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Background

In this chapter we begin by reviewing the main definitions and theorems
from the basic theory of functional analysis, linear operators and geometry
of Banach spaces. It is not our intention to summarize the whole of analysis
within a few pages, but we do supply the necessary background to the results
used later in the book. This material is very standard and likely to be met in
any basic course on functional analysis, and so we give just the essentials of
the subject, without proofs.

In the last sections of this chapter, we also recall some basic facts of function
theory. In particular we discuss the fundamental properties of Hardy spaces,
which are Banach spaces of holomorphic functions defined in the unit disc and
extended to the unit circle T. We also briefly review the definitions of the disc
algebra, functions of bounded mean oscillation, and the Hilbert transform of
real functions defined on the unit circle.

1.1 Functional analysis

1.1.1 Weak topology

The term weak topology is most commonly used for the topology of a normed
vector space or topological vector space induced by its (continuous) dual.

One may call subsets of a topological vector space weakly closed (respec-
tively, compact etc.) if they are closed (respectively, compact etc.) in the
weak topology. Likewise, functions are sometimes called weakly continuous
(respectively, differentiable, analytic etc.) if they are continuous (respectively,
differentiable, analytic etc.) in the weak topology.
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2 Background

The strong and weak topologies
Let X be a topological vector space; then in particular X is a topological
space carrying a topology as part of its definition. (For example, a normed
vector space X is, by using the norm to measure distances, a metric space, and
hence also a topological vector space.) This topology is also called the strong
topology on X .

The weak topology on X is defined using the continuous dual space X ∗.
This dual space consists of all linear functions from X into the base field R or
C which are continuous with respect to the strong topology. The weak topology
on X is the weakest topology (the topology with the fewest open sets) such
that all elements of X ∗ remain continuous. Explicitly, a sub-base for the weak
topology is the collection of sets of the form φ−1(U) where φ ∈ X ∗ and U is
an open subset of the base field R or C. In other words, a subset of X is open
in the weak topology if and only if it can be written as a union of (possibly
infinitely many) sets, each of which is an intersection of finitely many sets of
the form φ−1(U).

The weak topology is characterized by the following condition: a net (xλ)λ

in X converges in the weak topology to the element x of X if and only if
(φ(xλ))λ converges to φ(x) in R or C for all φ in X ∗.

In particular, if (xn)n is a sequence in X , then (xn)n converges weakly
to x if

φ(xn) → φ(x) as n → ∞,

for all φ in X ∗. In this case, it is customary to write

xn
w−→ x

or, sometimes,

xn ⇀ x .

If X is equipped with the weak topology, then addition and scalar multipli-
cation remain continuous operations, and X is a locally convex topological
vector space.

The weak∗ topology
A normed space X can be embedded into X ∗∗ by

x 
→ T x,

where

T x(φ) = φ(x).
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1.1 Functional analysis 3

In fact, T : X → X ∗∗ is an injective linear mapping. In the particular case
where T is surjective, one says that X is reflexive.

The weak∗ topology on X ∗ is the weak topology induced by the image of
T : X → X ∗∗. A net (φλ)λ in X ∗ is convergent to φ in the weak∗ topology if
it converges pointwise:

φλ(x) → φ(x),

for all x in X . In particular, a sequence (φn)n ∈ X ∗ converges to φ provided
that

φn(x) → φ(x),

for all x in X . In this case, one writes

φn
w∗→ φ

as n → ∞.
This weak∗ topology is sometimes called the topology of simple conver-

gence or the topology of pointwise convergence. Indeed, it coincides with the
topology of pointwise convergence of linear functionals.

By definition, the weak∗ topology is weaker than the weak topology on
X ∗. An important fact about the weak∗ topology is the Banach–Alaoglu
theorem: if X is normed, then the unit ball in X ∗ is weak∗-compact. Moreover,
the unit ball in a normed space X is compact in the weak topology if and only
if X is reflexive.

If a normed space X is separable, then the weak∗ topology is metrizable on
(norm-)bounded subsets of X ∗.

1.1.2 Hahn–Banach theorem

Suppose that X is a normed space (real or complex). Then the norm of a
continuous linear map f : X → C (a continuous linear functional) is given by

‖ f ‖ = sup{| f (x)| : ‖x‖ ≤ 1}.
Sometimes, for convenience, we shall use the alternative notation 〈x, f 〉
instead of f (x).

The dual space, X ∗, is the space of linear functionals equipped with the
above norm.

Suppose now that X and Y are two normed spaces with X ⊂ Y . Then
an element g ∈ Y∗ clearly determines a unique element g|X of X ∗ by
restricting its action to X . Moreover, ‖g|X ‖ ≤ ‖g‖. The Hahn–Banach
theorem is concerned with the converse situation: the extension of a linear
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4 Background

functional to a larger normed space. In its most common form it is stated as
follows.

Theorem 1.1.1 (Hahn–Banach) If X and Y are normed spaces with X ⊂ Y
and f ∈ X ∗, then there exists a functional f̃ ∈ Y∗ such that f̃ (x) = f (x) for
all x ∈ X , and such that ‖ f̃ ‖Y∗ = ‖ f ‖X ∗ .

Another form of the Hahn–Banach theorem is more geometrical.

Definition 1.1.2 A set S in a normed space is convex if, for all s, t ∈ S, the
line segment joining s and t is contained in S, i.e.,

λs + (1 − λ)t ∈ S for all 0 ≤ λ ≤ 1.

A set S in a normed space is absolutely convex if it is convex and if, in addition,

λs ∈ S for all s ∈ S, |λ| ≤ 1,

λ being real or complex, as appropriate.

The theorem of the separating hyperplane can now be stated.

Theorem 1.1.3 (separating hyperplane theorem) Let X be a normed space,
S a closed absolutely convex subset of X , and x a point of X which is not in S.
Then there exists a functional f ∈ X ∗ such that | f (s)| ≤ 1 for all s ∈ S, and
| f (x)| > 1.

A further application of the Hahn–Banach theorem is the following (see
Rudin [180, Theorem 3.4]).

Theorem 1.1.4 Let A and B be disjoint non-empty convex open subsets of a
normed space X . Then there are a functional � ∈ X ∗ and a real number γ

such that

Re�(x) < γ < Re�(y)

for all x ∈ A and y ∈ B.

1.1.3 Stone–Weierstrass theorem

Let K be a compact metric space, for example [0, 1] or the unit circle T. We
write C(K ,R) for the space of continuous real-valued functions on K , and
C(K ) for the space of continuous complex-valued functions. Each is a normed
space over the appropriate field, with the (supremum) norm

‖ f ‖ = sup{| f (x)| : x ∈ K }.
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1.1 Functional analysis 5

The classical Weierstrass approximation theorem states that the polynomials
are dense in C([0, 1],R), that is, that a real continuous function can be
uniformly approximated by polynomials on the interval [0, 1].

The Stone–Weierstrass theorem is a generalization of this, and requires us to
consider an algebra of functions, that is, a set of functions that forms a vector
space and is also closed under multiplication. So, for example, the polynomials
form an algebra, as do the trigonometric polynomials (polynomials in eit

and e−i t ).
An algebra A of functions is said to separate points if, given any two dis-

tinct points x, y ∈ K , there is a function f ∈ A such that f (x) �= f (y). Over
the reals we then have the simplest form of the Stone–Weierstrass theorem, as
follows.

Theorem 1.1.5 (Stone–Weierstrass over R) If A is a real algebra of con-
tinuous functions on a compact metric space K , which separates points and
contains the constant functions, then A is dense in C(K ,R). In other words,
every function in C(K ,R) can be approximated arbitrarily closely (in the
uniform norm) by functions in A.

Over the complex numbers the above form of the Stone–Weierstrass
theorem does not hold, since, for example, the function f (z) = z cannot
be approximated arbitrarily closely on T by polynomials in z, since it is not
analytic. However, taking into account this special case, we obtain a complex
form of the theorem: it can be deduced from the real form by taking real and
imaginary parts.

Theorem 1.1.6 If A is a complex algebra of continuous functions on a com-
pact metric space K , which separates points, contains the constant functions,
and is closed under complex conjugation, then A is dense in C(K ).

1.1.4 Banach–Steinhaus theorem

Given two normed spaces X and Y , we write L(X ,Y) for the space of all
bounded linear operators from X to Y . Moreover, we write L(X ) for L(X ,X ).

The Banach–Steinhaus theorem (or uniform boundedness theorem) may be
stated as follows.

Theorem 1.1.7 Suppose that X is a Banach space and Y a normed space.
Then a collection of operators S ⊂ L(X ,Y) is uniformly bounded in
norm, i.e.,

sup{‖T ‖ : T ∈ S} < ∞,
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6 Background

if and only if it is pointwise bounded, that is,

sup{‖T x‖ : T ∈ S} < ∞ for each x ∈ X .

We may deduce from Theorem 1.1.7 that, when X is a Banach space, a
sufficient condition for a family S ⊂ L(X ) to be uniformly bounded in norm
is that

sup{|〈T x, x∗〉| : T ∈ S} < ∞, for each x ∈ X and x∗ ∈ X ∗.

1.1.5 Complex measures

Definition
Definition 1.1.8 We define a σ -ring of subsets of a set X to be a non-
empty collection 
 of sets closed under taking countable unions

⋃∞
n=1 An and

complements A \ B.
A real positive measure μ on a measure space (X, 
) is a function

μ : 
 → [0,∞],
defined on a σ -ring 
, which is σ -additive; that is, for any sequence (An)n of
disjoint sets in 
 one has

μ

( ∞⋃
n=1

An

)
=

∞∑
n=1

μ(An),

where the sum on the right may be finite or may diverge to ∞.

We shall also require more general (complex) measures, but here we shall
always suppose that they are finite.

Definition 1.1.9 A finite complex measure μ on a measure space (X, 
) is a
function

μ : 
 → C,

defined on a σ -ring 
, which is σ -additive in the sense that for any sequence
(An)n of disjoint sets in 
 one has

μ

( ∞⋃
n=1

An

)
=

∞∑
n=1

μ(An),

where the sum on the right converges absolutely.

The set of complex measures defined on the unit circle T will be denoted
by M(T).
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1.1 Functional analysis 7

Integration with respect to a complex measure
One can define the integral of a complex-valued measurable function with
respect to a complex measure in the same way as the Lebesgue integral of
a real-valued measurable function with respect to a non-negative measure, by
approximating a measurable function with simple functions, beginning with
the formula∫

X

⎛⎝ N∑
j=1

a jχA j

⎞⎠ dμ=
N∑

j=1

a jμ(A j ) (a1, . . . , aN ∈C, A1, . . . , AN ∈
),

where χA is the characteristic function or indicator function of A, defined by

χA(x) =
{

1 if x ∈ A,

0 if x ∈ X \ A.

Just as in the case of ordinary integration, this more general complex-valued
integral may fail to exist, or its value may be infinite.

Another approach is to start with the concept of the integral of a real-valued
function with respect to a non-negative measure. To that end, it is easy to verify
that the real and imaginary parts μ1 and μ2 of a complex measure μ are finite-
valued signed measures. One can apply the Hahn–Jordan decomposition to
these measures to split them as

μ1 = μ+
1 − μ−

1

and

μ2 = μ+
2 − μ−

2 ,

where μ+
1 , μ−

1 , μ+
2 , μ−

2 are finite-valued non-negative measures (unique in
some sense). Then, for a real-valued measurable function f , one can define∫

X
f dμ =

(∫
X

f dμ+
1 −

∫
X

f dμ−
1

)
+ i

(∫
X

f dμ+
2 −

∫
X

f dμ−
2

)
as long as the expression on the right-hand side is defined, that is, all
four integrals exist and when adding them up one does not encounter the
indeterminate ∞−∞.

Now, given a complex-valued measurable function, one can integrate its real
and imaginary components separately as above and define, as expected,∫

X
f dμ =

∫
X

Re( f ) dμ+ i
∫

X
Im( f ) dμ.
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8 Background

We shall have recourse several times to Fubini’s theorem, which deals with
integration of a function f : X ×Y → C, supposed measurable with respect to
a product measure μ× ν. It is necessary to restrict ourselves to the case when
μ and ν are σ -finite measures: this means that X is the countable union of a
sequence of sets with finite μ-measure, and similarly for Y . Now, provided that
we have the absolute convergence condition∫

X

(∫
Y
| f (x, y)| dν(y)

)
dμ(x) < ∞

(or, indeed, the same condition with the roles of X and Y interchanged), we
may conclude that∫

X

(∫
Y

f (x, y) dν(y)

)
dμ(x) =

∫
Y

(∫
X

f (x, y) dμ(x)

)
dν(y). (1.1)

We recall that for a measure space (X, μ), where μ is a positive measure,
the spaces L p(X, μ), for p satisfying 1 ≤ p < ∞, consist of the measurable
functions f such that

‖ f ‖p :=
(∫

X
| f |p dμ

)1/p

< ∞,

two functions being identified if they are equal almost everywhere (a.e.) (i.e.,
except on a set of measure 0). The space L∞(X, μ) consists of all functions
such that

‖ f ‖∞ := inf{K ≥ 0 : | f | ≤ K a.e.} < ∞,

with the same identification of functions equal a.e. There is a duality formula,
namely (L p)∗ = Lq , where 1 ≤ p < ∞, 1 < q ≤ ∞ and 1/p + 1/q = 1,
which arises from Hölder’s inequality,

‖ f g‖1 ≤ ‖ f ‖p‖g‖q . (1.2)

If neither f nor g is identically zero, then the equality in (1.2) occurs if and
only if there exists c > 0 such that

| f |p = c|g|q a.e. (1.3)

Let μ be a positive measure. We recall that a sequence ( fn) of measurable
functions converges in measure to a function f if

μ{x ∈ X : | fn(x)− f (x)| > ε} → 0

for all ε > 0. This condition is implied by convergence in the L p norm.
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1.1 Functional analysis 9

We shall also require Lusin’s theorem, in the following form.

Theorem 1.1.10 Let f be a measurable function on a closed bounded inter-
val [a, b]. Then, for every ε > 0 there is a closed subset Kε ⊂ [a, b] with
μ([a, b] \ Kε) < ε, such that the restriction of f to Kε is continuous.

The idea underlying the proof of this result is that every bounded measur-
able function is the pointwise limit of a sequence of continuous functions, and
indeed in this case the sequence converges uniformly on the complement of
some set of measure less than ε.

Variation of a complex measure and polar decomposition
For a complex measure μ, one defines its variation or absolute value |μ| by
the formula

|μ|(A) = sup
∞∑

n=1

|μ(An)|,

where A is in 
 and the supremum runs over all sequences of disjoint sets
(An)n whose union is A. Taking only finite partitions of the set A into
measurable subsets, one obtains an equivalent definition.

It turns out that |μ| is a non-negative finite measure. In the same way that
a complex number can be represented in a polar form, one has a polar decom-
position for a complex measure: there exists a measurable function θ with real
values such that

dμ = eiθd|μ|,
meaning that ∫

X
f dμ =

∫
X

f eiθ d|μ|

for any absolutely integrable measurable function f , i.e., f satisfying∫
X
| f | d|μ| < ∞.

One can use the Radon–Nikodým theorem (see below) to prove that the
variation is a measure and the existence of the polar decomposition.

The space of complex measures
The sum of two complex measures is a complex measure, as is the product of
a complex measure by a complex number. That is to say, the set of all complex
measures on a measure space (X, 
) forms a vector space. Moreover, the total
variation ‖·‖, defined by

‖μ‖ = |μ|(X),
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10 Background

is a norm, with respect to which the space of complex measures of finite
variation is a Banach space.

Absolute continuity
Definition 1.1.11 Let ν and μ be positive, σ -finite measures on (X, 
).

• The measure μ is absolutely continuous with respect to ν if, for all A ∈ 


such that ν(A) = 0, we have also μ(A) = 0. We denote this by

μ � ν.

• The measure μ is supported by E ∈ 
 if, for all A ∈ 
, we have

μ(A) = μ(A ∩ E) or, equivalently, μ(A \ E) = 0.

• The measures μ and ν are mutually singular if there exists E ∈ 
 such that
μ is supported by E and ν is supported by its complement Ec. We denote
this by

μ ⊥ ν.

The Radon–Nikodým theorem and its consequences
Theorem 1.1.12 (Radon–Nikodým theorem) Let ν and μ be positive σ -finite
measures on (X, 
). Then we have

1. There exists a unique pair of measures μ1 and μ2 such that

• μ = μ1 + μ2;
• μ1 � ν;
• μ2 ⊥ ν.

The measures μ1 and μ2 are positive and σ -finite.
2. There exists a unique (ν almost everywhere) positive ν-integrable func-

tion h, such that, for all A ∈ 
, we have

μ1(A) =
∫

A
h dν =

∫
X
χA h dν.

We now mention various consequences of the Radon–Nikodým theorem.

Definition 1.1.13 Let ν be a positive σ -finite measure on (X, 
) and let μ
be a positive σ -finite measure on (X, 
). One says that μ has a density h with
respect to ν if h is a positive ν-integrable function, such that for all A ∈ 


we have

μ(A) =
∫

A
h dν =

∫
X
χA h dν.
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