# QUANTUM EFFECTS IN BIOLOGY

Quantum mechanics provides the most accurate microscopic description of the world around us, yet the interface between quantum mechanics and biology is only now being explored. This book uses a combination of experiment and theory to examine areas of biology believed to be strongly influenced by manifestly quantum phenomena.

Covering subjects ranging from coherent energy transfer in photosynthetic lightharvesting, to spin coherence in the avian compass and the problem of molecular recognition in olfaction, the book is ideal for advanced undergraduate and graduate students in physics, biology, and chemistry seeking to understand the applications of quantum mechanics to biology.

MASOUD MOHSENI is a Senior Research Scientist at Google, where he develops novel machine learning algorithms that fundamentally rely on quantum dynamics. He has made significant contributions to quantum transport, quantum measurement, and open quantum system approaches to biology.

YASSER OMAR is Assistant Professor at the University of Lisbon and leads the Physics of Information Group at Instituto de Telecomunicações. His research is centered on quantum information theory, quantum transport, and their interface with biology.

GREGORY S. ENGEL is an Associate Professor at the Institute for Biophysical Dynamics and the James Franck Institute, The University of Chicago. His group is working on creating synthetic mimics of biological systems.

MARTIN B. PLENIO is Alexander von Humboldt Professor and Director of the Institute of Theoretical Physics, Ulm University. His main contributions are in the fields of quantum information, quantum optics, and the development of the theory of quantum effects in biology.

# QUANTUM EFFECTS IN BIOLOGY

# Edited by

# M. MOHSENI

Google

Y. OMAR Instituto de Telecomunicações and ISEG, University of Lisbon

> **G. ENGEL** University of Chicago

M. B. PLENIO Ulm University



#### CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is a part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107010802

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2014 Reprinted 2015

Printed in the United Kingdom by Bell and Bain Ltd

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-01080-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

# Contents

|    | Forev<br>Cont<br>Prefa                                  | vord<br>ributors<br>ace                            | <i>page</i> x<br>xiii<br>xvii |  |
|----|---------------------------------------------------------|----------------------------------------------------|-------------------------------|--|
| Pa | rt I                                                    | Introduction                                       |                               |  |
| 1  | Quar                                                    | ntum biology: introduction                         | 3                             |  |
|    | GRAHAM R. FLEMING AND GREGORY D. SCHOLES                |                                                    |                               |  |
|    | 1.1                                                     | Introduction                                       | 3                             |  |
|    | 1.2                                                     | Excited states in biology                          | 4                             |  |
|    | 1.3                                                     | Light particles and tunnelling                     | 7                             |  |
|    | 1.4                                                     | Radical pairs                                      | 8                             |  |
|    | 1.5                                                     | Questions for the present                          | 9                             |  |
|    | 1.6                                                     | Some wide-reaching questions                       | 12                            |  |
| 2  | Open quantum system approaches to biological systems 14 |                                                    |                               |  |
|    | ALIR                                                    | EZA SHABANI, MASOUD MOHSENI, SEOGJOO JANG, AKIHITO |                               |  |
|    | ISHIZ                                                   | ZAKI, MARTIN PLENIO, PATRICK REBENTROST, ALAN      |                               |  |
|    | ASPURU-GUZIK, JIANSHU CAO, SETH LLOYD AND ROBERT SILBEY |                                                    |                               |  |
|    | 2.1                                                     | Quantum mechanics concepts and notations           | 15                            |  |
|    | 2.2                                                     | Open quantum systems: dynamical map approach       | 17                            |  |
|    | 2.3                                                     | Open quantum systems: master equation approach     | 21                            |  |
|    | 2.4                                                     | Formally exact QME                                 | 22                            |  |
|    | 2.5                                                     | QME in the weak system-bath coupling limit         | 24                            |  |
|    | 2.6                                                     | QME for weak coupling to a Markovian bath          | 26                            |  |
|    | 2.7                                                     | QMEs beyond weak and Markovian limits              | 28                            |  |
|    | 2.8                                                     | Second-order cumulant time-non-local equation and  |                               |  |
|    |                                                         | its hierarchical representation                    | 33                            |  |
|    | 2.9                                                     | A post-perturbative time convolution QME           | 35                            |  |
|    | 2.10                                                    | QME in the polaron picture                         | 38                            |  |

v

| vi                                          |                                                                     | Contents                                                    |     |
|---------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-----|
|                                             | 2.11                                                                | Path integral techniques                                    | 44  |
|                                             | 2.12                                                                | DMRG based approaches                                       | 47  |
| 3                                           | 3 Generalized Förster resonance energy transfer                     |                                                             | 53  |
|                                             | SEOGJOO JANG, HODA HOSSEIN-NEJAD AND                                |                                                             |     |
|                                             | GRE                                                                 | GORY D. SCHOLES                                             |     |
|                                             | 3.1                                                                 | Introduction                                                | 53  |
|                                             | 3.2                                                                 | Förster's rate expression: a complete derivation            | 56  |
|                                             | 3.3                                                                 | Transition density cube method                              | 62  |
|                                             | 3.4                                                                 | Generalized Förster theories                                | 65  |
|                                             | 3.5                                                                 | Important computational issues in an actual application     | 72  |
|                                             | 3.6                                                                 | Applications of MC-FRET                                     | 77  |
|                                             | 3.7                                                                 | Summary                                                     | 81  |
| 4                                           | Prin                                                                | ciples of multi-dimensional electronic spectroscopy         | 82  |
|                                             | том                                                                 | ÁŠ MANČAL                                                   |     |
|                                             | 4.1                                                                 | Photo-induced dynamics of molecular systems                 | 82  |
|                                             | 4.2                                                                 | Non-linear response of multi-state systems                  | 89  |
|                                             | 4.3                                                                 | Cumulant expansion of a non-linear response                 | 99  |
|                                             | 4.4                                                                 | Selected non-linear spectroscopic methods                   | 106 |
|                                             | 4.5                                                                 | Conclusions                                                 | 119 |
| Pa                                          | Part II Quantum effects in bacterial photosynthetic energy transfer |                                                             |     |
| 5 Structure, function, and quantum dynamics |                                                                     | cture, function, and quantum dynamics of                    |     |
|                                             | pign                                                                | nent-protein complexes                                      | 123 |
|                                             | IOAI                                                                | N KOSZTIN AND KLAUS SCHULTEN                                |     |
|                                             | 5.1                                                                 | Introduction                                                | 123 |
|                                             | 5.2                                                                 | Light-harvesting complexes from purple bacteria: structure, |     |
|                                             |                                                                     | function and quantum dynamics                               | 125 |
|                                             | 5.3                                                                 | Optical transitions in pigment-protein complexes            | 131 |
|                                             | 5.4                                                                 | Electron transfer in pigment-protein complexes              | 140 |
| 6                                           | Dire                                                                | ct observation of quantum coherence                         | 144 |
|                                             | GRE                                                                 | GORY S. ENGEL                                               |     |
|                                             | 6.1                                                                 | Detecting quantum coherence                                 | 144 |
|                                             | 6.2                                                                 | Observation of quantum coherence using 2D                   |     |
|                                             |                                                                     | electronic spectroscopy                                     | 147 |
|                                             | 6.3                                                                 | Identifying and characterizing quantum coherence signals    | 151 |
|                                             | 6.4                                                                 | Quantum coherence in reaction centres using two colour      |     |
|                                             | c =                                                                 | electronic coherence photon echo spectroscopy               | 155 |
|                                             | 6.5                                                                 | Observing quantum coherences at physiological temperatures  | 156 |
|                                             | 6.6                                                                 | Outlook for future measurements of coherence                | 157 |

|      |                                                  | Contents                                                       | vii |  |
|------|--------------------------------------------------|----------------------------------------------------------------|-----|--|
| 7    | Environment-assisted quantum transport           |                                                                | 159 |  |
|      | MASC                                             | UD MOHSENI, ALÁN ASPURU-GUZIK, PATRICK                         |     |  |
|      | REBENTROST, ALIREZA SHABANI, SETH LLOYD,         |                                                                |     |  |
|      | SUSANA F. HUELGA AND MARTIN B. PLENIO            |                                                                |     |  |
|      | 7.1                                              | Introduction                                                   | 159 |  |
|      | 7.2                                              | Master equations for quantum transport                         | 161 |  |
|      | 7.3                                              | Quantum transport in a two-chromophore system                  | 162 |  |
|      | 7.4                                              | The principles of noise-assisted quantum transport             | 164 |  |
|      | 7.5                                              | Quantum transport in the Fenna-Matthews-Olson                  |     |  |
|      |                                                  | protein complex                                                | 167 |  |
|      | 7.6                                              | Optimality and robustness of quantum transport                 | 170 |  |
|      | 7.7                                              | Conclusion                                                     | 175 |  |
| Part | III                                              | Quantum effects in higher organisms and applications           |     |  |
| 8    | Excit                                            | ation energy transfer and energy conversion in photosynthesis  | 179 |  |
|      | ELISABET ROMERO, VLADIMIR I. NOVODEREZHKIN       |                                                                |     |  |
|      | AND RIENK VAN GRONDELLE                          |                                                                |     |  |
|      | 8.1                                              | Photosynthesis                                                 | 179 |  |
|      | 8.2                                              | Photosynthetic energy conversion: charge separation            | 180 |  |
|      | 8.3                                              | Light-harvesting                                               | 190 |  |
| 9    | Elect                                            | ron transfer in proteins                                       | 198 |  |
|      | SPIROS S. SKOURTIS                               |                                                                |     |  |
|      | 9.1                                              | Introduction                                                   | 198 |  |
|      | 9.2                                              | The rate for a single-step electron transfer reaction mediated |     |  |
|      |                                                  | by elastic through-bridge tunnelling                           | 201 |  |
|      | 9.3                                              | Dependence of tunnelling on protein structure: tunnelling      |     |  |
|      |                                                  | pathways and their interferences                               | 205 |  |
|      | 9.4                                              | Tunnelling matrix element fluctuations in deep-tunnelling      |     |  |
|      |                                                  | ET reactions                                                   | 208 |  |
|      | 9.5                                              | Vibrational quantum effects and inelastic tunnelling           | 211 |  |
|      | 9.6                                              | Biological ET chains with tunnelling and hopping steps         |     |  |
|      |                                                  | through the protein medium                                     | 214 |  |
|      | 9.7                                              | Conclusions                                                    | 216 |  |
|      | 9.8                                              | Acknowledgements                                               | 217 |  |
| 10   | A che                                            | emical compass for bird navigation                             | 218 |  |
|      | ILIA A. SOLOV'YOV, THORSTEN RITZ, KLAUS SCHULTEN |                                                                |     |  |
|      | AND PETER J. HORE                                |                                                                |     |  |
|      | 10.1                                             | Introduction                                                   | 218 |  |
|      | 10.2                                             | Theoretical basis for a chemical compass                       | 221 |  |

| viii | ii <i>Contents</i>                   |                                                           |     |  |
|------|--------------------------------------|-----------------------------------------------------------|-----|--|
|      | 10.3                                 | In vitro magnetic field effects on radical pair reactions | 227 |  |
|      | 10.4                                 | Evidence for a radical pair mechanism in birds            | 232 |  |
|      | 10.5                                 | Conclusion                                                | 236 |  |
| 11   | Quant                                | um biology of retinal                                     | 237 |  |
|      | KLAUS SCHULTEN AND SHIGEHIKO HAYASHI |                                                           |     |  |
|      | 11.1                                 | Introduction                                              | 237 |  |
|      | 11.2                                 | Retinal in rhodopsin and bacteriorhodopsin                | 238 |  |
|      | 11.3                                 | Quantum physics of excited state dynamics                 | 242 |  |
|      | 11.4                                 | Regulation of photochemical processes for                 |     |  |
|      |                                      | biological function                                       | 245 |  |
|      | 11.5                                 | Potential energy crossing and conical intersection        | 246 |  |
|      | 11.6                                 | Electronic structure of protonated Schiff base retinal    | 252 |  |
|      | 11.7                                 | Mechanism of spectral tuning in rhodopsins                | 255 |  |
|      | 11.8                                 | Photoisomerization of retinal in rhodopsins               | 257 |  |
|      | 11.9                                 | Summary and outlook                                       | 262 |  |
|      | 11.10                                | Acknowledgement                                           | 263 |  |
| 12   | Quant                                | cum vibrational effects on sense of smell                 | 264 |  |
|      | A.M. S                               | STONEHAM, L. TURIN, J.C. BROOKES AND A.P. HORSFIELD       |     |  |
|      | 12.1                                 | Phonon assisted tunnelling in olfaction                   | 264 |  |
|      | 12.2                                 | Important processes and timescales                        | 267 |  |
|      | 12.3                                 | Quantum rate equations                                    | 271 |  |
|      | 12.4                                 | Putting in numbers                                        | 272 |  |
|      | 12.5                                 | Can we make predictions?                                  | 275 |  |
|      | 12.6                                 | Extensions of the theory for enantiomers                  | 275 |  |
| 13   | A pers                               | spective on possible manifestations of entanglement in    |     |  |
|      | biolog                               | rical systems                                             | 277 |  |
|      | HANS                                 | J. BRIEGEL AND SANDU POPESCU                              |     |  |
|      | 13.1                                 | Introduction                                              | 277 |  |
|      | 13.2                                 | Entanglement                                              | 278 |  |
|      | 13.3                                 | Non-local correlations                                    | 281 |  |
|      | 13.4                                 | Entanglement in biology                                   | 289 |  |
|      | 13.5                                 | Open driven systems and entanglement                      | 292 |  |
|      | 13.6                                 | Conclusions                                               | 310 |  |
| 14   | Desig                                | n and applications of bio-inspired quantum materials      | 311 |  |
|      | МОНА                                 | N SAROVAR, DORTHE M. EISELE AND K. BIRGITTA WHALEY        |     |  |
|      | 14.1                                 | Potential applications of bio-inspired quantum materials  | 311 |  |
|      | 14.2                                 | Progress in designing biomimetic quantum materials        | 315 |  |

|    |                                         | Contents                                 | ix  |
|----|-----------------------------------------|------------------------------------------|-----|
| 15 | Coherent excitons in carbon nanotubes   |                                          | 335 |
|    | LEONAS VALKUNAS AND DARIUS ABRAMAVICIUS |                                          |     |
|    | 15.1                                    | Structure                                | 335 |
|    | 15.2                                    | Electronic properties in 1D systems      | 335 |
|    | 15.3                                    | Exciton-exciton interactions             | 339 |
|    | 15.4                                    | Non-linear optical response of excitons  | 343 |
|    | 15.5                                    | Simulations of intensity-dependent 3PEPS | 345 |
|    | 15.6                                    | Discussion and conclusions               | 347 |
|    | 15.7                                    | Acknowledgement                          | 349 |
|    | References                              |                                          | 350 |
|    | Index                                   |                                          | 396 |

# Foreword

When the revolutionary conceptual structure for the description of the physical world which we know as quantum mechanics was first formulated nearly 90 years ago, and its predictions tested in the laboratory, most of the experiments in question were on systems which were both very well characterized and reasonably well isolated from their environments, such as single electrons and atoms, small molecules and near-perfect crystalline solids.

While from the very start most physicists have taken it for granted that the formalism of quantum mechanics, when combined with appropriate system-specific information, can "in principle" account for all phenomena occurring in the physical world, including those usually regarded as the subject-matter of biology, until quite recently the overwhelmingly majority opinion has been that in a biological context the role of quantum theory is confined to elucidating the equilibrium structures of the relevant molecules and their reaction processes, and that subtle phenomena such as superposition and entanglement, of which we can now routinely exhibit spectacular effects at the level of a few well-isolated photons or atoms, play at most a very indirect role in any phenomena of biological interest. A major reason conventionally given for this view has been that biological systems, at least working ones, are by their very nature "warm and wet" - a phrase which in the physicist's lexicon translates to "prone to massive decoherence"; it looks as though any interesting superposition, say of different energy eigenstates of one's system, would be rapidly decohered by the ever-present, and usually microscopically very complex, environment.

Over the last decade or so, however, it has become clear that this conclusion may be (from the point of view of the quantum theorist!) unduly pessimistic. There is by now rather convincing evidence that non-trivial quantum superpositions occur in the first stages of photosynthesis, and a plausible argument that they play a role also in the intriguing phenomenon of bird navigation; as argued in some of the chapters of this book, there are other biological contexts in which a significant role for

#### Foreword

superposition and possibly even entanglement are not excluded by the traditional arguments.

This situation poses a major challenge to our understanding of the more general and long-studied subject of "open quantum systems," that is, systems which may show subtle quantum effects even while in intimate contact with a complex and noisy environment, which may not even be reproducible from shot to shot of the experiment. Over the last few years many have risen to this challenge on the experimental, theoretical and computational fronts, with intriguing results; one particularly striking observation has been that under certain circumstances a noisy environment may actually enhance the characteristically quantum-mechanical features of the behavior of the system. This book should provide the reader with a broad-based introduction to this fascinating and rapidly developing field of research.

> Tony Leggett, Department of Physics, University of Illinois at Urbana-Champaign

# Contributors

# Darius Abramavicius

Department of Theoretical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania.

# Alán Aspuru-Guzik

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

# Hans J. Briegel

Institute for Theoretical Physics, University of Innsbruck, Innsbruck, Austria, and Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck, Austria.

# Jennifer C. Brookes

Center for Biomedical Engineering, Massachussetts Institute of Technology, Cambridge, MA, USA.

# Jianshu Cao

77 Massachusetts Avenue, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.

# Dörthe M. Eisele

Center for Excitonics, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.

# **Gregory S. Engel**

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, IL, USA.

xiii

xiv

**Contributors** 

# Graham R. Fleming

Department of Chemistry, University of California Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

# **Rienk van Grondelle**

Department of Biophysics, Faculty of Sciences, VU University, Amsterdam, The Netherlands.

# Shigehiko Hayashi

Department of Chemistry, Graduate School of Sciences, Kyoto University, Kyoto, Japan.

# Peter J. Hore

Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford, UK.

# Andrew P. Horsfield

Department of Materials, Imperial College London, London, UK.

# Hoda Hossein-Nejad

University College London, Department of Physics & Astronomy, London, UK.

# Susana F. Huelga

Institut für Theoretische Physik, Universität Ulm, Ulm, Germany.

# Akihito Ishizaki

B77 Hildebrand Hall, Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.

# Seogjoo Jang

Department of Chemistry and Biochemistry, Queens College of the City University of New York, NY, USA.

# Ioan Kosztin

Department of Physics and Astronomy, University of Missouri, Columbia, MS, USA.

CAMBRIDGE

#### Contributors

Seth Lloyd

Department of Mechanical Engineering, Massachusetts, Institute of Technology, Cambridge, MA, USA.

# Tomáš Mančal

Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.

**Masoud Mohseni** Google Research, Venice, CA, USA.

# Vladimir I. Novoderezhkin

A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory, Moscow, Russia.

# Yasser Omar

Physics of Information Group, Instituto de Telecomunicações and CEMAPRE, ISEG, University of Lisbon, Portugal.

# Martin B. Plenio

Institut für Theoretische Physik, Universität Ulm, Ulm, Germany and Quantum Optics and Laser Science group, Blackett Laboratory, Imperial College London, London, UK.

# Sandu Popescu

H.H. Wills Physics Laboratory, University of Bristol, Bristol, UK.

# Patrick Rebentrost

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

**Thorsten Ritz** Department of Physics and Astronomy, Irvine, CA, USA.

# Elisabet Romero

Department of Biophysics, Faculty of Sciences, VU University, Amsterdam, The Netherlands.

# Mohan Sarovar

Sandia National Laboratories, Livermore, CA, USA.

xv

xvi

*Contributors* 

# **Gregory D. Scholes**

Department of Chemistry, Institute for Optical Sciences, and Centre for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario, Canada.

# **Klaus Schulten**

Department of Physics, University of Illinois at Urbana-Champaign, and Beckman Institute for Advanced Science and Technology, Urbana-Champaign, Illinois, USA.

# Alireza Shabani

Department of Chemistry, University of California, Berkeley, CA, USA.

# **Robert Silbey**

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA. Chapter 2 is being offered in honor of Professor Robert Silbey who sadly passed away during its writing.

# **Spiros S. Skourtis**

Department of Physics, University of Cyprus, Nicosia, Cyprus.

# Ilia A. Solov'yov

Beckman Institute for Advanced Science and Technology, Urbana-Champaign, IL, USA, and Department of Physics, Chemistry and Pharmacy, University of Southern Denmark (SDU), Odense M, Denmark.

# A. Marshall Stoneham

Formerly of University College London. Chapter 12 is being offered in honor of Professor Marshall Stoneham, who died unexpectedly during its writing.

# Luca Turin

BSRC Alexander Fleming, Vari, Greece.

# Leonas Valkunas

Department of Theoretical Physics, Faculty of Physics of Vilnius University, Vilnius, Lithuania, and Center for Physical Sciences and Technology, Institute of Physics, Vilnius, Lithuania.

# K. Birgitta Whaley

Department of Chemistry, University of California, Berkeley, CA, USA.

# Preface

Recent progress in science and technology has led to the revival of an old question concerning the relevance of quantum effects in biological systems. Indeed Pascual Jordan's 1943 book, *Die Physik und das Geheimnis des Lebens* had already posed the question "Sind die Gesetze der Atomphysik und Quantenphysik für die Lebensvorgänge von wesentlicher Bedeutung?" (Are the laws of atomic and quantum physics of essential importance for life?) and coined the term Quanten-Biologie (quantum biology). At the time this question was essentially of a theoretical nature as the technology did not yet exist to pursue it in experiment.

Indeed quantum biology has been benefiting considerably from the refinement in experimental tools which is beginning to provide direct access to the observation of quantum dynamics in biological systems. Indeed, we are increasingly gaining sensitivity towards quantum phenomena at short lengths and timescales. In recent years, these newly found technological capabilities have helped to elevate the study of quantum biology from a mainly theoretical endeavour to a field in which theoretical questions, concepts and hypotheses may be tested experimentally and thus verified or disproved. We should stress here that experiments are essential to verify theoretical models because biological systems already have a complexity and structural variety that prevents us from knowing and controlling all of the aspects. Results obtained using these refined experimental techniques lead to new theoretical challenges and thus stimulate the development of novel theoretical approaches. It is this mutually beneficial interplay between experiment and theory that promises accelerated developments within the field.

Biological systems tend to be warm, wet and noisy (the latter because they are exposed to environmental fluctuations), conditions which are normally expected to result in rapid decoherence and thus suppression of quantum features. Therefore quantum phenomena may at first sight seem to be unlikely to play a significant role in biology. Note, however, that at the level of molecular complexes and proteins, important biological processes can be very fast (taking place within picoseconds)

xvii

### xviii

### Preface

and well localised (extending across a few nanometres, the size of proteins) and may thus exhibit quantum phenomena before the environment has had an opportunity to destroy them. Hence the possible existence of significant quantum dynamics is a question of length and timescale; indeed quantum phenomena such as electron tunneling have been observed in biological systems and there is some evidence for proton tunneling in enzymes. As such, tunneling phenomena are not intimately related to biology and the question therefore remains whether on the one hand biological systems will exhibit more complex quantum-dynamical phenomena that may either involve several interacting particles or multiple interacting components of a network, or on the other hand whether the specifics of the biological systems and their environments will play a crucial role in allowing or supporting certain quantum-dynamical phenomena in biology. Only then could we call these 'non-trivial' quantum effects in biological systems. Indeed, it appears that there are biological processes such as energy and electron transfer in photosynthesis, magneto-reception in birds or the olfactory sense that rely at a fundamental level on such 'non-trivial' quantum-dynamical processes. Thus quantum effects in biology may well be possible and more importantly relevant towards function.

This book reports on quantum biology, its theoretical foundations, experimental findings and future possibilities as they have emerged over the past few years. Needless to say not all subjects can be covered and we have had to make a subselection that has been driven by several objectives. Firstly, given that the basis of the field is the fruitful interplay between experiment and theory, we have endeavoured to choose subjects that are either already under experimental investigation or for which it could be expected that technology will give access to these theoretical predictions in the foreseeable future. This has led us to exclude subjects such as quantum conciousness or the speculations concerning the origin of life. Secondly, it is our aim to provide a reasonably coherent set of chapters, starting from experimental and theoretical foundations and leading on to specific topics of interest. Finally, of course, personal preferences and tastes do also play a role.

The original plan for this book was hatched during the first conference on Quantum Effects in Biological Systems (QuEBS 2009), held from 7–10 July, 2009 in Lisbon, Portugal, which has become the first of the annual QuEBS conferences. Subsequent QuEBS meetings were held at Harvard University in 2010, Ulm University in 2011, Berkeley in 2012 and Vienna in 2013, and their ever growing attendance attests to a growing interest in the field.

This steady development has convinced us that the time is right for an introductory book on quantum effects in biology and we do hope that the present text will help scientists, especially young and adventurous scientists, during or shortly after their PhD, to gain a first insight into the field of quantum biology. It is our hope

#### Preface

that in this way we can assist the further development of the field by converting an increasing number of scientists into becoming quantum biologists.

We would like to acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada, the DARPA QuBE Program, the MIT-ENI Energy Initiative, the Center for Excitonics at RLE, and the Quantum Artificial Intelligence Lab at Google, to Masoud Mohseni; the Fundação para a Ciência e a Tecnologia (Portugal), namely through the programme POCTI/POCI/PTDC (PEst-OE/EGE/UI0491/2013, PEst-OE/EEI/LA0008/2013, PTDC/EEA-TEL/103402/2008), partially funded by FEDER (EU), and from the EU FP7 (LANDAUER, PAPETS), to Yasser Omar; The Searle Foundation and DARPA QuBE Program to Greg Engel; the Alexander von Humboldt Professorship, the SFB TR/21, the European Research Council and the European Union, to Martin Plenio. There have also been a number of friends, students and colleagues who have supported us in the completion of this book. Here, we would especially like to thank Robert Rosenbach for his considerable help in compiling the final edition of the book.

A website hosted by the editors is available at www.cambridge.org/ 9781107010802.