Introduction to Computational Nanomechanics

A comprehensive guide on computational nanomechanics discussing basic theoretical concepts and computer modelings in areas such as computational physics, materials, mechanics, and engineering as well as several other interdisciplinary avenues. This book makes the underlying theory accessible to readers without specialized training or extensive background in quantum physics, statistical mechanics, or theoretical chemistry. It combines a careful treatment of theoretical concepts with a detailed tutorial on computer softwares and computing implementations, including multiscale simulation and computational statistical theory. Multidisciplinary perspectives are provided, yielding a deep insight on the applications of computational nanomechanics across diverse engineering fields. The book can serve as a practical guide with step-by-step discussions of coding, example problems, and case studies. This book will be essential reading for students new to the subject, as well as an excellent reference for researchers and developers.

Shaofan Li is a full professor of computational science at the University of California, Berkeley. Doctor Li has been conducting research in atomistic and multiscale simulations since 2000, publishing more than two hundred technical articles in peer-reviewed journals.

Jun Li is a post-doctoral researcher at Wuhan University of Technology. Doctor Li has been conducting research in first-principles modeling and simulations of materials since 2015, publishing over twenty technical papers in peer-reviewed journals.

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-01115-1 — Introduction to Computational Nanomechanics Shaofan Li , Jun Li Frontmatter <u>More Information</u> CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-01115-1 — Introduction to Computational Nanomechanics Shaofan Li , Jun Li Frontmatter <u>More Information</u>

Introduction to Computational Nanomechanics

Multiscale and Statistical Simulations

SHAOFAN LI

University of California, Berkeley

JUN LI Wuhan University of Technology

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107011151

DOI: 10.1017/9780511894770

© Shaofan Li and Jun Li 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2022

Printed in the United Kingdom by TJ Books Limited, Padstow, Cornwall

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-01115-1 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. 1

2

3

4

Cambridge University Press & Assessment 978-1-107-01115-1 — Introduction to Computational Nanomechanics Shaofan Li , Jun Li Frontmatter <u>More Information</u>

Contents

Preface		<i>page</i> ix	
Acki	Acknowledgments		
Parl	I First-Principles Calculations		
A Sh	ort Primer on Quantum Mechanics	3	
1.1	Wave-Particle Duality: Law of Physics	3	
1.2	Schrödinger Equation	8	
1.3	Solution Examples of the Schrödinger Equation	11	
1.4	Interpretations of Quantum Mechanics	28	
1.5	Homework Problems	32	
Dens	sity Functional Theory	35	
2.1	Many-body Schrödinger Equation	35	
2.2	Hartree–Fock Approximation	38	
2.3	Hohenberg and Kohn Theorems	39	
2.4	Kohn–Sham Formalism	43	
2.5	Example: DFT Calculation of Silicon Band Structure	46	
Qua	ntum Stress	52	
3.1	Quantum Stress Theory	52	
3.2	Reciprocal-Space Expression for Quantum Stress	55	
3.3	Quantum Stress via DFT	60	
3.4	Quantum Electronic Stress	65	
3.5	Higher-Order Quantum Stress Theory	69	
3.6	Higher-Order Quantum Stress via DFT	70	
3.7	Quantum Couple Stress via DFT	72	
Intro	oduction to VASP	76	
4.1	Files Used by VASP	76	
4.2	Example: Structural Optimization and Self-consistent Charge Density	84	
4.3	Example: DFT Calculation of Si Band Structure	89	
4.4	Example: DFT Modeling of Calcium Silicate Hydrate (C-S-H) Structure	e 94	

vi	Cont	ients	
	Parl	t II Statistical Molecular Dynamics	
5	Fund	damentals of Statistical Mechanics	105
	5.1	Lagrangian Mechanics	105
	5.2	Hamiltonian Mechanics	106
	5.3	Liouville Theorem	111
	5.4	Canonical Transformation and Symplectic Condition	113
	5.5	Laws of Thermodynamics	115
	5.6	Thermodynamics States	117
	5.7	Legendre Transformation	120
	5.8	Statistical Ensembles	124
	5.9	Homework Problems	155
6	Fund	damentals of Molecular Dynamics	158
	6.1	How to Derive Molecular Dynamics from Quantum Mechanics	158
	6.2	Ab-Initio Molecular Dynamics	162
	6.3	How to Calculate Mechanical Forces in Quantum Mechanical Systems	163
	6.4	Classical Molecular Dynamics	166
	6.5	Examples of Atomistic Potentials	169
	6.6	Periodic Boundary Condition	180
	6.7	Neighbor Lists	185
	6.8	Homework Problems	187
7	Mole	ecular Dynamics Time Integration Techniques	189
	7.1	Basic Concept of Time Integration	189
	7.2	Verlet Algorithms	191
	7.3	Predictor–Corrector Methods	199
	7.4	Symplectic Algorithm	201
	7.5	Homework Problems	203
8	Tem	perature Control in MD Simulations	204
	8.1	Velocity Scaling	204
	8.2	Stochastic Thermostat	206
	8.3	Nosé–Hoover Thermostat	208
	8.4	How to Integrate Nosé-Hoover MD?	216
	8.5	Other Thermostats	220
	8.6	Homework Problems	223
9	And	ersen–Parrinello–Rahman Molecular Dynamics	225
	9.1	Andersen's NPH MD	225
	9.2	Parrinello-Rahman Formulation	228
	9.3	PR MD for NPH Ensemble	232
	9.4	Physical Justification of PR MD	238

	Contents	vii
	9.5 PR MD for (N σ H) or (N τ H) Ensemble	242
	9.6 Podio-Guidugli's Interpretation	246
	9.7 Homework Problems	248
10	Introduction to LAMMPS	249
	10.1 How to Download and Install LAMMPS	249
	10.2 How to Run LAMMPS	251
	10.3 Some Basic LAMMPS Commands	253
	10.4 Case Study (I): Simulation of Three-Dimensional Nano-indentation	282
	10.5 Case Study (II): MD Simulation of Mechanical Properties of Cement	287
	10.6 MD Visualization Software: VMD and OVITO	291
	10.7 Homework Problems	312
11	Monte Carlo Methods	313
	11.1 Monte Carlo Sampling for Integrations	313
	11.2 Markov Chain Monte Carlo Method	325
	11.3 Hamiltonian (Hybrid) Monte Carlo Method	340
12	Langevin Equations and Dissipative Particle Dynamics	345
	12.1 Langevin Equation	345
	12.2 LAMMPS Examples for Langevin Dynamics	353
	12.3 Dissipative Particle Dynamics	358
	12.4 Homework Problems	371
13	Nonequilibrium Molecular Dynamics	373
	13.1 Green–Kubo Relation	373
	13.2 Example: LAMMPS Simulation of Thermal Conductivity	388
	13.3 Fluctuation–Dissipation Theorem (FDT)	392
	13.4 Mori–Zwanzig Formalism	401
	Part III Multiscale Modeling and Simulation	
14	Virial Theorem and Virial Stress	409
	14.1 What Is Virial?	411
	14.2 Virial Stress via Tensorial Viral Theorem	413
	14.3 Virial Stress via Liouville Theorem: Irving–Kirkwood Formalism	419
	14.4 Hardy Stress	427
	14.5 Homework Problems	432
15	Cauchy–Born Rule and Multiscale Methods	433
	15.1 Cauchy–Born Rule	433
	15.2 Higher-Order Cauchy–Born Rule	446
	15.3 Cauchy–Born Rule for Non-Bravais Lattices	450

viii	Contents	
	15.4 Cauchy–Born Rule for Amorphous Solids	453
	15.5 Homework Problems	458
16	Statistical Theory of Cauchy Continuum	459
	16.1 Quasi-Harmonic Approximation	459
	16.2 Homework Problems	470
17	Multiscale Method (I): Multiscale Micromorphic Molecular Dynamics	472
	17.1 Multiscale Partition of First-Principles MD Lagrangian	472
	17.2 Multiscale Micromorphic MD	481
	17.3 Numerical Examples	487
	17.4 Multiscale Coupling between MMMD and PD	495
	17.5 Homework Problems	505
18	Multiscale Methods (II): Multiscale Finite Element Methods	507
	18.1 Multiscale Finite Element Formulation	507
	18.2 MMMD/FEM Coupling Method	513
	18.3 Multiscale Cohesive Interphase Zone Model	517
	18.4 Higher-Order MCZM	530
Appendi	x A Crystal Structure	536
	A.1 Lattice and Basis	536
	A.2 Unit Cells	542
	A.3 Miller Indices	546
	A.4 Reciprocal Lattice	549
	A.5 Some Common Crystal Lattice Structures	551
	A.6 Bloch Theorem	557
	Bibliography	559
	Author Index	565
	Subject Index	567

Preface

This book grew from the lecture notes of the graduate course on Introduction to Computational Nanomechanics at the University of California–Berkeley, which I started teaching in Spring 2011.

Most of the materials are compiled and organized from various textbooks or research papers in quantum mechanics, molecular dynamics, computational statistical mechanics, and the like. However, the contents are edited and streamlined, and the texts are rephrased so that first-year engineering graduate students with different backgrounds but without a formal training in graduate-level physics and chemistry can easily understand them. In fact, the main motivation of the book is to teach computational nanomechanics and computational statistical mechanics to students from various disciplines of engineering, biology, and mathematical sciences, who do not have a formal training in quantum physics and statistical mechanics. Because of continuing developments in nanoscience and nanotechnology and their applications to the broader field of engineering, the needs for in-depth knowledge of nanoscience, especially computational nanoscience, have become more and more urgent and demanding. Usually, conventional wisdom says that acquiring such knowledge would require a career change, which demands so much time and effort that many engineering students or researchers are too intimidated.

There are several books on computational nanomechanics available. To distinguish the present book from the others, I would like to focus more on computational statistical mechanics, multiscale simulation, and its applications to solve engineering problems – a subject that is still in the stage of infancy.

My academic background is not quantum physics or computational chemistry, but applied and computational mechanics, which is a subfield of engineering science or applied physics. I always felt that perhaps this was a disadvantage for me in writing a book on computational nanomechanics; on the other hand, I may be in a unique position to understand how the mind of an engineer works, so that I may have a different perspective to write the book in such a way that most engineers will feel more comfortable to read it. It is only this thought that keeps me thinking that this is a useful endeavor.

One of the main features of the book is that it includes many segments of actual computation scripts and computer codes. It provides step-by-step tutorials to show how to conduct a computer simulation of a first-principle calculation or a molecular dynamics calculation. Most of these scripts are collected from various online

x Preface

resources, as well as private communications and sharings from our research collaborators. Because the computer codes have been migrated from different sources and different versions, we are not able to acknowledge the original sources or developers, and for that we sincerely apologize to the original developers. While we are deeply indebted to these original developers, we are hoping that they also hold same spirits for sharing these information with readers, and especially younger researchers and students. Lastly, in order to help readers have hands-on experience in computer implementation on some of numerical computation examples discussed in this book, computing resource files have been posted on the following website: http://nanomechanics .berkeley.edu/introduction-to-computationalnanomechanics/.

The readers are free to download these resource files.

Shaofan Li

Acknowledgments

My coauthor, Dr. Jun Li, has been working with me on first-principles modeling and simulations of flexoelectricity since 2018. She has provided many inputs and contributed a great deal in the writing of this book. Without her participation and dedication, I would not have been able to finish the book. Finally, I would like to acknowledge and thank the friends, former students, and fellow researchers in computational nanomechanics, who have all helped me gain a better understanding of this topic. In particular, I would like to thank Dr. Shingo Urata, Dr. Lisheng Liu, Dr. Xiaowei Zeng, Dr. Bo Ren, Dr. Houfu Fan, Dr. Tong Qi, Dr. Hiroyuki Miniky, Dr. Dandan Lyu, Dr. Hengameh Shams, Dr. Qingsong Tu, Mr. Qi Zheng, Mr. Caglar Tamur, Dr. Yuxi Xie, Dr. Xin Lai, Dr. Kaiyue Wang, and Dr. Donghoon Kim, among others, who have contributed to the creation and development of this book.

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-01115-1 — Introduction to Computational Nanomechanics Shaofan Li , Jun Li Frontmatter <u>More Information</u>