
PULSAR ASTRONOMY

Fourth Edition

Over the past 40 years, an astonishing range of astrophysics has become accessible
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Now in its Fourth Edition, this authoritative volume gives a thorough introduction
to the field. It is extensively revised throughout and new material includes: astrome-
try of binary pulsars and relativity theory; millisecond pulsars; the origin and Galactic
population of pulsars and magnetars; and the pulsed emission from radio to gamma-
rays. Within each topic, the authors concentrate on the fundamental physics and list
extensive references, spanning from first discoveries to the most recent advances. Web-
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research work.
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From previous editions

‘For anyone starting research, or preparing a graduate lecture course, this comprehen-
sive, authoritative and readable introduction to pulsars, with some interesting historical
asides, is strongly recommended.’
The Observatory

‘. . .covers a broad range of topics in a concise way, and it is particularly strong in
its discussions of pulsar emission phenomenology, pulsars as probes of the interstel-
lar medium and timing irregularities in young pulsars. . . .With its breadth and clear
presentation, the new edition will continue to be a valuable introduction for graduate
students and others.’
Physics Today
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1.1 Discovery observations of the first pulsar. (a) The first recording of
PSR B1919+21; the signal resembled the radio interference also seen
on this chart. (b) Fast chart recording showing individual pulses as
downward deflections of the trace (Hewish et al. 1968). page 4

1.2 The Crab Pulsar. This pair of photographs was taken by a stro-
boscopic television technique, showing the pulsar on (left) and off
(right). (Lick Observatory, reproduced by kind permission of the Royal
Astronomical Society.) 10
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a range of equations of state (from Wiringa, Fiks & Fabrocine 1988). 18

2.2 The total mass as a function of overall radius, calculated from a range
of equations of state (from Wiringa, Fiks & Fabrocine 1988; see also
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2.4 The essential features of a pulsar magnetosphere. Within a radial dis-

tance rc = c/� of the rotation axis there is a charge-separated,
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3.2 The essential components of a gamma-ray telescope. The tracker is
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thin tungsten converter foil, in which electron–photon pairs are gener-
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in each photon event is obtained in a scintillator calorimeter below the
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Preface

The stream of research and publications in pulsar astronomy has spread to a flood tide,
encompassing a wide range of observations and astrophysics. In 1967, when the first pul-
sar was discovered, digital techniques, wide bandwidth radio receivers, space-based X-ray
and gamma-ray telescopes were all unheard of. Observations are now expanding as fast as
technical developments allow, and we are already looking forward to another major step
forward, the building of the international Square Kilometre Array. Recent years have seen
the outstanding success of X-ray and gamma-ray astronomy, extending to energies in the
GeV and TeV regions. We have seen spectacular advances in pulsar timing and astrometry,
leading to the most stringent tests of relativity theory, while an astonishing range of astro-
physics has become accessible through pulsar astronomy, from the cold condensed matter of
the neutron star interior and the extremely high energy of the surrounding magnetosphere,
to the detailed structure of the interstellar medium.

Our intention in this new edition is to provide a guide rather than an encyclopaedia.
Both of us are physicists and hands-on observers rather than theorists, and we naturally
concentrate on techniques and discoveries, and on the interpretation of observations. Nev-
ertheless we present the basic astrophysics, supplemented by references to papers which
will lead to more complete explanations and into the more abstruse physics of, for exam-
ple, condensed matter and relativity. We have in fact quoted many more references than
previously throughout this edition, with the intention of spanning each topic from the first
discoveries through to the most recent research paper. Many important references have
doubtless been omitted, but those which have been included should lead to the whole
of the literature; for such pursuits we trust that every reader has access to the excellent
archive provided by the SAO/NASA Astrophysics Data System. In the same spirit, we
have omitted the catalogue of pulsars, and recommend the use of the ATNF Pulsar Cat-
alogue at http://www.atnf.csiro.au/research/pulsar/psrcat. We also recommend Handbook
of Radio Astronomy (D. Lorimer & M. Kramer, Cambridge University Press, 2005) for a
more detailed account of observing techniques and methods of data analysis, and Neutron
Stars and Pulsars (W. Becker, Springer, 2009) for neutron star physics and high-energy
observations.

Finally, and not least, we record our gratitude to the research team at Jodrell Bank Obser-
vatory, who have provided many of the discoveries in this book, and who have spent many
hours scrutinising the text. The errors remaining are our own responsibility.
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