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Introduction

Astrophysics draws upon a wide range of topics in astronomy and physics. Topics as widely ranging as
observational techniques, thermodynamics, and general relativity are all central to the material covered
in this text. Many readers, particularly undergraduate students, will have only passing experience with
some of these foundational concepts. It is impossible for us to provide a comprehensive review of these
within the scope of this text, but we begin with a basic overview of the most central topics necessary to
approach the astrophysical subjects to be covered. In later chapters we build on these various terms in
greater detail. Although we do assume more than a general background in physics and astronomy, we
do not provide a comprehensive discussion of the basics, as these can be obtained elsewhere. Instead
we present only those more advanced background concepts as needed to the task at hand.

1.1 Fundamental stellar properties
A

One of the central goals of astronomy is the specification of the properties of the sun, stars, and
other self-luminous bodies in the universe. Learning about the ranges of these properties and how the
quantities characterizing them are determined are a major part of any astronomy course, so we only
briefly discuss them here.

1.1.1 Cosmic distance scales

The most fundamental property of a celestial object is its distance from another body. Usually the
reference is the sun, the star nearest to Earth. Within the solar system, distances are specified using
astronomical units (AU), equal to the mean distance between Earth and sun. Outside the solar system,
distances are so large that one immediately switches to another unit, the parsec. The parsec was devised
when distances to stars were first measured by the method of trigonometric parallax, and distance was
determined from the annual shift of an object’s angular position in the sky.'

At the time of Kepler and Copernicus, the difficulty in getting stellar distances was that the parallax
angle was very small. Most astronomers of the time reasoned that the brightest stars would be the
closest, and so early measurements focused on the brightest stars. But that assumption works only if
all stars are about the same brightness, which is not the case. The brightest appearing stars most often
also have the greatest luminous output, and therefore they can be seen over even greater distances than
stars such as the sun. Hence the parallax searches using the brightest stars largely failed. When it was
possible to measure parallaxes, the angles were always smaller than 1 second of arc (arcsecond) or
4.85 x 107° radians.

! The symbol 7 was often used for parallax angle, which is easy to confuse with the number 7.
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2 Introduction

The distance unit for parsec is defined as 206, 265 AU, such that it is the distance at which parallax
is 1 arcsecond. The practical parallax limit in modern times is on the order of a milliarcsecond, so
the distance limit is about 1 kiloparsec. Objects have been measured at megaparsecs, but this uses
other methods, as we shall see. At so-called cosmological distances, one relies on relative brightness to
estimate distances.

1.1.2 Cosmic brightness scale

Because the earliest observations of stars were made with the unaided eye and date back beyond the time
of ancient Greeks, the brightness is rarely specified using energy units. Instead a unit called magnitude
is used. When referring to what the human eye would perceive, the quantity called apparent magnitude,
m, is given.

In modern times magnitudes are often given outside the range of human vision, so a color or
wavelength range is specified, such as my;,. for a magnitude estimated under a blue filter, or mi,.q for one
estimated through a red filter. Magnitudes have some peculiar properties relative to energy measurements
that have become standard for historical reasons. The Greeks had only integer magnitudes without 0.
Their ranking was such that the unity symbol had the highest value (think first prize) and the largest
number had the lowest ranking. Because stars seemed to fall visually on this scale from 1 to 6, the
magnitude scale difference in the visual range was 5. Later in history, it was determined that the total
magnitude difference of visible stars corresponded to a brightness (luminous energy) ratio of about
100. Thus magnitudes are logarithmic measures of brightness, just as decibels measure audio loudness.

Decibels are base 10 logarithms, but magnitudes are not. Because a difference of Am = S is a
brightness ratio of 100, we have

100 = (log,)’, (1.1)

which yields a logarithmic base of 2.512.% This is typically expressed as a base 10 logarithm with a

multiplying constant so that the brightness ratio (intensity ratio) 7/, becomes

!
— = 10%44", (1.2)
Iy

or
I

Am = 2.5log,, <—) . (1.3)
Iy

The apparent magnitude itself does not give any indication of the actual brightness of an object
because the intrinsic brightness is attenuated by the inverse square law of distance,
g
I = Ior—z. (1.4)
0
In astronomy, the standard distance for brightness measurement is not 1 parsec as you might expect,
but rather 10 parsecs. The reasons for this are again found in early observations. There are no major
stellar bodies within 1 parsec of the sun, but there are many within 10 parsecs, so this was chosen. The
absolute magnitude, M, is thus defined as the apparent magnitude a star would have at a distance of
10 parsecs. The absolute magnitude can be calculated from the apparent magnitude by

M:m—S(log,oD—l), (1.5)
where D is the object’s distance in parsecs.

2 See 1-1.Stellar for details.
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3 1.1 Fundamental stellar properties

1.1.3 Color index and temperature

The color of an object can be specified approximately by the color index (C.1.) such that
Cl. = Mplue — Myred- (16)

The color index is related to the color temperature of the object. If it can be assumed that the object is
a blackbody, then the Planck function is used to estimate this quantitatively.
The energy density u for a photon gas is defined by the Planck function with the energy in joules,
ho’ /23

u@.T) = o (1.7)

where o is the angular frequency observed and 7 is the blackbody temperature. The theoretical color
index is then

C1.=2.5log, (%) . (1.8)
In optical astronomy the wavelength form of Planck’s radiation law is often used. Thus
u (A, T):M. (1.9)
ehc/AkT -1

The “blue” minus “red” is a bit of an exaggeration. Usually color indices span smaller wavelength
ranges. Johnson and Morgan (1953) introduced a standardized system known as the UBV system. This
system used color filters for observing magnitudes in the ultraviolet, blue, and “visible” ranges, from
which one could generate U — B and B — V' color indices. Modern astronomers use UBVRI standard
with mean wavelengths of U = 3600 A, B = 4400 A, V = 5500 A, R = 7000 A, and 7 = 9000 A.

By convention, 10 000 K is the temperature for which the color index is supposed to be 0 regardless
of the wavelength difference. In practical terms, this means there is a correction constant that must be
added to the preceding expressions to get the correct color index.>

1.1.4 Radius, temperature, and luminosity

Most stellar objects are excellent approximations to spheres, and as such their brightness properties
are straightforward. Each luminous object radiates through its surface via the Planck law. To obtain the
total energy over all wavelengths, one must integrate the Planck law in explicit form,

L= /u (A, T) d4d2dr = 47 R*0 T, (1.10)

known as the Stefan—Boltzmann equation.
The absolute magnitude obtained with the entire Stefan—Boltzmann equation is called the bolometric
absolute magnitude,

My = —2.5log,, L. (1.11)

For convenience this is often normalized to the values of the sun. Thus the radius of the sun (R = 1)
and its temperature (5800 K) are assigned along with its absolute magnitude (4.8) to calculate the
bolometric absolute magnitude function

L
My — Mg = —2.51l0g,, (L—) . (1.12)
©

3 See 1-1Stellar for examples.
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4 Introduction

Because observations are made with color band filters, it is the visual absolute magnitude that is
most often determined. Because luminosity is defined over the whole spectrum, we need to correct M,
to obtain M. The magnitude correction that is added is called the bolometric correction, and it is the
magnitude equivalent of the ratio of the full spectrum to the partial spectrum.

1.2 Determination of stellar mass

Mass is the source of gravitational fields throughout the cosmos, and everything that has mass contributes
to this field. In general relativity mass curves space—time, and this is where gravitational fields originate.
Even on a less sophisticated scale humans intuitively, but perhaps qualitatively, know the effects of
gravity and how moving masses are influenced by it. Because gravity is such a long-range force, its
effects are felt across immense distances; therefore its importance within astronomy and astrophysics
is paramount.

The determination of mass from orbital mechanics is a very classical pursuit and works surprisingly
well as long as the orbiting object is not too close to its main body. It started when Newton re-derived
Kepler’s laws of motion based on the rules of Newtonian gravity, with the result that the new Kepler’s
laws had gravitational theory in terms of the mass of one or both binary bodies. If observational factors
were favorable, the individual masses could be estimated. When objects are not orbiting, the main way
to tell the mass of an object is to observe its perturbations by other masses or to observe perturbations
of other masses on it.

For a binary star, the orbit in space is, at least without the presence of disturbing objects, just the
usual two-body ellipse. Kepler’s laws for the system can be expressed as

(my +my) P> =R, (1.13)

where P is the orbital period in years and R = a; + a; is the sum of the semi-major axes of the two
stars in AU. From the center of mass,

mya; = may. (114)

These two equations can then be used to determine the masses m; and m; in solar mass units quite
simply. Obtaining values for a; and a, is a much bigger challenge.

1.2.1 Visual binaries

Just as Galileo discovered moons orbiting Jupiter, later astronomers discovered that some of the stars
that appeared as multiple through telescopes were in fact orbiting each other. Early measurements were
often just “sketched” relative to points plotted on graph paper. The properties were then measured
from the graph paper directly. Later visual measurements were made with a filar micrometer in a polar
coordinate system centered on the primary star, or they were provided by photographic means. Even
done visually with a micrometer, measurements were liable to much error because the distances between
the stars were so small. In modern times, binary positions are measured using speckle interferometers
with considerably more precision.

As observed from Earth, the orbit of a binary star around the primary star is an ellipse, but its
semi-major axis length and foci positions are distorted. To find the orbital parameters we follow the
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5 1.2 Determination of stellar mass

derivations and conventions given by Smart (1960) based on an earlier method attributed to Kowalsky,
as they represent the mid-20th century state of binary orbit determination. At that time, observations
were heavily dependent on filar micrometers that produced polar measurements (p, 6) of the position
of the secondary star relative to the primary star. Here p is the radial distance in seconds of arc and 6
the position angle in degrees as measured eastward from north.

As was usual for that day, before analysis could be performed, the equation of the apparent ellipse
was transformed to a pair (x, y) of coordinates where x was north at 0° and y east at 90°. Thus

X = pcoséb, y = psiné. (1.15)
In Cartesian coordinates, the general equation for an ellipse can be written as
AxX* + 2Hxy + By* +2Gx + 2Fy +1 = 0. (1.16)

From the observed data one can then perform a least-squares analysis to find the coefficients. Smart
suggests the way to derive a solution graphically, but a modern computational approach is more
effective.* Once the values of these coefficients are obtained, the orbital elements can be derived in a
nontrivial way:

1. The nodal angle €2 is obtained from

(F? = G*+A4—B)sin2Q+2 (FG — H) cos 2Q = 0. (1.17)

2. The inclination angle i and the semi-latus rectum p = a (1 — ez) are found by solving two equations,
in 2Q tan® i tan’i 2

FG-H=—""T10 PG —U+B) - = = = (1.18)
2p P p

3. The argument of periapsis w is found from
_ (FcosQ2—Gsin)cosi

tan w - (1.19)
FsinQ2 + Gcos Q2
4. The orbital eccentricity e is found from
Gsin Q2 — F cos 2 j
o (Gsin ' cos )pcosz. (1.20)
sinw
5. The semi-major axis « is found from e and p,
p
= . 1.21

6. The true anomaly v is found for any point where 6 is available using

tan (v + w) = tan (f — Q) seci. (1.22)

7. The eccentric anomaly E is found from

1 E
tanK = +etan—. (1.23)
2 l—e 2
8. With the mean motion given by n = 27 /T, where T is the orbital period, the time difference from

periastron (¢ — 7) for each observation is obtained from Kepler’s equation,

n(it—t)=E —esinkE. (1.24)

4 See 6-0VisBin for examples of such computational solutions.
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6 Introduction

Obtaining the period 7 is a central problem in astronomy and astrophysics. Past observations were
rarely equally spaced in time; therefore sophisticated Fourier methods that are so effective today could
not be applied directly. Long periods are notoriously hard to determine, particularly with unequal
interval methods.

A more modern approach can be found in Green (1985). Green derives the orbit parameters using the
more sophisticated Thiele-Innes method. The Thiele—Innes method starts with the projection properties
of the physical orbit upon the sky, and although its derivations are not given here, its computational
structure can be somewhat more compact and is generally preferred in modern times.

It is clear that the process of obtaining individual masses of binary stars is an arduous one from visual
data alone without spectroscopic, eclipsing, and interferometric observations to help with resolving the
various ambiguities of the solutions. We address this topic in more detail in Chapter 6 when we consider
the stellar motions in the N-body problem and in Chapter 8 where we consider the motions of stars
around the galactic center.’

1.2.2 Spectroscopic binaries

If the radial velocity of one of the visual binary components can be determined from spectroscopic
observations, then the angular orbital properties of i and €2 can be resolved directly. If radial velocity
information is available for both stars, the mass ratio can also be obtained as an alternative to using
astrometric data on proper motions. The radial velocities are not sufficient on their own to determine
the masses, because the inclination is not derivable unless the system is also either a visual or eclipsing
binary.

It is worth noting that spectroscopic methods can obtain the orbital period 7', the eccentricity e, the
daily motion n, and the argument of periapsis @ uniquely. They can also determine which nodes are which
and the sign of the inclination when used in conjunction with visual or interferometric observations.
The equation for orbital radial velocity (where z is along the line of sight, and n = 27 / Ty, is the daily
motion) is

dz nasini

P ﬁ (cos(v + w) +ecosw) . (1.25)
The observed radial velocities will have the motion of the center of mass in each, and this is determined
so that the line v = constant divides the radial velocity curve into two equal areas. This has to be done
so that dz/d¢ is isolated.°

1.2.3 Other methods

Other examples of mass determination can be seen in a two-line binary (when neither star can be
resolved, but a spectroscopic line can be obtained for both stars) or an eclipsing binary. However,
detailed considerations of the spectroscopic methods used when there are two lines present or when a
light curve is available for the star is beyond the scope of this book. In the case of two lines, the methods
follow the one-line analysis in principle. Eclipsing binaries require an even more extensive elaboration

> Computational examples of visual binary orbits are given in 6-0VisBin and in five notebooks in Chapter 8.
6 Details can be found in 1-2SpectBin.
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7 1.3 Kinetic theory

and are not discussed here. See Smart (1960) or Green (1985) for descriptions. Green analyzes a binary
pulsar as an interesting modern example and we consider this in Chapters 4 and 5.’

1.3 Kinetic theory

Many astrophysical models rely heavily on the behavior of fluid gases and plasmas. Although simple
models often assume these to be an ideal gas, more sophisticated models require an examination of
behavior at the particle level. Therefore an understanding of kinetic theory is central to many of these
models. In this text we assume readers have at least a general understanding of thermodynamics and
kinetic theory. For readers who have not taken a formal course in statistical thermodynamics or classical
thermodynamics, we recommend going through the Wolfram Mathematica® notebooks on the subject
in the appendix. They present the concepts of kinetic theory used in the text as well as demonstrating
some basics of Mathematica programming.

1.3.1 Maxwell-Boltzmann statistics

To keep things as simple as possible, we consider a force-free monatomic dilute ideal gas. For a large
collection of these “ideal” particles at a temperature 7', the average kinetic energy of a particle is

1 3
—mv* = ZkT, (1.26)
2 2

where k is Boltzmann’s constant. Although this relation defines temperature in terms of particle kinetic
energy, speed v in this equation is an average speed of the particles. The collection of particles is
distributed over many speeds, spread out about the average speed. The probability distribution for the
particles is given by the Maxwell-Boltzmann distribution,

f ) =4m0v? (%)S/Z e /AT (1.27)
such that the probability of finding a particle with a speed between v and v 4 dv is
dp (v) = f (v) dv. (1.28)
The function is normalized so that
/Ooof(v)dvzl. (1.29)

Random walk studies have shown that the Maxwell-Boltzmann equation is the equilibrium velocity
distribution for dilute classical gases. McLennan (1989, p. 39) obtains the equation as a solution of the
Fokker-Planck equation, whereas Mohling (1982) derives it from binary collision theory.’

If the system is not in thermodynamic equilibrium, changes in the velocity distribution due to
external forces are described by the Boltzmann Transport Equation (BTE). The BTE allows in principle
a complete specification of the transport equations required in most astrophysical situations although

7 See, for example, 4-8ModeINS and 5-6binarypulsar.
8 Computational examples of the Maxwell-Boltzmann distribution can be found in 7-5SMaxwell. Examples of the Boltzmann
Transport Equation can be found in 7-6Boltzmann and 7-7Collisions.
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8 Introduction

there are hydrodynamic equations that will serve as well. Suitable expressions are derived in Reif
(1965), Mohling (1982), and McLennan (1989). The standard form of the BTE is

Ja - d
S Yt RV s = (L) (1.30)
ot ot ) con

where f'(r, p, t) is the distribution function in position-momentum phase space. If the right-hand side
of the equation vanishes, the system is said to be collisionless.

1.3.2 The partition function and Saha equation

The Maxwell-Boltzmann and related equations derive from the assumption that our gas particles are
classical with no internal structure. However, at the quantum level the particles of a system can have
discrete rather than continuous energy states. If one takes ;j as the index representing the possible
discrete quantum states of a system, and £; as the energy of the system in that state, then one may
define the partition function for the system,

Z=> et (1.31)
J

which gives a distribution of particles in the quantum states. If there are multiple states that share the
same energy E;, then the system is said to be degenerate, and the partition function becomes

7 = Z gje Lk (1.32)
J

where g; is known as the degeneracy factor. Partition functions are central to the Boltzmann—Gibbs—
Helmbholtz approach to thermal physics and thermodynamics. Essentially, it is assumed that one knows
the quantum mechanical energy level structure for the most elementary component (say an “atom”)
of the system. Construction of the partition function for these “atoms” then leads to the macroscopic
properties of ensembles consisting of those atoms.’

For a gas at high temperatures, thermal collisions can ionize a certain fraction of the atoms within the
gas. lonization equilibrium was a concept prevalent in astrophysics in the early part of the 20th century.
It was given a quantitative status by the astrophysicist Saha through a derivation that is closely related
to the law of mass action.!? In thermal equilibrium, the excitation within the bound states is described
by the Boltzmann distribution. The ionization is described by the Saha equation,

]vy+lNe _ ZerlZe e,X/kT
Ny Zy ’

(1.33)

where N, represents the number density in the yth ionization (with y electrons removed), N, is the
electron density, the Zs are the respective partition functions, and x is the ionization potential. The
ionization potential corresponds to the molecular dissociation energies in the regular law of mass action.
Although Saha’s equation is fairly simple, it actually masks how complicated the pooled ionization from
multiple atoms is to treat in practice.!!

9 Several examples of partition functions can be found in 6Partitionfs, in the thermonotebooks directory of the appendix.
10 For a discussion of the law of mass action, see 11MassAction.
11 See 12Ionization for a more detailed discussion.
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9 1.3 Kinetic theory

1.3.3 Fermi-Dirac statistics

At room temperature and higher the ideal gas law is usually a good description of a gas. However, once
a gas is cooled beyond a certain point the classical rules no longer hold, even approximately. At low
temperatures, known as the quantum degeneracy region, it is the particle spin forces that are dominant.

All simple (elementary) particles possess a quality known as spin. It has the same basic properties as
angular momentum, except that it is quantized into discrete values. Particles that have even or zero spin
states are called bosons. Particles that have total spins in multiples of 1/2 are called fermions. The most
important manifestation of these spin states is its effect on the thermal average of particle occupancy
obtained from the so-called Gibbs sum for non-dilute gases,

1

V©) = <

(1.34)

where € is the energy of the state and u is the chemical potential. The +1 form describes fermions,
while the —1 form describes bosons. For ideal gases it is assumed that the exponential is much larger
than 1; thus

(N(e)) = e WA, (1.35)

which is the Maxwell-Boltzmann case.

Fermions by the Pauli exclusion principle can have occupancy states of 1 or 0, with the average
occupancy bound by that range. At absolute zero, all energy states with energies less than the Fermi
energy € will be filled, and all states above the Fermi energy will be empty.

A simple calculation of the Fermi energy can be found by assuming electrons that are in a rigid
cubic box (infinite potential well) of side a.'?> The energy states for such a box can be indexed by
n = (ny, 1y, 1), and the energy states are then

Pr?
E, = 2ma2n . (1.36)
The number of states with £, < Er are those that lie within a spherical volume of ny; thus
1\ 4r
N=2<§) Tn;. (1.37)

The factor 2 is due to the two allowed spin states, while the 1/8 factor accounts for our need for only
positive energy levels. From this one can express nyz in terms of the total number of electrons. From
these we find
x5, K 2/3
= ——nN = — 3 2 , 138
2ma> " 2m (37°n) (1.38)

where n = N/a? is the number density of electrons. The total energy of the system is then

Ey

3
E = fEFdn = gNEF, (139)
and the average energy of the electrons is

-3
E = ZEp. (1.40)

12 Surprisingly, this is a reasonable approximation for electrons in a metal.
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10 Introduction

From the Fermi energy one can define a Fermi temperature,
Ep
Tr = —.
Tk
In most instances of a many-particle system, the calculated Fermi temperature in Kelvin is many
orders of magnitude higher than the actual prevailing temperature. When that condition holds, a good
approximation of the properties of fermions is simply to set 7 = 0. A better approximation in the

(1.41)

vicinity of 7 = 0 is to use series approximations of the chemical potential as shown by Laurendeau
(2010). More complex solutions can be obtained computationally.'?

1.3.4 Bose-Einstein statistics

Bosons are not limited in their occupancy states. For bosons the energy distribution function (similar
to the partition function) is

1
The density of states for bosons of zero spin is
V. (2m
ne =1 <ﬁ> N (1.43)
From this one can calculate the energy of the boson system,
o0
E :/ B(e)n(e)e de, (1.44)
0
which yields
k14 m \3/2
E="" <— kT)*/*Lis 5 (47, 1.45
75 () KD PLisa(e ) (1.45)
where
[o.¢] xi
Lis(x) = — 1.46
iy (x) ; Z.S (1.46)

is known as a polylog function. Although this is a complicated function it can be handled computationally
fairly easily. Mathematica, for example, includes the function as Li;(x) = PolyLogl[s,x].!"

As the temperature of a boson gas approaches absolute zero, the system becomes degenerate. A
degenerate boson gas collapses into the single lowest energy state. In a very real sense, they behave as
if they are a single boson in the ground state, known as a Bose—Einstein condensate.

1.3.5 Black-body radiation

Photons are massless bosons and therefore follow Bose—Einstein statistics. The energy distribution for
photons is usually expressed in terms of frequency or wavelength rather than energy; hence

2hv3 1

By(T) = 2 /AT _ |’

(1.47)

2hc? 1
B (T) = —

35 ohe/ kT _ 1’ (1.48)

13 See 13FermionsBosons.
14 For more detailed examples see 13FermionsBosons.
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