tim Sara), Leicester University Archaeological Services (Patrick Clay, Angela Monckton), Cultural History Museum, University of Oslo (e.g., Jan Bill, Grethe Bukkemoen, Bjørne Gaut, Lars Eric Gjerpe, Ingar Morkestøl Gundersen, Christian Redsrud, Dagfinn Skre), Norwegian Institute for Cultural Heritage Research (Egil Marstein Bauer), Norwegian University of Science and Technology (Ingrid Ystgaard), Oxford Archaeology South and Oxford Archaeology North (Fraser Brown, Carl Champness, Denise Druce, Stuart Foreman, Ben Ford, Elizabeth Huckerby, Rebecca Nicholson, Stephen Rowland, Liz Stafford), MOLA (e.g., David Bowsher, Nick Bateman, Craig Halsey, and Mary Ruddy), Norfolk NAU Archaeology (David Adams and Fran Green), Suffolk Archaeology (e.g., Joanna Caruth, David Gill and Andrew Tester), Statistical Research (Jeff Homburg), US Navy (Bruce Larson), François Rabelais University, Tours (Henri Galinié, Elisabeth Lorans, Elizabeth Zadora-Rio, Xavier Rodier) and Wessex Archaeology (e.g., Alistair Barclay, Cathie Barnett, Pippa Bradley, Andrew Crockett, Michael Grant, Phil Harding, Dave Norcott, Chris Stevens, and Sarah Wyles). Long-term members of the Working Group in Archaeological Soil Micromorphology are also thanked for numerous collaborations and discussions (e.g., Judit Becze-Deák, Giovanni Boschian, Yannick Devos, Anne Gebhardt, Roger Langohr, Karen Milek, Kristin Meyer, Cristiano Nicosia, Maria Rosa Poch, Philippe Rentzel, Georges Stoops, Luca Trombino, Luc Vrydaghs, Yijie Zhuang, to name but a few). Much of the collection upon which this book is based will be kindly housed for open access at Eberhard-Karls-Universität Tübingen and the Senckenberg Research Institute and Natural History Museum (Matthias Czechowski, Susan Mentzer, and Chris Miller). Lastly, Cambridge University Press and their editors are thanked for their continuous support (Graham Barker, Mary Bongiovi, Anastasia Graf, and Beatrice Rehl).

List of academics who have supplied personal communications

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation/residence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acott, T.</td>
<td>University of Greenwich, UK</td>
</tr>
<tr>
<td>Adams, D.</td>
<td>NPS Archaeology, Norwich, UK</td>
</tr>
<tr>
<td>Alison, E.</td>
<td>Canterbury Archaeological Trust, UK</td>
</tr>
</tbody>
</table>
XXVI ACKNOWLEDGMENTS

Allen, M. Allen Environmental Archaeology, Wiltshire, UK
Barclay, A. Wessex Archaeology, UK
Bartolin, T. Scandinavian Dendro Dating, Hamburg, Germany
Barton, N. Oxford University, UK
Bauer, E. Norwegian Institute for Cultural Heritage Research, Norway
Bell, M. University of Reading, UK
Berna, F. Simon Fraser University, Vancouver, Canada
Beydoun, M. American University of Beirut, Lebanon
Bill, J. Cultural History Museum, University of Oslo, Norway
Bondevik, S. University of Bergen, Norway
Bradley, R. University of Reading, UK
Brothwell, D. University of York, UK
Buckland, P. University of Umeå, Sweden
Cameron, N. Environmental Change Research Centre, UCL, London, UK
Cadamarteri, J. Norwegian Institute for Cultural Heritage Research, Norway
Carey, C. University of Brighton, UK
Carpentier, F. Leuven University, Belgium
Carruthers, W. Cardiff, UK
Carver, M. University of York, UK
Caseldine, A. Trinity St Davids, Lampeter, University of Wales, UK
Chamberlain, A. University of Sheffield, UK
Champness, C. Oxford Archaeology South, UK
Chen, X. Institute of Archaeology, Chinese Academy of Social Sciences, China
Coard, R. Trinity St Davids, Lampeter, University of Wales, UK
Courty, M-A. CNRS, PROMES, Tecnosud, Perpignan, France
Cowgil, J. Lincoln, UK
Crothers, M-E. West Stow Anglo-Saxon Village, UK
Crowther, J. Trinity St Davids, Lampeter, University of Wales, UK
Acknowledgments

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cruise, G. M.</td>
<td>Leighton Buzzard, UK</td>
</tr>
<tr>
<td>Crummy, P.</td>
<td>Colchester Museum, Essex, UK</td>
</tr>
<tr>
<td>de la Torre, I.</td>
<td>Institute of Archaeology, University College London, UK</td>
</tr>
<tr>
<td>de Rouffignac, C.</td>
<td>ex Worcester CC Archaeology Service, UK</td>
</tr>
<tr>
<td>Derrick, M.</td>
<td>Norwegian Institute for Cultural Heritage Research, Norway</td>
</tr>
<tr>
<td>Devos, Y.</td>
<td>Université libre de Bruxelles, Belgium</td>
</tr>
<tr>
<td>Druce, D.</td>
<td>Oxford Archaeology North, UK</td>
</tr>
<tr>
<td>Engelmark, R.</td>
<td>MAL, Umeå University, Sweden</td>
</tr>
<tr>
<td>Fedoroff, N.</td>
<td>CNRS, INAP-G, Thiverval-Grignon, France</td>
</tr>
<tr>
<td>Foreman, S.</td>
<td>Oxford Archaeology South, UK</td>
</tr>
<tr>
<td>Ford, B.</td>
<td>Oxford Archaeology South, UK</td>
</tr>
<tr>
<td>French, C.A.I.</td>
<td>University of Cambridge, UK</td>
</tr>
<tr>
<td>Fryer, V.</td>
<td>Norwich, UK</td>
</tr>
<tr>
<td>Gebhardt, A.</td>
<td>INRAP, Strasbourg, France</td>
</tr>
<tr>
<td>Gjerpe, I.-E.</td>
<td>Cultural History Museum, University of Oslo, Norway</td>
</tr>
<tr>
<td>Goldberg, P.</td>
<td>Boston University, USA</td>
</tr>
<tr>
<td>Gollwitzer, M.</td>
<td>Fylkeskonservatoren, Vest-Agder fylkeskommune, Kristiansand, Norway</td>
</tr>
<tr>
<td>Goodburn, D.</td>
<td>AMTeC Co-op Ltd, London</td>
</tr>
<tr>
<td>Grønnesby, G.</td>
<td>Norwegian University of Science and Technology, Norway</td>
</tr>
<tr>
<td>Grandin, L.</td>
<td>Geoarchaeological Laboratory, Uppsala, Sweden</td>
</tr>
<tr>
<td>Graham, E.</td>
<td>Institute of Archaeology, University College London, UK</td>
</tr>
<tr>
<td>Gundersen, I.</td>
<td>Cultural History Museum, University of Oslo, Norway</td>
</tr>
<tr>
<td>Gwilt, A.</td>
<td>National Museums and Galleries of Wales, Cardiff, UK</td>
</tr>
<tr>
<td>Haită, C.</td>
<td>National Museum of Romanian History, Bucharest, Romania</td>
</tr>
<tr>
<td>Halsey, C.</td>
<td>Museum of London Archaeology (MOLA), London, UK</td>
</tr>
<tr>
<td>Halvorsen, S.</td>
<td>Norwegian Institute for Cultural Heritage Research, Norway</td>
</tr>
</tbody>
</table>
Acknowledgments

Hambro Mikkelsen, P.

Hawksworth, D. L. University of Madrid, Spain
Henning, J. Frankfurt University, Germany
Hicks, A. Canterbury Archaeological Trust, UK
Hillson, S. Institute of Archaeology, University College London, UK
Holden, T. Headland Archaeology, Edinburgh, UK
Høiseng, O. Hedmark fylkeskommune, Norway
Homburg, G. Statistical Research Inc., California and Arizona, USA
Huckerby, E. Oxford Archaeology North, UK
Hunter, K. Freelance Archaeobotany, Oxford, UK
Jacobi, R. British Museum, London, UK
Jones, R. York Archaeology Trust, York, UK
Karkanas, P. American School of Classical Studies, Athens, Greece
Kaye, D. KDK Archaeology Co., Leighton Buzzard, UK
Kresten, P. Geoarchaeological Laboratory, Uppsala, Sweden
Larson, B. Naval Facilities Engineering Command Atlantic
Lee, H. Korea Univeristy, Seoul, Republic of Korea
Lee, R. University of Michigan, USA
Linderholm, J. University of Umeå, Sweden
Maddela, M. Barcelona University, Spain
Matsui, A. Nara Research Institute for Cultural Properties, Nara, Japan
McCormick, M. Harvard University, Boston, USA
McLees, C. Norwegian Institute for Cultural Heritage Research, Norway
Merkel, J. Institute of Archaeology, University College London, UK
Milek, K. Aberdeen University, UK
Mücher, H. University of Antwerp, Belgium
Murphy, C. Soil Survey of England and Wales, Rothamsted, UK
Murphy, P. Historic England, UK
Nicholson, R. Oxford Archaeology South, UK
ACKNOWLEDGMENTS

Östman, S. University of Umeå, Sweden
Rehren, T. UCL Qatar, Qatar
Reitan, G. Cultural History Museum, University of Oslo, Norway
Rentzel, P. University of Basel, Switzerland
Reynolds, P. Butser Ancient Farm, Hampshire, UK
Roberts, M. Institute of Archaeology, University College London, UK
Robinson, M. University of Oxford, Oxford, UK
Romans, J. C. C. Macaulay Institute, Aberdeen, UK
Rosen, S. Ben Gurion University, Israel
Rowland, S. Oxford Archaeology North, UK
Semmelmann, K. KDKArchaeology Co., Leighton Buzzard, UK
Shahack-Gross, R. University of Haifa, Israel
Sherwood, S. SEWANEE: University of the South, Tennessee, USA
Smith, D. University of Birmingham, UK
Solberg, A. Cultural History Museum, University of Oslo, Norway
Stafford, L. Oxford Archaeology South, UK
Stoops, G. University of Ghent, Belgium
Straker, V. Historic England, UK
Thomas, K. Institute of Archaeology, University College London, UK
Turner, S. Environmental Change Research Centre, UCL, London, UK
Usai, R. University of York, UK
Viklund, K. MAL, Umeå University, Sweden
Vrydaghs, L. Université libre de Bruxelles, Belgium
Williams, T. Institute of Archaeology, University College London, UK
Wiltshire, P.E.J. Ashtead, Surrey, UK

Richard Macphail

There were many people and organizations over the years that helped contribute to my current perspectives on micromorphology. The list is too large but in particular, I would like to thank (in no particular order) Rich Macphail, my longtime friend, collaborator and colleague, and supplier of good jokes. In addition: Ofer Bar-Yosef, Marie-Agnès Courty, the late Nick Fedoroff, Takis Karkanas, Nicolas J. Conard,

US National Science Foundation, the French Government (CNRS and Ministère des Affaire Etrangères), The Irene Sala Care Foundation, Max Planck Institute (Leipzig), Alexander von Humboldt Foundation, University of Tübingen and ROCEEH, the National Geographic Society, and Boston University.

Paul Goldberg