Index

additive nonparametric models, 254–265
additively separable regression model, 336–337
Afriat conditions, 333
age-earnings regression, 5–6
Ahmad, I.A., 101, 107
Aitchison, J., 189–190, 198–199, 206
Aitken, C.G.G., 189–190, 198–199, 206
Akaike information criterion cross-validation, 125–126, 178, 180–181, 214–215, 222, 339
AMISE. See asymptotic mean integrated squared error (AMISE)
AMSE. See asymptotic mean squared error (AMSE)
applications of nonparametric methods, 2, 4–9
average years of schooling conditional of OECD status, 201–204
bivariate kernel density estimates of physical and human capital, 76–81
constrained estimation, 339–342
discrete data conditional probability density estimators, 201–204
discrete regressors, 222–225
instrumental and endogenous variables, 288–291
kernel density estimators of gross domestic product (GDP) per worker (RGDPWOK), 50–57
panel data estimators, 316–319
regression, 142–145
semiparametric methods, 261–265
testing of cross-country production functions, 177–186
tests and testing of output per worker, 109–112
See also human-capital-augmented labor; physical capital; production functions; tests and testing
asymptotic distribution, 91, 105–106, 120, 207, 209
versus bootstrapping, 174–175
asymptotic mean integrated squared error (AMISE), 28–29, 121, 123
bandwidth selection and, 30–32
multivariate kernel density estimator, 62–64
asymptotic mean squared error (AMSE), 27–32
multivariate kernel density estimator, 62–64
automatic dimensionality reduction, 126
average out-of-sample squared prediction error (ASPE), 141–142
Baltagi, B.H., 296, 298, 311–312
bandwidth selection, 10–11, 148–149, 205
additively separable models, 258–259, 261–265
applied nonparametric estimates and, 148
automated bandwidth selection, 213–214, 252
conditional density estimator, 74–76
conditional mean estimators, 113–114, 121–127
corner estimator, 324–325
density derivative estimator, 48–49
density testing, 105–107
discrete-only case, 195–196
Edgeworth expansions, 175–177
gradient estimation, 128, 135–137
importance of, 16
leave-one-observation-out strategy vs.
leave-one-country-out approach, 316–318
local-polynomial estimator, 274–279
mixed discrete and continuous data, 212–215, 222–223
mixed-data case, 196–197
multivariate density estimators and, 59, 68–72
panel data estimation and, 293–294, 309, 313, 316–318
partially linear models, 232–233, 261–265
bandwidth selection (cont.)
 rearranged estimator, 323–324
 regression testing and, 175–177, 222–226
 semiparametric smooth coefficient models (SPSCM), 252, 261–265
 single index models, 244–245, 261–265
 univariate density estimators and, 30–45
 upper and lower bounds for discrete bandwidths, 214–215
See also cross-validation bandwidth selection; data-driven bandwidth selection; plug-in bandwidth methods; rule-of-thumb bandwidth

Barro and Lee education data, 77, 144
Bellman, Richard, 64
Bianchi, M., 84
Bierens, H.J., 161
bimodality, 59
binwidth selection, 51–52
Birke, M., 324–325
bivariate kernel density estimator, 59–61
biweight kernel, 26
 formula for, 25
 multivariate density estimators, 69–70
 additively separable models, 259–260
 constraint-weighted, 330–331
 equality of unconditional densities, 199–201
 local-polynomial estimator, 279–280
 mixed discrete and continuous regressors, 216–217
 pairs bootstrap, 137–138, 310
 panel data estimation, 309–311, 313–316
 partially linear model, 234–238, 241–242
 semiparametric single-index model, 246–247
 standard errors and confidence bounds, 137–139, 241–242, 260, 309–311
 versus asymptotic distribution, 105–106, 174–175

Cameron, A.C., 3
capital stocks, physical and human, 76–81
Carroll, R.J., 295, 297–299, 306–309
 Hausman-style test, 315–316
 panel-data regression model with fixed effects, 302–304
 center-subtracted test, 89
centering terms, 89, 105–106

Index

central limit theorem for degenerate U-statistics, 89–91
Cobb-Douglas constant-returns-to-scale production function, 9, 142–143, 145–147, 156, 177–179, 247
concavity constraints, 333–336
concurvity, 285
conditional density estimator, 10, 72–73
 bandwidth selection, 74–76
 bias, variance and AMSE, 73–74
 for discrete-choice models, 246–247
 of average years of schooling conditional of OECD status, 201–204
 output conditioned on physical and human capital, 79–81
conditional mean estimator, 113, 149–151, 244–245
 approaches to, 117
 bandwidth selection, 121–127
 kernel smoothing preliminaries, 114–117
 local-constant least-squares (LCLS), 118–123, 128–133, 206–208
 local-quadratic least-squares (LQLS), 133–135
 naïve estimator approach, 118
See also regression estimators
 conditional-moment tests, 159, 161–162, 166–67, 175–177, 235–238
 variable relevance and, 169–71
 consistent test, 86–87
 constant elasticity of substitution (CES) production function, 145–48, 177–179
 constant returns to scale (CRS), 142–143, 154–155, 340–342
 constrained estimation, 4, 10–11, 321–322, 339–342
 additively separable regression model, 336–337
 alternative shape-constrained estimators, 326–330, 337–338
 concavity constraints, 333–336
 convex estimator, 324–325
date sharpening, 330–331
distance metric selection, 331–332
linear-in-p constraints, 333–334
rearrangement, 321–326, 338
smoothing parameter selection, 332–333
testing of validity of arbitrary shape constraints, 337–338
control function, 271–272
correlation, 128, 197, 207, 227
convex estimators, 324–325
correct functional form test, 175–180, 225–226
correct parametric specification tests, 83, 109–110, 162–163, 177, 233–238
conditional-moment tests, 159
curse of dimensionality and, 67–68
goodness-of-fit test statistic, 160–161, 163–66
mixed discrete and continuous regressors, 215–216
Cramer-Rao lower bound, 228
cross-country output. See human-capital-augmented labor; output per worker distributions; physical capital; production functions
cross-validation bandwidth selection, 70–72, 196, 213, 261–265
Akaike information criteria (AIC_c), 124–125
Akaike information criteria (AIC_c cross-validation, 125–126, 178, 180–181, 214–215, 222, 339
univariate density estimator, 38–45
See also local-constant least-squares (LCLS); local-linear least-squares (LLLS)
crude density estimators, 19–22, 113
data-driven bandwidth selection, 16–19, 38, 55–57
discrete-only case, 195–196
mixed discrete and continuous data, 212–215, 222–223
mixed-data case, 196–197
overfitting and, 156
date sharpening, 330–331
degenerate U-statistics, 89–91, 94–95, 162, 167, 235
density derivative estimator, 45–50, 205
bandwidth selection, 48–49
bias and variance of, 47–48
relative efficiency, 50
rule-of-thumb constants for second-order kernels used for, 46–47
density estimation, 2, 8, 15, 188, 205
CO₂ emissions example, 4–5
crude density estimators, 19–22
worldwide distribution of labor productivity (output per worker), 8
See also kernel density estimator; multivariate density estimation; univariate density estimation
density tests. See tests and testing
Dette, H., 172, 322, 324–325
dimensionality, curse of, 59, 64–68, 75, 134, 142, 238–239, 286, 294, 309
in discrete data, 197–198
semiparametric methods and, 227, 238
discrete data, 1–2, 10, 99, 193–194
conditional density of OECD status and, 201–204
cross-country production function, 205
dimensionality and, 197–198
discrete (only) kernel probability density estimator, 191–194
discrete endogenous regressor, 286–287
discrete individual effects, 305–306
equality of unconditional densities test with mixed-data types, 199–201
kernel function with unordered and ordered discrete variables, 198–199
probability density and, 187–188
test for significance of discrete variables, 217–219
See also regression with discrete covariates
discrete variable smoothing, 187–188, 205–206
discrete (only) kernel probability density MSE, 192–193
kernel choice for unordered and ordered discrete variables, 189–190
See also regression with discrete covariates
displaying regression results, 4, 139–140
distance measures
distance metric selection, 331–332
distance tests, 87
Hellinger distance, 88–89, 100
See also integrated square error;
Kullback-Leibler distance measure
dynamic panel-data estimator, 306–308
economic constraints in nonparametric regression. See constrained estimation
economic growth, 83, 101–102, 180, 205, 227, 293–204
heteroskedasticity, and, 172
instrumental variables and, 267, 288
nonparametric method benefits, 1–4
random effects estimators and, 295
regression and, 113
smooth coefficient model, 247
variable significance and, 168
Edgeworth expansions, 175–177
efficiency, 69
of LLLS, 132–133
relative efficiency of density derivative estimator, 50
semiparametric, 228, 265
empirical cumulative distribution function (ECDF), 22, 84, 269–271
discrete endogenous variable regressor, 286–287
environmental economics, 4–5
Epanechnikov kernel, 26, 29–30, 33, 42–43, 46, 134, 189
formula for, 25
local-linear estimator, 133
multivariate density estimators, 69–70
Silverman rule-of-thumb constants and, 52–55
equality between specific densities tests, 108–109
between two unknown densities tests, 83 of unconditional densities test with mixed-data types, 199–201
Eubank, R.L., 171–172
Fan, J., 97, 107, 133–134, 160–161
Fan, Y., 92, 99
fixed-effect estimators, 293, 301–306
additive individual effects, 302–305
discrete individual effects, 305–306
Hausman-style test, 315–316
homoskedastic balanced panel-data, 314–315
flexibility, 11, 321
Fredholm integral of the first kind, 268
of the second kind, 307
frequency estimators, 188, 206
Fu, T.T., 248–249
Gao, J., 175–177
Gauss-Markov theorem, 132
Gaussian kernel, 8, 25–26, 29, 35, 108, 120, 127, 134, 177, 201
formula for, 25
multivariate density estimators, 69–70
Silverman test for modality, 102–103, 108
generalized Leontief (GL) production function, 146, 155–156, 177–179
generalized product kernel-density estimator, 190–91
generalized quadratic (GQ) production function, 145–147, 155, 177–179, 225
Gijbels, I., 134, 175–177
variable relevance and, 168–169
additive setting, 258
bandwidth selection, 135–137
display of, 140
for continuous covariates, 209–210
for discrete covariates, 210–212
gradient-based cross-validation (GBCV), 136–137
Gregory, G.G., 42
gross domestic product (GDP)
per capita GDP multiplied by population (RGDPCH), 77, 143–144
per worker (RGDPWOK), 50–57, 143
Gu, J., 216–217
Hall, P., 38, 40, 42–43, 75, 214
bandwidths obtained via LSCV, 127
degenerate U-statistics, 89–91, 94, 162
human capital, 144
LSCV approach for bandwidths for conditional density estimator, 74–75
Silverman test for modality and, 105
Han, S., 280–286
Härdle, W., 244–246, 264–265
Hastie, T., 247–248, 285
Hausman-style test, 315–316
hedonic price function, 6–7
Hellinger distance, 88–89, 100
constrained estimation and, 321
Hausman-style test, 315–316
local-linear weighted least-squares (LLWLS), 297
panel-data regression model with fixed effects, 302–304
production functions in logs and, 9
Hengartner, N.W., 254–255, 259, 262
heteroskedasticity, 139, 212, 314
Hidalgo, J., 311–312
histograms, 15, 19, 51–52
of per-capita CO2 emissions, 4–5
homoskedasticity, 137, 180–181, 314
panel-data estimators, 314–315
Hong, Y., 160
Horowitz, J.L., 245–246, 264–265, 287
Hsiao, C., 215–216
Huang, C.J., 248–249
Huang, C.J., 248–249
Huang, H., 105
Huang, T., 161
Index 363

bivariate kernel density estimates of, 76–81
positive marginal product imposing on, 339–340
semiparametric methods, 261–265
hypercube and hypersphere, 67
hypothesis tests. See tests and testing
Ichimiura, H., 239–240, 242–245, 261
ill-posed inverse problem, 267–272
independence tests, 83, 99–101, 110–111
inference. See tests and testing
instrumental variable estimation, 10–11, 288–291
discrete endogenous variable regressor, 286–287
ill-posed inverse problem, 267–272
local polynomial estimation, 272–280
testing, 287–288
weak instruments, 280–286
integrated square error, 39, 87–88, 94–98, 159, 200
iterative estimator, 298–301, 304, 319
Jiang, J., 160–161
joint density estimators, 10, 59–62, 70–72
conditional mean estimators, 117
joint normality tests, 83
physical and human capital stocks and, 76–79, 110–111
Jones, M.C., 36–38, 59, 144
kernel choice, 10, 28–29, 134, 177
lowest AMISE and, 28–29
multivariate density kernels and, 69–70
ordered discrete variables, 189–190
smoothing discrete variables and, 188–89
unordered discrete variables, 189
See also biweight kernel; Epanechnikov
kernel; Gaussian kernel; triweight kernel
kernel density estimator, 15, 17, 24–26, 62, 121–122, 140, 188
bandwidth selection, 34–38, 50–57
bias and variance measures, 26–28
bivariate, 59–61, 76–81
cross-country GDP per worker, 50–57
discrete (only) kernel probability estimator, 191–192
generalized product, 190–91
generic definition for, 24
mixed continuous-discrete data, 193
naïve, 22–24
of per-capita CO2 emissions, 4–5
output per worker and, 8, 108–112
regularization, 270–271
See also applications of nonparametric
methods; density derivative estimator;
multivariate kernel density estimator;
univariate kernel density estimator
kernel efficiency, 29–30, 69
kernel function, 15, 144
uniform kernel for naïve estimator, 22–25
unordered and ordered discrete variables, 198–199
Kiefer, N.M., 208
Kim, W., 254–255, 259, 262
Klein, R.W., 243–244
Kolmogorov-Smirnov test, 84, 291
Kullback-Leibler distance measure, 29, 41, 72, 88–89, 125, 331
Kumbhakar, S.C., 9, 140, 328, 330
labor. See human-capital-augmented labor
labor productivity distributions tests, 111
Lavergne, P., 169, 179–181, 225–226, 312
least-squares cross-validation (LSCV), 38–41
43–45
bandwidth selection for conditional mean
estimation, 124–127
bandwidths for physical and human capital, 222–223
constant mean estimator, 118–121
gradient estimates and, 151–153
kernel density estimates of cross-country
GDP per worker, 55–57
multivariate kernel density estimators and, 70–72, 74–76
See also cross-validation bandwidth
selection
Lee, T.-H., 160
Lee, Y.-J., 160
Li, D., 216–217, 248–249
Li, Q., 3, 25, 97, 101, 107, 187, 212, 306–309
alternative kernel function for unordered
discrete variables, 198–199, 206–207
bandwidths obtained via LSCV, 127
center-free test statistic, 94
correct functional form test, 175–180
data-driven bandwidth selection in
discrete-only case, 189–190, 195–196
data-driven bandwidth selection in the
mixed-data case, 196–197
Li, Q. (cont.)
Hausman-style test, 315–316
kernel-based test of, 92
LSCV approach for bandwidths for conditional density estimator, 74–76
panel-data regression model with fixed effects, 302–304
regression with all discrete regressors, 220–222
smooth coefficient model, 248–249
test for correct parametric specification with mixed discrete and continuous regressors, 215–216
test for equality of unconditional densities, 199–200
test for poolability, 311–312
likelihood cross-validation (LCV), 39–45
kernel density estimates of cross-country GDP per worker, 55–57
multivariate kernel density estimators and, 70–72
limited dependent-variable models, 242–243
Lin, X., 295, 297–299
Linton, O.B., 254–255, 259, 262
Liu, D., 216–217
limitations of, 128–130
pooled panel data estimators, 294–295
regression with discrete covariates, 206–208, 213–215
selection of versus LLLS, 131–133
smooth coefficients, 249–251
See also cross-validation bandwidth selection
efficiency of, 132–133
gradient estimations, 151–153
mixed-data, 208–209, 213–215
pooled panel data estimators, 294–295
regression with discrete covariates, 208–209, 213–215
selection of versus LCLS, 131–133
smooth coefficients, 249–251
local-linear weighted least-squares (LLWLS), 297–298
local-polynomial estimation, 120, 133–135, 272–280, 285
local-quadratic least-squares (LQLS) estimator, 133–135, 209
Lu, X., 172, 306–308
Maasoumi, E., 102, 199–200, 291
Mammen, E., 91, 255
Marron, J.S., 38, 40, 59
Martins-Filho, C., 254, 257–258, 297
McCann, P., 127
mean square error (MSE), 188
discrete (only) kernel probability density, 192–193
Min, I., 99
monotonicity, 11, 321–322, 325–326, 328, 330, 333
Monte Carlo simulation, 3, 301
multimodality, 8
multimodality tests, 84, 102–105, 112
multivariate kernel density estimator, 10, 134, 196–197
application of to physical and human capital, 76–81
bandwidth selection, 59, 68–72
bias, variance and AMISE/AMSE and, 62–64
bivariate/joint kernel density estimator, 59–62
curvature of conditional density estimator, 72–76
curse of dimensionality and, 64–68
tests for, 83
Nadaraya-Watson estimator. See local-constant least-squares (LCLS)
naïve estimators
conditional mean, 118, 136
density estimator, 22–24
OECD and non-OECD countries, 8, 182–185
distributions for OECD and non-OECD countries, 109–110
of average years of schooling conditional of OECD status, 201–204
OLS estimator, 131–132, 143
one-way error component models, 293–294
ordered discrete variables, 187
out-of-sample prediction, 156–157
output per worker distributions, 8, 84
bivariate kernel density estimates of, 76–81
correct parametric specification test for, 109–110
equality test for, 108–109
for OECD and non-OECD countries, 8, 109–110, 182–185
gross domestic product (GDP) per worker (RGDPWOK), 50–57
modality test for, 111–112
regressions and, 9
symmetry test for, 111–112
univariate density estimation and, 15
Index

See also human-capital-augmented labor; physical capital; production functions

Ouyang, D., 195–196, 198–199, 220–222

overfitting, 156

Pagan, A.R., 6
panel data models, 4, 10–11, 293–294, 316–319
bandwidth selection, 309
dynamic panel-data estimator, 306–308
fixed-effects, 293, 301–306
pooled models of, 294–295, 309
random-effects, 295–301, 314–315
semiparametric, 308–309
standard errors, 309–311
testing of, 311–316
unbalanced, 294

parametric models, 170, 228–230, 238–239
parametric density tests versus
non-parametric alternative, 97–99
parametric tests vs. nonparametric, 156–157, 159, 223, 313–315
versus non-parametric alternative, 114–116, 139–141, 144–157
See also correct parametric specification tests
Park, B.U., 38, 255
Parmeter, C.F., 102, 112, 140–142, 316, 328, 330
constrained estimation and, 321
LSCV and irrelevant variables, 127
partial mean plots, 140
partially linear model (PLM), 11, 227–232, 261–265
partially linear fixed-effects model with exogenous regressors, 309
test for a nonparametric model versus, 236–238
test for a parametric model versus, 128, 233–236
Penn World Tables (PWT), 8, 11, 50, 77, 143
perpetual inventory method, 77, 144
bivariate kernel density estimates of capital stocks, 76–81
discrete regressors and, 222–226
positive marginal product imposing on, 339–340
semiparametric methods, 261–265
plug-in bandwidth methods, 34–35, 43–45, 258
production functions, 9, 142–145, 225, 321
constant returns to scale, 340–342
discrete variables, 205
generalized Leontief (GL), 146, 155, 177–179
leave-one-observation-out vs.
leave-one-country-out, 316–318
panel data estimators and, 294
region and time variables, 187, 222–226
regression models and, 142–143
testing of, 177–186
See also applications of nonparametric methods; Cobb-Douglas
constant-returns-to-scale production function; constant elasticity of substitution (CES) production function; generalized quadratic (GQ) production function

Proença, I., 246
Psacharopoulos survey of wage equations evaluating returns to education, 77, 144

Quah, D., 8, 51, 111

R code, 11–12, 106
Racine, J.S., 3, 25, 75, 111

random-effects estimators, 295–301
balanced panel and homoskedastic error, 314
local-linear weighted least-squares (LLWLS), 297–298
Wang’s iterative estimator, 298–301
rearrangement, 321–326, 338
regression estimators, 9–10, 111–114, 141–145, 148, 206, 216
age-earnings example, 5–6
average out-of-sample squared prediction error (ASPE), 141–142
regression estimators (cont.)
displaying of regression estimates, 4, 139–140
hedonic price function for housing, 7–8
production functions, 142–143
R-squared, 141
smoothing preliminaries, 114–117
standard errors and confidence bounds via bootstrap procedures, 137–139
worldwide production function, 9
See also conditional mean estimator; constrained estimation; gradient estimations; regression with discrete covariates
regression testing, 159–186, 215–219
bandwidth selection and, 175–177
bootstrap methods versus asymptotic distribution, 174–175
heteroskedasticity of the error term test, 159–160, 165, 171–174, 177
of cross-country production functions, 177–186
variable relevance and, 168–171
regression with discrete covariates, 205
all discrete regressors, 220–222
application and testing of, 222–226
bandwidth selection, 212–215, 222–223
gradient estimation with continuous covariates, 209–210
gradient estimation with discrete covariates, 210–212
local-constant least-squares (LCLS), 206–208, 213–215
local-linear least-squares (LLLS), 208–209, 213–215
test for significance of discrete variables, 217–219
testing of, 215–219
regularization, 270–271
residual bootstrapping, 138–139, 164–165, 236–237, 310–311
Robinson, P.M., 228–232, 308
Rodriguez, D., 246
rule-of-thumb bandwidth selection, 32–37, 40, 49, 52–57, 121–123
conditional density, 74–76
density derivative estimator, 46–47
multivariate density estimators and, 70
output per worker distributions tests and, 108–112
Russell, R.R., 102, 112
Schiene, M., 255
Schuster, E.F., 42
Scott, D.W., 35
semiparametric methods, 1, 10–11, 206, 227–228, 280
additive nonparametric models, 254–260
application of, 261–265
defined, 11
efficiency, 228, 265
panel data estimators, 308–309
semiparametric smooth coefficient models (SPSCM), 248–254
density derivative estimator, 46–47
tests of nonparametric versus parametric model, 233–236
See also partially linear model (PLM)
Sheather, S.J., 36–38, 59
Silverman test for multimodality, 46, 102–105, 112
single-index models, 238–247, 261–265
smoothing, 38, 188
ekernel smoothing methods, 15–22
smoothing parameter selection in constrained estimates, 332–333
See also bandwidth selection; discrete variable smoothing
Solow variables, 76
See also human-capital-augmented labor; output per worker distributions; physical capital
Spady, R.H., 243–244
standard errors
bootstrap procedures for, 137–139, 241–242
panel data estimation, 309–311
Stoker, T.M., 246
Su, L., 99, 172, 309
dynamic panel-data estimator, 306–308
local-polynomial least-squares, 272–275, 278–279, 288–291
Sun, K., 9, 315, 328, 330
supplemental materials, 11–12
symmetry tests, 101–102, 111–112
Tapia, R.A., 35
Taylor expansion, 26, 48, 130–131, 133, 135, 208
tests and testing, 8, 10–11, 83, 225
additively separable models, 259–260
bandwidth selection and, 105–107
centering terms, 89
central limit theorem for degenerate
U-statistics, 89–91, 162
consistency test, 86–87
correct functional form test, 175–180, 225–226
density testing fundamentals, 84–87
distance tests, 87–89
equality of unconditional densities, 199–201
Hausman-style test, 315–316
if random samples are from same
distribution, 92–97
independence tests, 83, 99–101, 110–111
instrumental variables estimators, 287–288
joint normality test, 83
Kolmogorov–Smirnov test, 84
multimodality tests, 84, 102–105, 112
parametric versus nonparametric, 83, 156–157, 159, 313–315
of known parametric density versus a
nonparametric alternative, 97–99
output per worker, 109–112
panel data models, 311–316
parametric model versus a PLM, 233–236
partially linear models and, 233–238
poolability of panel data, 311–313
relevance of continuous regressors in a
mixed-data framework, 215–216
relevance of discrete regressors in a
mixed-data framework, 217–219
semiparametric single-index model, 245–247
Silverman test for multimodality, 46, 102–105
smooth coefficient model, 252–254
symmetry tests, 101–102, 111–112
test for significance of discrete variables, 217–219
validity of arbitrary shape constraints, 337–338
See also applications of nonparametric
methods; correct parametric specification
tests; regression testing

Thomas, W., 171–172
Thompson, J.R., 35
Tibshirani, R.J., 247–248
time series data, 11
Trivedi, P.K., 3
triweight kernel, 26
formula for, 25
multivariate density estimators, 69–70
Ullah, A., 87, 92, 100
age-earnings, 5–6
goodness-of-fit tests, 160–161, 163, 165, 177–179, 259
local-linear weighted least-squares (LLWLS), 297
local-polynomial least-squares, 272–275, 278–279, 288–291
uniformity property, 196
univariate kernel density estimator, 9–10, 15, 59, 122, 196
bandwidth selection, 30–45
density derivative estimator, 45–50
discrete, 190–91
tests for, 83–84, 101
See also kernel density estimation
unordered discrete variables, 187, 189
cess economic, 6–7
van Ryzin, J., 199
Vuong, Q., 169, 179–181, 225–226
Wang, M.-C., 199
Wang, N., 297–301, 304, 319
Wang, S., 175–180
weak instruments, 280–286
website for text, 2, 11
technical appendices on, 12
Wilson, P.W., 99
Yang, K., 254, 257–258
Yao, F., 297
York, M., 105
Yu, P., 139
Zheng, J.X., 99, 127, 161