OBSERVATIONAL ASTRONOMY

Astronomy is fundamentally an observational science, and as such it is important for astronomers and astrophysicists to understand how their data are collected and analyzed. This book is a comprehensive review of current observational techniques and instruments.

Featuring instruments such as Spitzer, Herschel, Fermi, ALMA, Super-Kamiokande, SNO, IceCube, the Auger Observatory, LIGO, and LISA, the book discusses the capabilities and limitations of different types of instruments. It explores the sources and types of noise and provides statistical tools necessary for interpreting observational data. Due to the increasingly important role of statistical analysis, the techniques of Bayesian analysis are discussed, along with sampling techniques and model comparison.

With topics ranging from fundamental subjects such as optics, photometry, and spectroscopy, to neutrinos, cosmic rays, and gravitational waves, this book is essential for graduate students in astronomy and astrophysics.

EDMUND C. SUTTON is Associate Professor in the Astronomy Department at the University of Illinois. His research has been primarily in infrared and submillimeter astronomy with an emphasis on instrumentation.

OBSERVATIONAL ASTRONOMY

Techniques and Instrumentation

EDMUND C. SUTTON University of Illinois

Cambridge University Press 978-1-107-01046-8 — Observational Astronomy Edmund C. Sutton Frontmatter <u>More Information</u>

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107010468

© E. C. Sutton 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Sutton, Edmund Charles. Observational astronomy : techniques and instrumentation / Edmund C. Sutton. p. cm. ISBN 978-1-107-01046-8 (hardback) 1. Astronomy – Textbooks. 2. Astronomy – Observations – Textbooks. I. Title. QB43.3.S88 2011 520–dc23 2011030682

ISBN 978-1-107-01046-8 Hardback

Additional resources for this publication at www.cambridge.org/9781107010468.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List o	of illustrati	<i>page</i> xiv	
	List o	f tables		XX
	Prefa	се		xxi
	Ackno	owledgeme	ents	xxiii
1	Astro	physical i	information	1
	1.1	Electron	magnetic radiation	1
	1.2	Other ca	arriers of information	2
	1.3	Interver	ning regions	3
		1.3.1	Intergalactic/interstellar medium	3
		1.3.2	Interplanetary medium	5
		1.3.3	Earth's atmosphere	5
	Exerc	cises		12
2	Phote	ometry		14
	2.1	Specific	e intensity (brightness)	14
	2.2	Étendue		14
	2.3	Momen	ts of the specific intensity	16
	2.4	Energy	density	17
	2.5	Flux fro	om a surface of uniform brightness	17
	2.6	Blackbo	ody radiation	18
	2.7	Atmosp	heric extinction (calibration)	20
	2.8	Absolut	te calibration	22
	2.9	Photom	etric magnitudes	23
	Exerc	cises		25
3	Posit	ional astro	onomy	28
	3.1	Fundam	nental reference system	28
	3.2	Time sy	vstems	28
		28		

vi			Contents	
		3.2.2	Astronomical time scales	30
		3.2.3	Sidereal time	31
		3.2.4	Solar time	31
	3.3	Spherica	al astronomy	32
		3.3.1	Spherical coordinates (in general)	32
		3.3.2	Latitude and longitude	33
		3.3.3	Equatorial coordinates	33
		3.3.4	Horizon coordinate system (alt/az)	34
		3.3.5	Conversion formulae (alt/az \leftrightarrow ha/dec)	35
		3.3.6	Ecliptic coordinates	35
		3.3.7	Galactic coordinates	36
		3.3.8	Spherical trigonometry	37
		3.3.9	Rotation matrices	37
	3.4	Epoch		39
	3.5	Changes	s in equatorial coordinates	40
		3.5.1	Proper motion	40
		3.5.2	Precession	41
		3.5.3	Nutation	41
		3.5.4	Parallax	42
		3.5.5	Aberration of starlight	42
		3.5.6	Reduction of celestial coordinates	
			(overview)	43
		3.5.7	Gravitational deflection of light	44
		3.5.8	Refraction	45
		3.5.9	Parallactic angle	46
	3.6	Astrome	etry	46
		3.6.1	Historical techniques	46
		3.6.2	Hipparcos	48
	Exerc	cises		49
4	Four	ier transfo	orms	52
	4.1	Fourier	series	52
	4.2	Fourier	integrals	54
		4.2.1	Relationship to the Dirac delta (impulse)	
			function	55
		4.2.2	Parseval's theorem (Rayleigh's theorem)	56
		4.2.3	Properties of Fourier transforms	57
		4.2.4	Convolution	58
		4.2.5	Autocorrelation (Wiener-Khinchin theorem)	58
		4.2.6	Common functions and Fourier transform pairs	59
		4.2.7	Aliasing and Shannon's sampling theorem	60

			Contents	vii
	4.3	Higher-dim	ensional Fourier transforms	62
		4.3.1 H	Iankel (Fourier–Bessel) transforms	62
	Exerc	ses		63
5	Detec	tion systems		66
	5.1	Interaction	of radiation and matter	66
	5.2	Photoelectr	ic effect	66
	5.3	Compton so	cattering	67
	5.4	Pair produc	tion	69
	5.5	Electromag	netic wave interactions	70
	5.6	Optical and	ultraviolet detectors	70
		5.6.1 F	Photomultipliers	70
		5.6.2	Other electron multiplication devices	72
		5.6.3 S	solid state detectors	74
	5.7	Infrared ast	ronomy	78
		5.7.1 I	nfrared photoconductors	80
		5.7.2 N	VICMOS	82
		5.7.3 E	Bolometers	83
		5.7.4 S	pitzer	84
		5.7.5 H	Ierschel	85
		5.7.6 V	VFIRST	85
	Exerc	ses		86
6	Ortho	dox statistic	S	87
	6.1	Probability	distributions	87
		6.1.1 E	Binomial distribution	88
		6.1.2 F	Poisson distribution	89
		6.1.3 C	Gaussian (normal) distribution	91
	6.2	Moments of	f a probability distribution	92
	6.3	Characteris	tic (moment-generating) function	92
	6.4	Central lim	it theorem	94
	6.5	Experiment	al data	95
	6.6	Chi-squared	$d(\chi^2)$ distribution	97
	6.7	Student's t-	distribution	99
	6.8	Robust estin	mation	100
	6.9	Propagation	n of errors	102
	Exerc	ses		104
7	Stoch	astic process	es and noise	105
	7.1	Stochastic p	process	105
		7.1.1 S	stationary process	106
	7.2	Spectral der	nsity of a Poisson random process	106
	7.3	Spectral der	nsity of a Gaussian random process	108

viii			Contents	
	7.4	The tran	sformation $y = x^2$	109
	7.5	Filtering	g	110
		7.5.1	Low pass filtering	110
	7.6	Estimati	ion in the presence of Gaussian noise	112
	7.7	Photon	noise	112
	7.8	Therma	l noise	113
	Exerc	cises		115
8	Optic	es		117
	8.1	Geomet	rical optics	117
		8.1.1	Paraxial optics (a first order theory)	119
		8.1.2	Seidel aberrations (a third order theory)	124
		8.1.3	Higher order terms	129
		8.1.4	Telescope design	130
		8.1.5	Other aspects of telescope design	132
		8.1.6	Gravitational lensing	133
	8.2	Dispersi	ion	134
		8.2.1	Origin of the refractive index	134
		8.2.2	Fresnel coefficients	135
	8.3	Physical	l optics	138
		8.3.1	Vector and scalar diffraction	139
		8.3.2	Kirchhoff diffraction theory	139
		8.3.3	Fresnel and Fraunhofer approximations	143
		8.3.4	Diffraction with aberrations	149
	8.4	Imaging		150
	8.5	Addend	um	153
0	Exerc	cises		155
9	Inter	ference		158
	9.1	Mutual	coherence function and complex degree	150
	0.0	of coher	rence	158
	9.2	Quasi-m	nonochromatic radiation	158
	9.3	Young s	s two-slit experiment	160
	9.4	Michels		162
	9.5	Michels	son stellar interferometer	163
	9.0	van Citt	tert-Zernike theorem	164
	9.7	Elendue	One opproach	100
		9.7.1	One approach	100
	0.0	9.1.2 A post	An alternate approach	10/
	9.8	Apertur	A move of optoppos	108
	0.0	9.8.1 Correct	Arrays of antennas	108
	9.9	Caveat		1/0

			ix	
	9.10	Fourth c	order coherence	170
		9.10.1	Intensity interferometry	171
	Exerc	ises		172
10	Spect	roscopy		173
	10.1	Multiple	e beam interference	173
		10.1.1	Airy function	174
		10.1.2	Anti-reflection coating	175
		10.1.3	Enhanced reflection coating	176
		10.1.4	Interference filters	177
	10.2	Fabry–P	Perot interferometer (etalon)	178
	10.3	Fourier	transform spectrometer	180
	10.4	Prism sp	pectrograph	181
		10.4.1	Prism applications	182
	10.5	Diffract	ion gratings	183
		10.5.1	Grating properties	184
		10.5.2	Grating profiles	185
		10.5.3	Czerny–Turner spectrograph	185
		10.5.4	Echelle spectrograph	186
		10.5.5	Grism spectroscopy	187
		10.5.6	Fiber optic spectroscopy	187
	Exerc	ises		188
11	Ultra	violet, x-r	ay, and gamma ray astronomy	190
	11.1	Telescop	pes and imaging	190
		11.1.1	X-ray telescopes	190
		11.1.2	Collimators	192
		11.1.3	Tracking designs	192
		11.1.4	Coded apertures	192
	11.2	Detector	rs	194
		11.2.1	Proportional counters	194
		11.2.2	Solid state detectors	195
		11.2.3	Scintillators	195
		11.2.4	Spark chambers	196
	11.3	Recent 1	nissions	196
		11.3.1	ROSAT	196
		11.3.2	Compton Gamma Ray Observatory	197
		11.3.3	Extreme Ultraviolet Explorer	199
		11.3.4	ASCA	200
		11.3.5	Rossi X-ray Timing Explorer	200
		11.3.6	BeppoSAX	201
		11.3.7	FUSE	202

х			Contents	
		11.3.8	Chandra	202
		11.3.9	XMM-Newton	203
		11.3.10	INTEGRAL	205
		11.3.11	GALEX	206
		11.3.12	Swift	206
		11.3.13	Fermi gamma ray space telescope	207
	11.4	Possible	future missions	207
		11.4.1	IXO	207
		11.4.2	MAXIM or BHI	207
	Exerc	ises		208
12	Radio	o receivers	, spectrometers, and interferometers	209
	12.1	Astrophy	vsical radio sources	209
	12.2	Fundame	entals of radio receivers	209
		12.2.1	Linear systems	210
		12.2.2	Quantum noise limit	211
		12.2.3	Components in series	211
		12.2.4	Low noise GaAs FET amplifiers	212
		12.2.5	Radio frequency mixers	214
		12.2.6	Detectors and the radiometer equation	217
	12.3	Precision	n radiometry of the CMB	218
		12.3.1	COBE	218
		12.3.2	WMAP	218
		12.3.3	Planck	220
		12.3.4	Atacama Cosmology Telescope	220
	12.4	Radio sp	ectrometers	221
		12.4.1	Autocorrelation spectrometers	221
		12.4.2	Filter banks	222
		12.4.3	Acousto-optical spectrometers	222
	12.5	Radio an	itennas	223
		12.5.1	Antenna patterns	223
		12.5.2	Antenna temperature	225
		12.5.3	Special antenna designs	226
	12.6	Radio in	terferometry	226
		12.6.1	Basic two-element interferometer	226
		12.6.2	Interferometer arrays	228
		12.6.3	Correlators	229
		12.6.4	Fourier inversion	230
13	Mode	rn statisti	cal methods	233
	13.1	Bayes' tl	heorem	233
	13.2	Maximu	m likelihood	235

			xi	
	13.3	So what	236	
		13.3.1	Example 1	236
		13.3.2	Example 2	237
	13.4	Maximu	m entropy	239
	13.5	Uninform	native priors	241
		13.5.1	Location priors	241
		13.5.2	Scale priors	241
		13.5.3	Positive, additive distributions	241
	13.6	Inverse p	problems	242
	13.7	Samplin	g the posterior	243
		13.7.1	Rejection sampling	244
		13.7.2	Metropolis–Hastings algorithm	245
		13.7.3	Gibbs sampling	246
		13.7.4	Mixing behavior	247
	13.8	Model co	omparison	247
	13.9	Malmqu	ist (truncation) bias	250
	13.10	Censorir	ng	251
	13.11	Confider	nce limits	253
	Exerci	ses		255
14	Neutri	ino detect	tors	257
	14.1	Neutrino	98	257
	14.2	Solar net	utrino production	258
	14.3	Superno	va production	260
	14.4	Atmosph	neric neutrinos	260
	14.5	Neutrino	oscillations	262
		14.5.1	Vacuum oscillations	262
		14.5.2	Matter oscillations	264
		14.5.3	Conclusions	264
	14.6	Radioch	emical (transmutational) detectors	265
		14.6.1	Chlorine	265
		14.6.2	Gallium	267
		14.6.3	Other targets	268
	14.7	Čerenko	v detectors	269
		14.7.1	Kamiokande and Super-Kamiokande	e 271
		14.7.2	Sudbury Neutrino Observatory	276
		14.7.3	IceCube	279
	14.8	Scintilla	tion detectors: Borexino	282
	14.9	Cosmolo	ogical implications	283
	14.10	Backgro	und of supernova neutrinos	283
	Exerci	ses		284

xii			Contents					
15	Cosm	Cosmic ray detectors 28						
	15.1	Propertie	es of cosmic rays	285				
	15.2	Interveni	ng regions	287				
		15.2.1	Magnetic fields	287				
		15.2.2	Spallation reactions	289				
		15.2.3	Interstellar ionization losses	290				
		15.2.4	Bremsstrahlung	290				
		15.2.5	Synchrotron losses	292				
		15.2.6	Inverse Compton losses	293				
		15.2.7	Pair production	294				
		15.2.8	GZK effect	294				
		15.2.9	Decays	295				
		15.2.10	Atmospheric interactions	295				
	15.3	Detector	S	295				
		15.3.1	Ionization detectors	296				
		15.3.2	Bremsstrahlung	297				
		15.3.3	Čerenkov radiation	300				
		15.3.4	Transition radiation	300				
	15.4	Balloon-	borne and spacecraft missions	301				
		15.4.1	1990s and early 2000s	301				
		15.4.2	TRACER and CREAM	301				
		15.4.3	PAMELA	303				
		15.4.4	Alpha Magnetic Spectrometer	303				
	15.5	Extensiv	e air showers	303				
		15.5.1	High Resolution Fly's Eye	307				
		15.5.2	Pierre Auger Observatory	309				
		15.5.3	Telescope Array (TA) project	310				
		15.5.4	Atmospheric Cerenkov Telescope Array	311				
		15.5.5	JEM-EUSO	311				
	15.6	Particle a	acceleration	312				
	Exerci	ises		313				
16	Gravi	tational w	aves	314				
	16.1	Characte	ristics of gravitational radiation	314				
	16.2	Sources	of gravitational waves	316				
	16.3	Ground-I	based interferometric detectors	320				
		16.3.1	Fabry–Perot	323				
		16.3.2	kecycling interferometers	325				
		16.3.3	Lasers	325				
		326						

Cambridge University Press 978-1-107-01046-8 — Observational Astronomy Edmund C. Sutton Frontmatter <u>More Information</u>

Contents			xiii	
		16.3.5	Ouantum limit, shot noise, and radiation pressure	
			fluctuations	328
		16.3.6	Thermal noise	330
		16.3.7	Other factors	330
		16.3.8	Performance	331
		16.3.9	Squeezed states	332
	16.4	Space-ba	sed interferometric detectors	333
	16.5	Other sys	stems	336
	16.6	Data ana	lysis	336
	Exercis	ses		337
17	Polariı	netry		340
	17.1	Sources	of polarized radiation	340
		17.1.1	Synchrotron radiation	340
		17.1.2	Zeeman effect	340
		17.1.3	Thermal emission	343
		17.1.4	Scattering	343
		17.1.5	Primordial polarization	344
	17.2	Propagat	ion effects	345
	17.3	Polarizat	ion-sensitive devices	345
	17.4	Analysis	of polarization states	346
		17.4.1	Stokes parameters	346
		17.4.2	Mueller matrices	348
		17.4.3	Jones vectors and matrices	349
	17.5	Polarizat	ion measurement	350
		17.5.1	Analysis of weak field splittings	351
	17.6	Optical p	polarimetry	351
	17.7	Radio po	larimetry and calibration	352
	Exercis	ses		353
App	endix A	Physica	l constants and units	355
App	endix B	Acrony	ms	356
App	endix C	Additio	nal reading	363
	Referen	ices		369
	Index			378

The color plates will be found between pages 232 and 233.

Illustrations

1.1	Atmospheric transmission from 10 to 1000 GHz	page 6
1.2	Atmospheric transmission from 480 to 500 GHz	7
1.3	Scattering from bound electrons	10
1.4	Seeing and scintillation	11
2.1	Geometry defining the specific intensity	15
2.2	Conservation of étendue	15
2.3	Changes in image size and solid angle	15
2.4	Flux through an aperture	16
2.5	Relation between energy density and mean intensity	17
2.6	Integrated flux from a surface of uniform brightness	18
2.7	Opacity of Earth's atmosphere	21
2.8	Sky-dip method for calculating zenith opacity	22
2.9	Sidelobes of a radio telescope	22
2.10	Filter response of standard photometric systems	24
3.1	Cesium clock	29
3.2	Sidereal time	31
3.3	Spherical coordinates	32
3.4	Latitude and longitude on Earth	33
3.5	Fixed and rotating equatorial coordinate systems	34
3.6	Rotating and fixed meridians	34
3.7	Horizon coordinate system	35
3.8	Ecliptic coordinate system	36
3.9	Galactic coordinate system	36
3.10	Relationship between galactic and equatorial coordinates	38
3.11	Spherical trigonometry	39
3.12	Rotation matrices	39
3.13	Precession	41
3.14	Parallax Π for a star at distance D	42
3.15	Aberration of starlight	43
3.16	Gravitational deflection of light at the limb of the Sun	44
3.17	Refraction in a plane-parallel atmosphere	45
3.18	Wide field astrometric errors	47

	List of illustrations	XV
3.19	Altitude/azimuth coordinate system	49
4.1	Square wave as a finite Fourier series	54
4.2	An exponentially decaying wave and its power spectrum	56
4.3	Aliasing	60
4.4	Sampling theorem	61
4.5	Gibbs' phenomenon	64
5.1	X-ray total absorption cross section for Xe	67
5.2	Compton scattering	68
5.3	Compton cross sections	69
5.4	Pair production cross section in lead	70
5.5	Schematic view of a photomultiplier	71
5.6	A Multi-Anode Microchannel Array (MAMA)	73
5.7	Silicon with donors and acceptors	74
5.8	PN junction	75
5.9	Metal-oxide-semiconductor (MOS) device	77
5.10	CCD readouts	78
5.11	Thermal backgrounds for infrared telescopes	79
5.12	Intrinsic and extrinsic photoconductors	80
5.13	Photoconductive gain	81
5.14	Thermal circuit for a bolometer	83
6.1	Probability density and cumulative probability	88
6.2	Binomial distribution	89
6.3	Poisson distributions for $a = 1, 1.5, and 2$	90
6.4	Poisson statistics based on binomial distribution	90
0.5	Gaussian distribution	92
0.0	Deinfell statistics for Linkana Illinois	95
0.7	Rainian statistics for Orbana, infinois Brobability density function for Student's t distribution	90
0.8	Outliers and robust estimation	101
0.9 6 10	Outliers and least squares fitting	101
0.10 7 1	Autocorrelation of a Poisson random process	102
7.1	The transformation $y - x^2$	107
7.2	Filtering $y = x$	110
74	Ideal low pass filter	111
7.5	Thermal noise passed by a low pass filter	114
7.6	Johnson noise	114
8.1	Law of reflection	118
8.2	Snell's law	119
8.3	Paraxial optics and refraction	120
8.4	Paraxial optics and reflection	121
8.5	Transverse and angular magnification	122
8.6	Thin and thick lenses	123
8.7	Spherical aberration for a mirror	125
8.8	Spherical aberration for a lens	126
8.9	Coma	126
8.10	Coma in the tangential and sagittal planes	127

xvi

Cambridge University Press 978-1-107-01046-8 — Observational Astronomy Edmund C. Sutton Frontmatter <u>More Information</u>

List of illustrations

8.11	Astigmatism	128
8.12	Astigmatism in the tangential and sagittal planes	128
8.13	Pincushion and barrel distortion	129
8.14	Petzval field curvature	130
8.15	Classical Cassegrain telescope	130
8.16	Schmidt telescope	132
8.17	Drude–Lorentz model of the refractive index	134
8.18	Dispersion relation	136
8.19	Fresnel coefficients	136
8.20	S-polarization	137
8.21	Application of Green's theorem to Kirchhoff diffraction	140
8.22	Kirchhoff diffraction for an opaque screen with a hole	141
8.23	Huygens–Fresnel principle	142
8.24	Geometry of the Poisson spot	142
8.25	Intensity distribution along the axis for the Poisson spot	143
8.26	Geometry for the Fresnel approximation	144
8.27	Cylindrical coordinates for diffraction from a circular aperture	145
8.28	The Airy pattern: diffraction from a circular aperture	146
8.29	Diffraction by a straight edge	147
8.30	The Cornu spiral: the Fresnel integrals S(u) and C(u)	148
8.31	Diffraction pattern for a point source and a straight edge	149
8.32	Point spread function	150
8.33	Modulation transfer function	151
8.34	A rectangular pixel	153
8.35	Nyquist sampling with a grid of pixels	154
8.36	Marginal and paraxial rays	155
9.1	Electric fields separated in time and space	159
9.2	Quasi-monochromatic radiation	159
9.3	Gaussian power spectral density and autocorrelation functions	159
9.4	Coherence length of quasi-monochromatic radiation	160
9.5	Young's two-slit experiment	161
9.6	Fully modulated fringes	161
9.7	Loss of coherence	162
9.8	Michelson interferometer	162
9.9	Michelson stellar interferometer	163
9.10	Fringes from two point sources being washed out	164
9.11	Coherence of radiation	165
9.12	Radiation pattern of a radio telescope	167
9.13	Radio interferometer	169
9.14	Linear array of dipoles	169
9.15	Antenna pattern of a linear array	170
10.1	Interference between plane-parallel dielectric interfaces	174
10.2	Airy function	175
10.3	Anti-reflection coating	176
10.4	Enhanced reflectivity coating	177
10.5	Fabry–Perot interferometer	178

	List of illustrations	xvii
10.6	Fabry–Perot interferometers in series	179
10.7	Fourier transform spectrometer	180
10.8	Angular deflection by a prism	181
10.9	Prism spectrograph	182
10.10	Objective prism	183
10.11	Principle of a grating	184
10.12	Blazed grating	185
10.13	Czerny–Turner spectrograph	186
10.14	Echelle grating	186
10.15	Grism	187
11.1	Examples of total internal reflection	191
11.2	Wolter type-I telescope with nested optics	191
11.3	Illustration of a pinhole camera and a coded aperture mask	193
11.4	Photoionization within a gas proportional counter	194
11.5	Gas proportional counter	195
11.6	COMPTEL detector on CGRO	199
11.7	EGRET detector on CGRO	200
11.8	Proportional counter unit from RXTE PCA	201
11.9	Chandra ACIS imaging and spectroscope arrays	203
11.10	Chandra HRC	204
11.11	Coded aperture masks for SPI and IBIS	205
12.1	Thermal bremsstrahlung and synchrotron emission	210
12.2	Examples of linear systems	210
12.3	Amplifiers connected in series	212
12.4	FET amplifier	213
12.5	Mixer frequencies	215
12.6	Schottky diode	215
12.7	SIS tri-layer	216
12.8	Simple radiometer system	217
12.9	WMAP results	219
12.10	Polarization-sensitive bolometers	220
12.11	Autocorrelation spectrometer	221
12.12	Bragg reflection	222
12.13	Acousto-optical spectrometer	223
12.14	Ruze theory	224
12.15	Radio antenna pattern	224
12.16	Radio interferometer	227
12.17	Baseline variation due to Earth's rotation	228
13.1	Probability of a neutrino detection	238
13.2	Bayesian posterior	239
13.3	Example of rejection sampling	244
13.4	Metropolis algorithm	246
13.5	Model comparison	248
13.6	Evidence comparison	249
13.7	Example of Malmquist bias	251
13.8	Example of censoring	252

xviii	List of illustrations	
14.1	SSM neutrino flux predictions	259
14.2	Atmospheric neutrinos	261
14.3	System of two coupled pendulums	263
14.4	Neutrino mixing parameters	265
14.5	Ray Davis during construction of his neutrino detector	266
14.6	DUSEL laboratory	269
14.7	Neutrino-electron elastic scattering	270
14.8	Geometry of Cerenkov radiation	270
14.9	Inner portion of Super-K detector	272
14.10	Outer portion of Super-K detector	272
14.11	Super-K event topology	273
14.12	Electron-like and muon-like Super-K events	274
14.13	Neutrino cross sections for light and heavy water	275
14.14	Creighton mine	276
14.15	Artist's conception of SNO	277
14.16	SNO detector during construction	277
14.17	Solar neutrino fluxes	278
14.18	Photomultiplier deployed into antarctic ice	279
14.19	IceCube photomultiplier strings	280
14.20	Simulated muon event in IceCube	281
15.1	Cosmic ray spectrum	286
15.2	Cosmic ray deflection	288
15.3	Cosmic ray components	291
15.4	Electron impact parameter	292
15.5	Ionization energy losses	297
15.6	Energy loss for light nuclei	298
15.7	Isotope mass resolution	299
15.8	Ionization tracks in plastic	299
15.9	TRACER	302
15.10	X _{max}	305
15.11	Shower particles arrive at ground array stations	305
15.12	HiRes air shower event	308
15.13	GZK cutoff	308
15.14	Pierre Auger Observatory	309
16.1	Linear polarization states of gravitational waves	310
16.2	Possible sources of gravitational radiation	318
16.3	Chirp signal	319
10.4	Images of interferometers	322 222
10.5	Locations and orientations of interferometers	525 224
10.0	LIGO optical layout	324 326
16.7	Mode cleaner	320
10.0	LIGO sensitivity	327
16.10	LIOU SUISIUVILY Sansitivity goals for Einstein Talascopa	331
16.10	Configuration of LISA satellites	352
16.12	Computation of LISA saternites	222
10.12	Esumated LISA sensitivity	554

	List of illustrations	xix
16.13	Possible configuration of LISA spacecraft	335
17.1	Polarization of synchrotron radiation	341
17.2	Longitudinal and transverse Zeeman effect	341
17.3	Hyperfine splitting of OH	342
17.4	Zeeman doublet and triplet showing π and σ^{\pm} components	343
17.5	Scattering of unpolarized light	344
17.6	Wollaston prism	346
17.7	Right circular polarization	348

Tables

Characteristic photon energies and temperatures	page 2
Johnson-Cousins-Glass photometric system	25
SDSS bands	25
Hipparcos precision	48
Symmetry properties of Fourier transform pairs	55
Properties of Fourier transforms	57
Symbols for common functions	59
Fourier transform pairs	59
Reduced chi-squared	98
Chi-squared	99
Student's t-distribution	100
One-dimensional confidence limits	253
Two-dimensional confidence limits	254
Characteristic magnetic fields and gyroradii	288
Radioactive isotopes replenished from cosmic rays	290
Gravitational wave interferometers	320
Physical constants	355
Other units	355
	Characteristic photon energies and temperatures Johnson–Cousins–Glass photometric system SDSS bands Hipparcos precision Symmetry properties of Fourier transform pairs Properties of Fourier transforms Symbols for common functions Fourier transform pairs Reduced chi-squared Chi-squared Student's t-distribution One-dimensional confidence limits Two-dimensional confidence limits Characteristic magnetic fields and gyroradii Radioactive isotopes replenished from cosmic rays Gravitational wave interferometers Physical constants Other units

Preface

This book is based on a required course for graduate students in Astronomy which I taught for a number of years at the University of Illinois. The premise of the course is that both theoretical astronomers and observers should have a basic understanding of the techniques of observational astronomy. The emphasis is on the underlying physics of the methods of detection and analytical tools (statistical and otherwise) that astronomers find useful. The great variety of current instruments and the rapid introduction of new instruments preclude an in-depth treatment of the peculiarities and idiosyncrasies of many instruments. But every instrument has its own idiosyncrasies and its own ways of corrupting the data and deceiving the observer. The topics in this book, I believe, cover the minimum which is required of anyone attempting to understand or interpret observational astronomy data.

Throughout the book equations are given in mks (SI) units so that it is easy to relate the discussion to practical quantities such as volts and watts. This is true even in the chapter on gravitational waves, a subject for which many texts and references use geometrized units (c = 1, G = 1). I prefer to keep c and G around rather than having to figure out where to put them when I need to calculate power. I also like being able to check equations using dimensional analysis. In the text other units are freely worked in. Among astronomers, the gauss remains firmly fixed as the unit of magnetic flux density. And astronomers frequently use other cgs units. For example, cross sections are always in cm². And of course there is a plethora of astronomical units such as pc, AU(!), and M_{\odot}. An appendix is provided with physical constants in both mks and cgs units and with a list of other units used and their equivalents in mks and cgs units.

The reader will note that the chapters on neutrinos, cosmic rays, and gravitational waves are of a different nature than other parts of the book. These fields are sufficiently specialized that it is difficult to separate purely observational issues from the underlying science, Therefore, in these chapters I freely go back and forth between design and scientific goals.

Cambridge University Press 978-1-107-01046-8 — Observational Astronomy Edmund C. Sutton Frontmatter <u>More Information</u>

xxii

Preface

In addition to the color plates, there are color versions of a large number of other figures. The complete set of color figures may be accessed and/or downloaded through this book's website: www.cambridge.org/9781107010468.

I am well aware of other topics that I could have included in this book. In particular, I regret not being able to include a thorough discussion of adaptive optics and not covering topics in astroparticle physics.

The outlook for possible future instruments has changed markedly since much of this text was written, largely due to budgetary constraints. A funding increment for DUSEL (Chapter 14) by the National Science Foundation was recently rejected by the US National Science Board. The fate of DUSEL currently rests with its remaining US sponsor, the Department of Energy. WFIRST (Chapter 5) remains a high priority project for NASA. If ESA assigns a similarly high priority to its Euclid mission, a merger of these projects is likely to be considered. The US commitments to IXO (Chapter 11) and LISA (Chapter 16) are very much in doubt. These international collaborations are expected to continue, but reduced financial support could lead to delays and reductions in scope. In any event, these instrument concepts are the current state of the art. Astronomers constantly need to readjust their plans in light of financial realities. If better ways can be found to pursue some of these scientific objectives, now is certainly the time for them.

Acknowledgements

I appreciate the willingness of my colleagues Brian Fields, Athol Kemball, Ben Wandelt, and Dick Crutcher to review limited sections of this text. Their comments have been very useful. Any remaining mistakes are, of course, solely my responsibility. I encourage anyone who discovers errors of any sort to communicate them to me at ecsutton@illinois.edu. The publisher and I will work together to maintain an online list of any errata.

The graduate students to whom I have had the pleasure to teach this material over the years are Scott Bain, Ian Barton, Yohann Beda, Jana Bilikova, Mark Butala, Karen Camarda, Christine Cecala, Nachiketa Chakraborty, Ray Chen, Rosie Chen, Yun Chen, Hsin-Fang Chiang, Samuel Crawford, Conley Ditsworth, Joshua Dolence, Bryan Dunne, Rich Frazin, Khurram Gillani, Daniel Goscha, Philip Grathoff, Michelle Griffin, Xiaoyue Guan, Troy Hacker, Thomasanna Hail, Nicholas Hakobian, Hassan Halataei, Brett Hayes, Nathan Hearn, Nicholas Indriolo, Rishi Khatri, Soyoung Kim, Robert Klinger, Scott Kruger, Hsin-Lun Kuo, Woojin Kwon, Shih-Ping Lai, I-Jen Lee, PoKin Leung, Amy Lien, Wen-Ching Lin, Jiayi Liu, Sheng-Yuan Liu, Justin Lowry, Zarija Lukic, Britt Lundgren, Patrick Lynch, Modhurita Mitra, Rosa Murphy, Erik Nelson, Christopher Neyman, Chenping Ni, Lisa Norton, Brian O'Neill, Kuo-Chuan Pan, Vasiliki Pavlidou, Tijana Prodanovic, Ramprasad Rao, David Rebolledo Lara, Ashley Ross, Jonathan Seale, Jerry Shaw, Hotaka Shiokawa, Jeeseon Song, Thomas Spinka, Ranjani Srinivasan, Ian Stephens, Shweta Sundararajan, Konstatinos Tassis, Daniel Thayer, Glenn Thurman, Toshiya Ueta, Scott Walker, Li-Bang Wang, Shiya Wang, Yiran Wang, Rui Xue, Amit Yadav, Chao-Chin Yang, Hsiang-Yi Yang, Jeong Yim, Alfredo Zenteno, and Jie Zou. They have done much to determine the direction my course has taken and have been invaluable at finding mistakes and inconsistencies in the notes. I am indebted to them.

I appreciate the help of the production staff at Cambridge University Press, especially Claire Poole, Vince Higgs, and Abigail Jones. Ms. Sehar Tahir was helpful with TeX support. Margaret Patterson was an excellent copy editor.

xxiii

Cambridge University Press 978-1-107-01046-8 — Observational Astronomy Edmund C. Sutton Frontmatter <u>More Information</u>

xxiv

Acknowledgements

I am indebted to the developers of Inkscape, which made the production of the figures relatively painless. A portion of the author's proceeds from this publication has been donated in advance to the Software Freedom Conservancy to help defray further development costs for the Inkscape Project.

Every effort has been made to acknowledge and obtain permission for all figures used in this work. Figure 2.10 is included by kind permission of R. A. Jansen. Tables 4.1, 4.2, and 4.3 are reprinted with permission from Bracewell, The Fourier transform and its applications, 3rd edn. ©2000 The McGrawHill Companies, Inc. Figure 5.6 is reprinted with permission from Timothy (1983) PASP, 95, 573, ©1983 University of Chicago Press. The image shown in Figure 10.10 was kindly obtained by D. Ketelsen, who has granted permission for its use here. Figures 11.6, 11.7, and 11.8 reproduced by permission of the AAS. The quotation from Bahcall & Ostriker, Unsolved problems in astrophysics ©1997 is used by permission of Princeton University Press. Figure 14.1 reproduced by permission of the AAS. Figures 14.4, 14.12, and 14.17 are reprinted with permission from Aharmim et al. (2005) Phys. Rev. C, 72, 055502, Ashie et al. (2005) Phys. Rev. D, 71, 112005, and Abbasi et al. (2008) Phys. Rev. Lett., 100, 101101, ©2005 and 2008 by the American Physical Society. Figures 14.9 and 14.10 reprinted with permission, ©Kamioka Observatory, ICRR, University of Tokyo. Figures 14.14, 14.15, and 14.6 are courtesy of SNO. Figures 14.18, 14.19, and 14.20 are based upon work supported by the National Science Foundation under Grant Nos. OPP-9980474 (AMANDA) and OPP-0236449 (IceCube), University of Wisconsin-Madison. Figure 15.1 reprinted with permission of Annual Reviews from Beatty & Westerhoff (2009) ARNPS, 59, 319; permission conveyed through Copyright Clearance Center, Inc. Figure 15.3 reprinted from Gaisser & Stanev (2008) Phys. Lett. B, 667, 254 with permission from Elsevier and D. Muller. Figure 15.7a reprinted from Stone et al. (1998) Sp. Sci. Rev., 86, 357 with permission from Elsevier. Figure 15.7b reprinted by permission of R. Ogliore. Figure 15.9 reproduced by permission of the AAS. Figure 15.12 reprinted from Boyer et al. (2002) NIMPR A, 482, 457 with permission from Elsevier. Figure 15.13 reprinted by permission from Abbasi et al. (2008) Phys. Rev. Lett., 100, 101101 ©2008 by the American Physical Society. Figure 15.14 reprinted by permission of P. Mantsch on behalf of the Auger Project. Figure 16.6 reprinted from Abadie et al. (2010c) NIMPR A, 624, 223 with permission from Elsevier. Figure 16.8 reprinted by permission, ©Science and Technology Facilities Council and Brett Shapiro/LIGO Laboratory. Figure 16.10 reprinted from Hild et al. (2010) Class. Quantum Grav., 27, 15003 with permission from IoP Publishing.

And finally I thank Jean for all of her support during the writing and production of this book.