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1 A Short Primer on Quantum
Mechanics

Nanomechanics is part of both quantum physics and molecular physics. As this book

is aimed at engineering students and engineers, whom we assume have no formal

training in quantum physics, we begin our presentation with a short introduction

of quantum mechanics, in order to provide the necessary background for later

presentations.

1.1 Wave–Particle Duality: Law of Physics

Light and matter exhibit wave–particle duality, in other words, all matter and light

have two manifestations: discreteness as the deterministic being and continuousness in

the sense of probabilistic presence. In our current understanding, such wave–particle

duality is the law of physics or first principle, because we do not know, at least to date,

any other laws of universe that are more fundamental than it.

The relations between wave and particle properties of any object in the universe

may be described by the de Broglie relations,

E = hν, and p = h

λ
, (1.1)

where h is the Planck constant, which is a universal constant of nature, and its value is

h = 6.63 × 10−34 Js; λ is the matter wavelength; and ν is the matter wave frequency,

which is the number of a repeating event, e.g., cycles or temporal wave number per unit

time. The unit of frequency is hertz (Hz) (1 Hz means one wave cycle per second). The

reciprocal of the frequency is period, which is the time duration of one wave cycle, i.e.,

T = 1

ν
.

At first sight, many of us may experience difficulties understanding such wave–particle

proposition because, in our common experience, a finite mass matter is always associ-

ated with the discrete particle, whereas the light wave is associated with the continuous

electromagnetic field.

However, at the turn of the twentieth century, people had found several counterex-

amples or evidences that show either (1) light wave behaves like particles, and (2)

matter exhibits wave properties.
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4 Part I First-Principles Calculations

Figure 1.1 Illustration of photoelectric effect experiment

Two famous examples showing that light exhibits particle properties are: (1) pho-

toelectric effect and (2) Compton effect.

1.1.1 Photoelectric Effect

In 1887, Heinrich Hertz found that when ultraviolet (UV) light is shone on a metal

plate in a vacuum, and it emits charged particles (see Fig. 1.1), which were later shown

to be electrons by J. J. Thomson (1899).

Based on classical electromagnetic theory, electric field E of light exerts force

F = −eE on electrons. As the intensity of light increases, the input energy to the

metal plate increases as well, which may be absorbed by the electrons inside the

metal plate, so that the kinetic energy of electrons inside the metal plate increases

too. When the kinetic energy of the electrons reach a critical value, they may escape

from the metal plate. From this perspective, electrons should be emitted whatever the

frequency ν of light is, so long as E is sufficiently large; and for very low intensity,

one may expect a time lag between light exposure and electron emission, because

electrons need to absorb enough energy to escape from the metal plate.

The actual experimental observation shows that the maximum kinetic energy of

ejected electrons is independent of light intensity, but dependent on the frequency ν of

the light. For ν < ν0, i.e., for frequencies below a cutoff frequency, no electrons are

emitted from the metal plate, and there is no time lag when the light intensity is low.

However, the rate of ejection of electrons depends on light intensity.

To interpret the experimental results, Albert Einstein theorized that the energy

distribution in light is discrete, or light travels in packets of discrete energy, which

are referred to as quanta, and they are now called as photons,1

E = hν. (1.2)

1 Here, we adopt the hypothesis that the group of velocity of light is the velocity of photons.
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Figure 1.2 Compton scattering: (a) schematic illustration and (b) experimental observation

When an electron absorbs a single photon, it may leave the metal plate. The maximum

kinetic energy of an emitted electron can then be expressed as

Kmax = hν − ϕ,

where ϕ is the work function, which is the minimum energy needed for an electron

to escape from the surface of the metal plate of a given metallic material. It is usually

2∼5 eV depending on the type of materials, and it may be written as ϕ = hν0, so that

we must have ν > ν0 for the photoelectric effect to occur. Einstein’s theory was later

validated by the experiments conducted by Robert Andrews Millikan in 1914.

For his discovery of the law of the photoelectric effect, in 1921 Albert Einstein was

awarded the Nobel Prize in Physics.

1.1.2 Compton Scattering

The second example is the so-called Compton scattering or the Compton effect, which

is the light scattering due to the inelastic collision of photons and electrons. The exper-

iment is illustrated in Fig. 1.2(a). In the experiment, a high-energy X-ray or gamma

ray photon beam hits a target with electrons. In this case, classical theory predicts that

when light is scattered on a free electron, the incident electromagnetic (EM) wave

will shake the electron transversely, and the oscillating electron then radiates in all

directions (except the exact direction of 90◦). The classical theory predicts that there

may be a change of the wavelength of the colliding photons due to the associated

Doppler shift, when the light intensity is large.
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6 Part I First-Principles Calculations

However, in the Compton scattering experiment, one can observe the change of the

wavelength of the scattering light even when the light intensity is very small, which is

called the Compton shift. The shift of the wavelength can be calculated by treating the

collision of the photon and electron as the elastic collision of two billiard balls. That

is, the photon behaves like a particle and, hence, the photon–electron collision obeys

the energy conservation and momentum conservation,

hν + mec
2 = hν′ +

(

p2
ec

2 + m2
ec

4
)1/2

and pν = pν′ + pe. (1.3)

Note that (p2
ec

2 + m2
ec

4)1/2 = mc2 is Einstein’s relativistic energy, which can be

derived from Einstein relations,

E = mc2, m = me
√

1 − v
2/c2

, and p = mv, → p2c2 = −m2
ec

4 + (mc2)2

and me in Eq. (1.3) is the electron’s static mass.

From Eq. (1.3), one can find that

λ′ − λ = h

mec
(1 − cos θ) ≥ 0. (1.4)

In Fig. 1.2(b), one finds the shifted wavelength measurement at different angles. Note

that for every fixed angle, there is also an unshifted peak, that is due to collision of

the X-ray photon and the core of the atom (the nucleus of the atom plus the immobile

electrons) because in that case, based on Eq. (1.3), one can find that

λ′ − λ = h

mcc
(1 − cos θ) ∼ 0, mc ≫ me. (1.5)

The Compton effect is a strong evidence that the continuous electromagnetic waves

may behave like particles. For the discovery of the Compton effect, Arthur Holly

Compton earned the 1927 Nobel Prize in Physics.

On the other hand, discrete matter may also behave like continuous waves. In

the following, we consider a well-known double-slit diffraction experiment of matter

waves.

1.1.3 Interference of Matter Waves

The double-slit experiment was originally performed by Thomas Young in 1801 in

demonstrating the wave nature of light, in which an incoming coherent plane wave

is directly hitting a thin plate with two slits, one can observe the wave interference

pattern on the screen behind the double-slit plate as shown in Fig. 1.3(b).

On the other hand, if the incoming object is not light, but a beam of particles such

as electrons, atoms, or even molecules, what would we expect the measurement result

on the back screen to be? A natural expectation on the results of double-slit diffraction

of matter waves is depicted in Fig. 1.3(a). However, on the contrary, for matter particle

waves, the particle density on the back screen has the same interference pattern as the

light wave. Interference pattern produced by a beam of C60 molecules is shown in

Fig. 1.4, which demonstrates the wave–particle duality of C60 molecules. It should be
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Figure 1.3 Double-slit experiment: (a) expected result for particles and (b) experimental

observation

Figure 1.4 Interference pattern produced by C60 molecules: (a) experimental recording (open

circles) and the fitting curve by using the Kirchhoff diffraction theory (continuous line) – the

expected zeroth and first-order maxima can be clearly seen. The details of the theory are

discussed in the text; and (b) the molecular beam profile without the grating in the path of the

molecules (Arndt et al. (1999))
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8 Part I First-Principles Calculations

noted that the position of the matter wave is uncertain, and it is a wave of probability

distribution, and it is sometimes called the de Broglie wave. One of the consequences

of this probabilistic wave is the uncertainty principle, which is sometimes called

the Heisenberg principle. The principle asserts that there is a fundamental limit to

the precision with which certain pairs of physical properties of a particle can be

simultaneously determined, such as position x and momentum p,

σxσp ≥ h̄

2
,

where h̄ = h
2π = 1.05457172610−34Js is the reduced Planck constant and σx,σp are

standard deviation of position and momentum.

The quantum mechanics uncertainty principle indicates that the more precise the

momentum of a particle is determined, the less precise its position can be known,

and vice versa. In other words, for a fixed precision of momentum, the precision

of the position is bounded below. This is to say that as random variables, position

and momentum are intrinsically related, and the product of their variances has a low

bound.

To close this section, we note that not only light and matter exhibit wave–particle

duality, antimatter also exhibits wave–particle duality.

1.2 Schrödinger Equation

The partial different equation that governs the matter wave motion is called the

Schrödinger equation.

1.2.1 A Short Heuristic Derivation

Since this is not a quantum mechanics book but an introduction to nanomechanics to

engineers, we derived the Schrödinger equation in a heuristic manner.

Before we get into mathematical derivations, we first make the following

assumptions:

1. The total energy E of a particle is

E = T + V = p2

2m
+ V .

This is the energy expression for a classical particle with mass m where the total

energy E is the sum of the kinetic energy T , and the potential energy V (which can

vary with position, and time). p and m are the momentum and the mass of the particle,

respectively.
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1 A Short Primer on Quantum Mechanics 9

2. Einstein’s light quanta hypothesis (1905) asserts that the energy E of a photon is

proportional to the frequency ν (or angular frequency, ω = 2πν) of the corresponding

electromagnetic wave:

E = hν = h̄ω.

3. The de Broglie hypothesis (1924) states that any particle can be associated with a

wave, and that the momentum p of the particle is related to the wavelength λ (or wave

number k) of such a wave by:

p = h

λ
= h̄k.

Expressing p and wavelength k as vectors, we have

p = h̄k.

4. The three assumptions discussed earlier allow one to derive the governing equation

for plane waves only. To extend those assumptions to general situations will require the

superposition principle, and thus, one must separately postulate that the Schrödinger

equation is linear.

Schrödinger’s main idea was to express the phase of the matter wave as a complex

phase factor so that the matter wave probability function has the following form:

�(r,t) = A exp i(k · r − ωt), where r = xex + yey + zez, (1.6)

where k is the wave number and ω is the angular frequency.

Considering that Eq. (1.6) is the intrinsic form of the wave function, we have

∂

∂t
� = −iω�

and then

E� = hν� = h̄ω� = ih̄
∂

∂t
�. (1.7)

Similarly, for spatial derivatives, we have

∂

∂x
� = ikx�, and

∂2

∂x2
� = −k2

x�.

We then have

p2
x� = (h̄kx)2� = −h̄2 ∂2

∂x2
�

and hence

p2� =
(

p2
x + p2

y + p2
z

)

� − h̄2

(

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)

� = −h̄2∇2�.
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10 Part I First-Principles Calculations

Recalling the Assumption 1 on total energy,

E = T + V = p2

2m
+ V ⇒ E� = (T + V )� = − h̄2

2m
∇2� + V � (1.8)

and combining Eqs. (1.7) and (1.8), we obtain the standard form of time-dependent

Schrödinger equation for a single particle as,

ih̄
∂

∂t
�(r,t) = − h̄2

2m
∇2�(r,t) + V (r,t)�(r,t), (1.9)

where m is the mass of the particle, − h̄2

2m
∇2 is said to be the kinetic energy operator,

and V (r,t) is the potential energy of the particle at position r and at time t .

In passing, we note that the Schrödinger equation, i.e., Eq. (1.9), is a second-order,

homogeneous, linear partial differential equation.

1.2.2 Wave Function

Further examining the time-dependent Schrödinger equation,

ih̄
∂�

∂t
= − h̄2

2m
∇2� + V (r,t)�

we find that

E = T + V = p · p

2m
+ V (r,t) ⇒ − h̄2

2m
∇2 + V (r,t),

which may be viewed as a differential operator, and we name the energy differential

operator as Hamiltonian operator or simply “Hamiltonian,”

Ĥ = T̂ + V̂ = − h̄2

2m
∇2 + V (r,t). (1.10)

Max Born made a physical interpretation of the wave function �(r,t): The probability

of finding the particle in a small volume δ� at position r and time t is equal to

|�(r,t)|2δ� = �(r,t)�∗(r,t)δ�. In other words, |�(r,t)|2 is the probability dis-

tribution of finding the particle in the location r at time t . Since the total probability

to find the particle in the space should be one, i.e.,
∫

IR3
|�(r,t)|2d� = 1

and a wave function that satisfies this condition is said to be normalized. Suppose that

we have a solution of Eq. (1.9), which is not normalized,
∫

IR3
|�(r,t)|2d� = C,

we can then normalize it by choosing

�(r,t) = 1√
C

�(r,t).
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