PULSAR ASTRONOMY

Fourth Edition

Over the past 40 years, an astonishing range of astrophysics has become accessible through pulsar astronomy. The body of literature on this rapidly growing research area is vast and observational techniques now cover the whole of the electromagnetic spectrum.

Now in its Fourth Edition, this authoritative volume gives a thorough introduction to the field. It is extensively revised throughout and new material includes: astrometry of binary pulsars and relativity theory; millisecond pulsars; the origin and Galactic population of pulsars and magnetars; and the pulsed emission from radio to gammarays. Within each topic, the authors concentrate on the fundamental physics and list extensive references, spanning from first discoveries to the most recent advances. Websites for catalogues of known pulsars are also recommended, providing a basis for new research work.

The rapid pace of progress in pulsar astronomy makes this essential reading both for advanced students entering the field and established researchers.

ANDREW LYNE is Emeritus Professor of Radio Astronomy at the University of Manchester, a former Director of Jodrell Bank Observatory and a Fellow of the Royal Society. His research has focussed on finding radio pulsars and understanding the physics of neutron stars. He has been at the forefront of pulsar research for over 40 years and his discovery of two-thirds of the known pulsars has resulted in several awards, including the Herschel Medal of the Royal Astronomical Society and the Descartes Prize of the European Union.

FRANCIS GRAHAM-SMITH is Emeritus Professor of Radio Astronomy at the University of Manchester. He is a pioneer of radio astronomy and was involved in the discovery and accurate location of discrete radio sources. He has been Director of the Royal Greenwich Observatory, Physical Secretary of the Royal Society, Director of the Jodrell Bank Observatory and Astronomer Royal 1982–1990. The Fourth Edition of Pulsar Astronomy is the product of over 40 years of close collaboration in research at Jodrell Bank Observatory.

From previous editions

'For anyone starting research, or preparing a graduate lecture course, this comprehensive, authoritative and readable introduction to pulsars, with some interesting historical asides, is strongly recommended.' *The Observatory*

"...covers a broad range of topics in a concise way, and it is particularly strong in its discussions of pulsar emission phenomenology, pulsars as probes of the interstellar medium and timing irregularities in young pulsars. ...With its breadth and clear presentation, the new edition will continue to be a valuable introduction for graduate students and others."

Physics Today

Cambridge Astrophysics Series

Series editors:

Andrew King, Douglas Lin, Stephen Maran, Jim Pringle, Martin Ward and Robert Kennicutt

Titles available in the series

- 19. Beams and Jets in Astrophysics
 - edited by P. A. Hughes
- 22. Gamma-ray Astronomy 2nd Edition by Poolla V. Ramana Murthy and Arnold W. Wolfendale
- 24. Solar and Stellar Activity Cycles by Peter R. Wilson
- 25. 3K: The Cosmic Microwave Background Radiation *by R. B. Partridge*
- 26. X-ray Binaries edited by Walter H. G. Lewin, Jan van Paradijs and Edward P. J. van den Heuvel
- 27. RR Lyrae Stars by Horace A. Smith
- 28. Cataclysmic Variable Stars by Brian Warner
- 30. Globular Cluster Systems by Keith M. Ashman and Stephen E. Zepf
- 33. The Origin and Evolution of Planetary Nebulae by Sun Kwok
- 34. Solar and Stellar Magnetic Activity by Carolus J. Schrijver and Cornelis Zwaan
- 35. The Galaxies of the Local Group *by Sidney van den Bergh*
- 36. Stellar Rotation by Jean-Louis Tassoul
- 37. Extreme Ultraviolet Astronomy by Martin A. Barstow and Jay B. Holberg
- 39. Compact Stellar X-ray Sources edited by Walter H. G. Lewin and Michiel van der Klis
- 40. Evolutionary Processes in Binary and Multiple Stars by Peter Eggleton
- 41. The Physics of the Cosmic Microwave Background by Pavel D. Naselsky, Dmitry I. Novikov and Igor D. Novikov
- 42. Molecular Collisions in the Interstellar Medium 2nd Edition *by David Flower*
- 43. Classical Novae 2nd Edition edited by M. F. Bode and A. Evans
- 44. Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere by Kenneth J. H. Phillips, Uri Feldman and Enrico Landi
- 45. From Luminous Hot Stars to Starburst Galaxies by Peter S. Conti, Paul A. Crowther and Claus Leitherer
- 46. Sunspots and Starspots by John H. Thomas and Nigel O. Weiss
- 47. Accretion Processes in Star Formation 2nd Edition by Lee Hartmann
- 48. Pulsar Astronomy 4th Edition by Andrew Lyne and Francis Graham-Smith

PULSAR ASTRONOMY

FOURTH EDITION

A N D R E W L Y N E Jodrell Bank Observatory, University of Manchester

FRANCIS GRAHAM-SMITH

Jodrell Bank Observatory, University of Manchester

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107010147

© A. Lyne and F. Graham-Smith 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

Fourth Edition published 2012 Third Edition published 2006 Second Edition published 1998 First Edition published 1990

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Lyne, A. G.
Pulsar astronomy / Andrew Lyne, Francis Graham-Smith. – 4th ed. p. cm. – (Cambridge astrophysics ; 48)
Includes bibliographical references and index.
ISBN 978-1-107-01014-7 (Hardback)
Pulsars. I. Graham-Smith, Francis, Sir, 1923– II. Title.
OB843.P8L86 2012

QB843.P8L86 2012 523.8'874–dc23

2011042782

ISBN 978-1-107-01014-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List of illustrations	<i>page</i> xi
	Preface	xxvii
1	The discovery of pulsars	1
1.1	The radio discovery	2
1.2	Interplanetary scintillation	3
1.3	The Nature letter of February 1968	5
1.4	Oscillations and orbits	6
1.5	The identification with neutron stars	9
1.6	Optical pulses from the Crab Pulsar	10
1.7	X-ray pulses from the Crab Pulsar	11
1.8	Rotation periods	11
1.9	The interstellar medium	13
1.10	The population of pulsars	14
1.11	Physics of the neutron star	15
2	Neutron stars	16
2.1	White dwarf stars	17
2.2	Neutron stars	17
2.3	Neutron star diameters	20
2.4	Thermal radiation, luminosity and redshift	20
2.5	The crust and the neutron fluid	22
2.6	The magnetic fields of neutron stars	23
2.7	The magnetosphere	24
3	Telescopes and techniques	27
3.1	Radio telescopes	27
3.2	Infrared, optical and ultraviolet telescopes	28
3.3	X-ray observations	28
3.4	Gamma-ray space-based telescopes	29
3.5	Imaging atmospheric Cerenkov telescopes	32
3.6	Searching for periodic pulses	33
3.7	Frequency dispersion in pulse arrival time	35
3.8	De-dispersion	37

v

vi *Contents*

3.9	The detection of binary pulsar systems	39
3.10	Searches for millisecond pulsars	41
3.11	Searches of supernova remnants and globular clusters	42
3.12	The surveys for normal pulsars	43
3.13	Sensitivity: selection effects	45
3.14	Combatting radio interference	47
3.15	Current and future surveys	48
4	The distances of the pulsars	49
4.1	Pulsar distances from parallax	50
4.2	Kinematic distances	52
4.3	Pulsar distances from neutral hydrogen absorption	53
4.4	Pulsar distances from optical identifications	54
4.5	Radio interstellar scattering	57
4.6	The H II regions	57
4.7	The model electron distribution	58
4.8	The accuracy of the electron density model	58
5	Pulsar timing	61
5.1	Pulsar positions and the Earth's orbit	62
5.2	The Römer correction to the barycentre	64
5.3	The general relativistic corrections	65
5.4	Fundamental positional reference frames	66
5.5	Periods and period changes	67
5.6	Proper motion	68
5.7	Gravitational acceleration	69
5.8	Precession	70
5.9	Pulsar ages and the braking index	71
5.10	Pulsars as standard clocks	73
6	Timing and astrometry of binary pulsars	76
6.1	Parameters of a binary orbit	76
6.2	Annual orbital parallax	79
6.3	Relativistic effects in binary orbits	79
6.4	The relativistic evolution of a binary orbit	80
6.5	The Double Pulsar binary J0737–3039A/B	84
6.6	Tests of gravitational theory	84
6.7	Gravitational waves	85
6.8	The detection of planetary pulsar systems	86
7	Timing irregularities	88
7.1	Glitches	89
7.2	The occurrence of glitches	90
7.3	Slowdown rate after a glitch	92
7.4	The exponential recoveries	93

	Contents	vii
75	Changes of moment of inertia	95
7.6	Two-component models: crust and superfluid	96
7.0	Vorticity in the neutron fluid	97
7.8	Pinning and unpinning	98
7.0	Summary of glitch theory	99
7 10	Alternative glitch theories	99
7.11	Timing noise	100
7.12	The origin of timing noise	100
7.12	The origin of thining holse	102
8	The Galactic population of pulsars	105
8.1	The surveys	105
8.2	The observed distribution of normal pulsars	106
8.3	The derived luminosity and spatial distributions	107
8.4	Pulsar velocities and ages	110
8.5	The Galactic Centre region	112
8.6	Model populations	113
8.7	The pulsar birthrate	114
8.8	The population of millisecond pulsars	115
0	The Crab and Vela Pulsars	117
,		117
9 .1	Young pulsars	117
9.1 9.2	Young pulsars Energy output	117
9.1 9.2 9.3	Young pulsars Energy output The Crab Pulsar, PSR B0531+21	117 117 118
9.1 9.2 9.3 9.4	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45	117 117 118 128
9.1 9.2 9.3 9.4	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars	117 117 118 128
9.1 9.2 9.3 9.4 10	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages	117 117 118 128 134 134
9.1 9.2 9.3 9.4 10 10.1 10.2	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion	117 117 118 128 134 134
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR 10205+6449	117 117 118 128 134 134 135 135
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69	117 117 118 128 134 134 135 135 135
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58	117 117 118 128 134 134 135 135 135 136
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young slow pulsar: PSR J1846-0258 in Kes 75	117 117 118 128 134 134 135 135 135 136 136 137
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young, slow pulsar: PSR J1846-0258 in Kes 75 Gamma-rays but no radio: J0633+1746 (Geminga)	117 117 118 128 134 134 135 135 135 136 136 136 137
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young, slow pulsar: PSR J1846-0258 in Kes 75 Gamma-rays but no radio: J0633+1746 (Geminga) The youngest pulsars	117 117 118 128 134 134 135 135 135 136 136 136 137 137
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young, slow pulsar: PSR J1846-0258 in Kes 75 Gamma-rays but no radio: J0633+1746 (Geminga) The youngest pulsars Gamma-ray spectra	117 117 118 128 134 134 135 135 135 136 136 136 137 137 138 139
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young, slow pulsar: PSR J1846-0258 in Kes 75 Gamma-rays but no radio: J0633+1746 (Geminga) The youngest pulsars Gamma-ray spectra Emitted power	117 117 118 128 134 134 135 135 136 136 136 137 137 138 139 142
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young, slow pulsar: PSR J1846-0258 in Kes 75 Gamma-rays but no radio: J0633+1746 (Geminga) The youngest pulsars Gamma-ray spectra Emitted power Braking indices	117 117 118 128 134 134 135 135 136 136 136 137 137 138 139 142 144
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young, slow pulsar: PSR J1846-0258 in Kes 75 Gamma-rays but no radio: J0633+1746 (Geminga) The youngest pulsars Gamma-ray spectra Emitted power Braking indices Pulsar wind nebulae	117 117 118 128 134 134 135 135 136 136 136 137 137 138 139 142 144 145
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young, slow pulsar: PSR J1846-0258 in Kes 75 Gamma-rays but no radio: J0633+1746 (Geminga) The youngest pulsars Gamma-ray spectra Emitted power Braking indices Pulsar wind nebulae	$ \begin{array}{r} 117 \\ 117 \\ 118 \\ 128 \\ 134 \\ 134 \\ 135 \\ 135 \\ 135 \\ 136 \\ 136 \\ 136 \\ 136 \\ 137 \\ 138 \\ 139 \\ 142 \\ 144 \\ 145 \\ \end{array} $
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 11	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young, slow pulsar: PSR J1846-0258 in Kes 75 Gamma-rays but no radio: J0633+1746 (Geminga) The youngest pulsars Gamma-ray spectra Emitted power Braking indices Pulsar wind nebulae Millisecond and binary pulsars	117 117 118 128 134 134 135 135 136 136 136 137 137 138 139 142 144 145 151
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 11	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young, slow pulsar: PSR J1846-0258 in Kes 75 Gamma-rays but no radio: J0633+1746 (Geminga) The youngest pulsars Gamma-ray spectra Emitted power Braking indices Pulsar wind nebulae Millisecond and binary pulsars A distinct population	117 117 118 128 134 134 135 135 136 136 136 137 137 138 139 142 144 145 151
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 11 11.1 11.2	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young, slow pulsar: PSR J1846-0258 in Kes 75 Gamma-rays but no radio: J0633+1746 (Geminga) The youngest pulsars Gamma-ray spectra Emitted power Braking indices Pulsar wind nebulae Millisecond and binary pulsars A distinct population Binary stars	117 117 118 128 134 134 135 135 136 136 136 137 137 138 139 142 144 145 151 151
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 11 11.1 11.2 11.3	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young, slow pulsar: PSR J1846-0258 in Kes 75 Gamma-rays but no radio: J0633+1746 (Geminga) The youngest pulsars Gamma-ray spectra Emitted power Braking indices Pulsar wind nebulae Millisecond and binary pulsars A distinct population Binary stars The discoveries	$ \begin{array}{c} 117\\ 117\\ 118\\ 128\\ 134\\ 134\\ 135\\ 135\\ 136\\ 136\\ 136\\ 136\\ 137\\ 137\\ 138\\ 139\\ 142\\ 144\\ 145\\ 151\\ 151\\ 151\\ 151\\ 153\\ \end{array} $
9.1 9.2 9.3 9.4 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 11 11.1 11.2 11.3 11.4	Young pulsars Energy output The Crab Pulsar, PSR B0531+21 The Vela Pulsar, PSR B0833-45 Other young pulsars Characteristic ages Age from proper motion Uncertain ages: 3C58 and PSR J0205+6449 A Crab Pulsar look-alike: PSR B0540-69 An old SNR with a young pulsar: PSR B1509-58 A young, slow pulsar: PSR J1846-0258 in Kes 75 Gamma-rays but no radio: J0633+1746 (Geminga) The youngest pulsars Gamma-ray spectra Emitted power Braking indices Pulsar wind nebulae Millisecond and binary pulsars A distinct population Binary stars The discoveries The binaries and their orbits	$ \begin{array}{c} 117\\ 117\\ 118\\ 128\\ 134\\ 134\\ 135\\ 135\\ 136\\ 136\\ 136\\ 136\\ 137\\ 137\\ 138\\ 139\\ 142\\ 144\\ 145\\ 151\\ 151\\ 151\\ 151\\ 153\\ 155\\ \end{array} $

11.6	Orbits and spin-up histories	160
11.7	Pulsars with massive main-sequence companions	163
11.8	The eclipsing millisecond binaries	164
11.9	The globular cluster pulsars	166
11.10	The magnetic fields of the millisecond pulsars	168
11.11	The velocities of millisecond pulsars	169
12	Accretion-powered X-ray pulsars	170
12.1	Millisecond X-ray and radio pulsars	172
12.2	Binary X-ray light curves	172
12.3	Orbits and companion masses	173
12.4	The high-mass X-ray binaries (HMXBs)	174
12.5	The low-mass X-ray binaries (LMXBs)	176
12.6	Peculiar systems, black holes and transients	178
12.7	Spin-up, accretion and inertia	178
12.8	Magnetic field strength	179
12.9	The X-ray bursters	180
12.10	The Rapid Burster	182
12.11	Quasi-periodic (QPO) and kilohertz oscillations	183
13	Magnetars	184
13.1	The Soft Gamma-ray Repeaters (SGRs)	184
13.2	The Anomalous X-ray Pulsars (AXPs)	186
13.3	AXPs, SGRs, RRATs and XDINSs as magnetars	187
13.4	Demography and origin of the magnetars	189
13.5	Growth of the dipole field	191
14	Supernovae and their remnants	192
14.1	The nature of supernovae	192
14.2	Stellar evolution and stellar collapse	194
14.3	Accretion-induced supernova collapse	195
14.4	Luminosity decay	196
14.5	Frequency of occurrence of supernovae	196
14.6	Supernova remnants	198
14.7	The Crab Nebula	200
14.8	The continuum radiation from the Crab Nebula	202
14.9	The energy supply	203
14.10	Pulsar wind nebulae	205
14.11	Associations between pulsars and supernovae	205
15	Integrated pulse profiles	207
15.1	Integrated pulse widths	207
15.2	The beam geometry	209
15.3	Observed profile widths	211
15.4	Radio frequency dependence	211

	Contents	ix
15.5	Beam components, core and cone	213
15.6	The overall beam shape	216
15.7	The millisecond pulsars	216
15.8	Notches	217
15.9	Profile changing and mode changing	218
15.10	Polarisation geometry	219
15.11	Integrated polarisation profiles	222
15.12	Orthogonal polarisation modes	225
15.13	Position angle swing rates	226
15.14	Millisecond pulsars	226
16	Individual pulses	230
16.1	Single pulse intensities and pulse nulling	231
16.2	Rotating Radio Transient sources (RRATs)	234
16.3	Sub-pulses	234
16.4	Drifting and modulation	234
16.5	Drift rates	238
16.6	Drifting after nulling	240
16.7	The polarisation of sub-pulses	240
16.8	Microstructure and giant pulses	243
17	Location of emitting regions	245
17.1	Outer gap emission	245
17.2	Sources of radio emission	246
17.3	Polar cap emission	247
17.4	Core and cone components	251
17.5	Millisecond pulsars (MSPs)	252
17.6	Primary emission beamwidth	252
17.7	Aberration, retardation and magnetic field sweep-back	253
17.8	Radio from the outer magnetosphere gap	254
18	Radiation processes	258
18.1	Cyclotron radiation	258
18.2	Synchrotron radiation	260
18.3	Curvature radiation	262
18.4	The effect of a particle energy spectrum	263
18.5	Self-absorption	264
18.6	Inverse Compton radiation	264
18.7	Maser amplification	264
18.8	Coherence in the radio emission	265
18.9	Relativistic beaming	265
19	The emission mechanisms	267
19.1	The two locations	267
19.2	The outer gap: curvature and synchrotron radiation	269

Х	Contents

19.3	Radio spectra	272
19.4	Power and energy density in the polar cap radio emitter	273
19.5	Polar cap radio emission	274
19.6	Radio propagation in the magnetosphere	275
19.7	Polarisation	275
19.8	The radio emission mechanism	277
20	Interstellar scintillation and scattering	279
20.1	A thin-screen model	279
20.2	Diffraction theory of scintillation	281
20.3	Thick (extended) scattering screen	282
20.4	The Fresnel distance	283
20.5	Strong and weak scintillation	283
20.6	Distribution in size of the irregularities	284
20.7	Dynamic scintillation spectra	284
20.8	The velocity of the scintillation pattern	289
20.9	Pulse broadening	291
20.10	Multiple scattering	293
20.11	Observations of pulse broadening	294
20.12	Apparent source diameters	296
20.13	Long-term intensity variations	298
21	The interstellar magnetic field	300
21.1	Optical and radio observations	300
21.2	Faraday rotation in pulsars	302
21.3	The configuration of the local field	303
21.4	The effect of H II regions	306
22	Achievements and prospects	307
22.1	The observations and the archive	307
22.2	The population: birth, death and rejuvenation	309
22.3	The physics of pulsars	310
22.4	New telescopes and new horizons	311
	References	312
	Index	341

Illustrations

1.1	Discovery observations of the first pulsar. (a) The first recording of PSR B1919+21; the signal resembled the radio interference also seen	
12	on this chart. (b) Fast chart recording showing individual pulses as downward deflections of the trace (Hewish <i>et al.</i> 1968). The Crab Pulsar This pair of photographs was taken by a stro-	page 4
1.2	boscopic television technique, showing the pulsar on (left) and off (right). (Lick Observatory, reproduced by kind permission of the Royal	
	Astronomical Society.)	10
1.3	The time-line of the number of known pulsars: (a) all pulsars;	12
	(b) millisecond pulsars.	13
2.1	The density distribution with radius of a neutron star, calculated from	
	a range of equations of state (from Wiringa, Fiks & Fabrocine 1988).	18
2.2	The total mass as a function of overall radius, calculated from a range	
	of equations of state (from Wiringa, Fiks & Fabrocine 1988; see also	
	Lattimer & Prakash 2001).	19
2.3	Typical cross-section of a neutron star.	22
2.4	The essential features of a pulsar magnetosphere. Within a radial dis-	
	tance $r_c = c/\Omega$ of the rotation axis there is a charge-separated,	
	co-rotating magnetosphere. The magnetic field lines which touch the	
	velocity-of-light cylinder at radius r define the edge of the polar caps. Badia amitting radius in the polar caps are shown arous batched	
	Since the particles are constrained to move only along the field lines	
	there is a closed region within the field lines which touch the velocity-	
	of-light cylinder and only particles on the open field lines outside	
	this region can flow out from the magnetosphere. The radio-emitting	
	regions are confined to these open polar cap regions.	25
3.1	The Wolter X-ray telescope. The grazing incidence reflecting elements	20
2.2	are sections of paraboloids followed by sections of hyperboloids.	29
5.2	a stack of units spaced several centimetres apart, each comprising a	
	thin tungsten converter foil in which electron_photon pairs are gener	
	ated above a double layer of silicon strip detectors. The total energy	
	in each photon event is obtained in a scintillator calorimeter below the	
	in each photon event is solution in a solution dubinneter below the	

xi

xii *List of illustrations*

	tracker. The anti-coincidence shield allows the rejection of cosmic ray particles.	31
3.3	The Fourier relationship between the time and frequency domains for a pulse train with period P and pulse width W .	34
3.4	The first half of the power spectrum is expanded by a factor of two and added to the unexpanded spectrum so that each fundamental is added to its second harmonic.	34
3.5	Frequency dispersion in pulse arrival time for PSR B1641–45. The data were folded at the pulsar period in 96 adjacent frequency channels, each 5 MHz wide, centred on 1540 MHz.	36
3.6	De-dispersion, achieved by sequential sampling and delay of adjacent frequency channels.	38
3.7	(a) The appearance of dispersed pulses in the radio frequency/time domain. (b) The two-dimensional FFT of the frequency/time domain in (a).	39
3.8	Discovery observations of two millisecond binary pulsars observed for 2100 s. Individual integrations over 16 s at a fixed periodicity show a barely recognisable signal, but successive observations show the slowly varying period due to changing Doppler shift in a binary orbit (d'Amiao at al. 2001b).	40
3.9	Discovery observations of the binary pulsar 47 Tuc S, which has an orbital period of 1.202 days. Individual widely spaced integrations allowed both P and \dot{P} to be measured, and the locus of the measured points gives the essential characteristics of the binary orbit.	40
3.10	The evolution of the range of period and dispersion measure covered by four representative pulsar surveys. The surveys had little sensitivity below the indicated lines. The horizontal lines are determined by the sampling rate, the next sloping segment by dispersion broadening in the filterbank channel bandwidth and the steep lines by the broadening due to multipath scattering in the interstellar medium (Equation 20.23).	46
4.1	Parallax. The Earth's orbital motion carries the observer across a notional wavefront whose radius of curvature is the distance d of the pulsar. The curvature is measured as an annual periodic change in apparent direction, or as a six-monthly periodicity in pulse arrival time due to the changing path length from the pulsar to the Earth.	50
4.2	Parallactic motion of two pulsars (Brisken <i>et al.</i> 2002). PSR B1929+10 shows the classical parallactic ellipse; PSR B0950+08 has in addition a large proper motion	51
4.3	Hydrogen-line spectra of four pulsars. In each panel, the lower trace shows the absorption spectrum, and the upper trace shows the hydrogen emission spectrum from the same direction. Spectral features that are seen in both absorption and emission correspond to hydrogen gas in	51
	front of the pulsar (Caswell et al. 1975; Graham et al. 1974).	54

	List of illustrations	xiii
4.4	The interpretation of H I absorption spectra. The lower trace shows the relation between velocity and distance for PSR J1401–6357; in this example the line of sight crosses the Galactic plane within the solar distance (Johnston <i>et al.</i> 1996a).	55
4.5	The disc and spiral arm components of the electron density distribution n_e , in the model by Cordes & Lazio (Cordes 2004). Top: n_e plotted against Galactocentric radius in the direction from the centre through the Sun. Bottom: n_e plotted against $ z $, the distance from the Galactic plane. For the thin disk component, the cut is for Galactocentric radius 3.5 kpc; for the thick disk it is at the solar Galactocentric distance, and for the spiral arm component it is at 10.6 kpc.	50
4.6	Comparison of distances obtained from parallax measurements (D_{π}) and from the <i>DM</i> model (D_{DM}) (Chatterjee <i>et al.</i> 2009). The ratio is shown as a function of Galactic latitude $ b $.	60
5.1	The Römer delay. (a) The annual variation in pulse arrival time due to the Earth's orbital motion round the Sun. (b) The amplitude of the variation is approximately 500 cos β s, where β is the ecliptic latitude of the pulsar. The phase of the sinusoid is used to determine longitude	
	(see Equation 5.1).	62
5.2	The form of residuals in pulse arrival times due to errors in the timing model (a) in period P , (b) in period derivative \dot{P} , (c) in position, (d) in	
53	proper motion. Proper motion of PSR B1133 \pm 16. The growing sinusoidal pattern of	68
5.5	errors in pulse arrival time is due to an angular motion of about 1/3 arcsecond per year (Helfand, Taylor & Manchester 1977).	69
5.4	Measured square root Allan variances (SRAV) $\sigma_y(\tau)$ for millisecond pulsars, $\sigma_z(\tau)$ for caesium, hydrogen and optical (Hg, Al) atomic	
	clocks, against integration time τ (from Hartnett & Luiten 2010).	74
6.1	Radial velocity curve for the 'relativistic' Hulse–Taylor binary PSR B1913+16. The velocity is found from the modulation of the pulse period due to the Doppler effect. The curve is markedly non-sinusoidal, due to the large eccentricity of the orbit	77
6.2	Geometrical parameters for an elliptical orbit seen face-on. The plane of the orbit intersects the plane of the sky along the line of nodes (the broken line) at the inclination angle i . The orbit is further defined by the semi-major axis a , the longitude of periastron ω and the	11
6.2	eccentricity <i>e</i> .	77
0.3	The Shapiro delay Δ_s in the binary system $J0/3/-3039$ (Kramer <i>et al.</i> 2006b). The orbit of this system is nearly edge-on, so that there is a large peak delay.	80
6.4	The effect of gravitational radiation on the orbit of the binary pulsar	
	PSR B1913+16. The deviation from constant orbital period is apparent as a cumulative change of orbital phase (Weisberg & Taylor 1984).	82

xiv List of illustrations

6.56.6	Mass-mass plot for the Double Pulsar J0737-3039A/B, showing the observational constraints on the masses m_A and m_B . The Keplerian mass functions allow only the unshaded region. Other constraints are shown as pairs of lines separated by the observational uncertainties: R is the mass ratio, $\dot{\omega}$ is the advance of periastron, γ is the Einstein redshift/time dilation parameter, r and s are Shapiro delay parameters, \dot{P}_b is orbital decay (gravitational radiation). The expanded view (inset) shows that all constraints are in agreement. Modulation of the pulse periodicity in the planetary system PSR B1257+12 (Wolszczan & Frail 1992).	85
71	The eliteb in the Vale Pulson October 1081 (McCulloch et al. 1082)	07
/.1	(a) The mean period of the pulsar from daily observations. (b) Timing residuals (in units of one period) using a period obtained from the three	
	days immediately preceding the glitch.	89
7.2	Glitches in twelve normal pulsars (from Espinoza <i>et al.</i> 2011b). The	
	plots show timing residuals after fitting for a uniform rotational slow- down before each glitch. A glitch is seen as a sudden downwards trend	
	in the residuals, corresponding to an increase in rotational frequency.	90
7.3	Histogram of occurrence of glitch sizes (left); frequency of occurrence	
7 4	of glitches as a function of size (right) (Espinoza <i>et al.</i> 2011b).	90
1.4	(b) On an expanded scale, after subtracting the initial slowdown rate	
	the glitches show as steps in the slope, corresponding to increases in	
	the slowdown rate. The transient steps in frequency at the glitches are	
7 6	difficult to discern on this scale.	91
1.5	Glitches in two young pulsars PSRs $B1/3/-30$ (left) and $B1800-21$ (right). Both plots show (in the top panel) the long-term decreasing	
	rotational frequency. The glitches are revealed in the second panel after	
	subtracting a uniform slope. The frequency derivative is shown in the	
	bottom diagram.	92
7.6	The exponential recovery from a glitch in the Vela Pulsar (McCulloch at al. 1983)	03
7.7	The slowdown rate of the Vela Pulsar over 25 years.	93 94
7.8	Transients at the Crab glitches, after subtracting the steps in slowdown	
	rate seen in Figure 6.2 (Lyne, Smith & Pritchard 1992).	95
7.9	A series of glitches in PSR B1758–23 (Shemar & Lyne 1996).	100
7.10	Timing noise from observations of eight pulsars at Jodrell Bank.	101
/.11	& Kramer 2010).	102
7.12	Quasi-periodic step changes in slowdown rate in 17 pulsars (Lyne et al.	
	2010).	103
8.1	Distribution on the sky of the known normal pulsars, in Galactic coor-	
	dinates l, b , showing the concentration along the plane of the Milky	
	Way.	106

List of illustrations

Y	V
Δ	. v

107

108

109

111

112

114

116

119

120

122

8.2	The positions of pulsars at low Galactic latitude ($ b < 20^\circ$), projected
	onto the plane of the Galaxy. The Galactic centre is at the centre of the
	diagram. The observed pulsars are clustered round the Sun, assumed to
	be at a distance of 8.5 kpc from the centre, i.e. at $(0, 8.5)$ in this figure.

- 8.3 The distribution of observed pulsars in distance |z| from the Galactic plane.
- 8.4 The derived distributions $\rho_R(R)$, $\rho_z(z)$, $\rho_L(L)$ and $\rho_P(P)$ in radial distance R from the Galactic centre, distance |z| from the Galactic plane, luminosity L and period P in units of number density kpc⁻³. The distributions of the total numbers $N_R(R)$, $N_z(z)$, $N_L(L)$ and $N_P(P)$ actually observed are shown above (Lorimer *et al.* 2006b). The solid curves are smooth analytic functions fitted to the derived distributions. The dotted curves show: (a) the assumed radial density distribution of electrons from NE2001; (b) an exponential z distribution with scale height 180 pc; (c) a log-normal fit to the optimal population model derived by Faucher-Giguère & Kaspi (2006); (d) a parent period distribution used by Kolonko, Gil & Maciesiak (2004) in a study of pulse-width statistics.
- 8.5 The measured velocities of pulsars, showing the general movement away from the Galactic plane. The symbols show the present position (in *z*-distance and Galactic longitude), and the tails show tracks of their motion in the last million years (Fomalont *et al.* 1997). With two notable exceptions, those outside the progenitor layer of Population I stars are moving away from the plane with high velocity.
- 8.6 The characteristic ages of pulsars compared with their 'kinetic' ages derived from their velocities and distances from the Galactic plane (Harrison, Lyne & Anderson 1993).
- 8.7 The $P \dot{P}$ diagram for normal pulsars (omitting millisecond and binary pulsars). Lines of magnetic dipole field are calculated as $B_0 = 3.3 \times 10^{19} (P \dot{P})^{\frac{1}{2}}$ gauss. Pulsars represented by stars have robust associations with supernova remnants.
- 8.8 The distribution of the millisecond and binary pulsars in Galactic coordinates *l*, *b*, excluding those in globular clusters.
- 9.1 Pulse profile for the Crab Pulsar from radio wavelengths to gamma-rays (Abdo *et al.* 2010c).
- 9.2 Pulse profile of the Crab Pulsar over the radio frequency range 322 MHz to 8.4 GHz, with profiles at infrared (2.2 μm) and optical (0.4 to 0.7 μm) wavelengths (Moffett & Hankins 1996).
- 9.3 The Crab Pulsar light curve (showing two periods) in a wide optical band centred on 700 μ m (Slowikowska *et al.* 2009), shown on linear and logarithmic scales.
- 9.4 Flux density S_{ν} of the pulsed radiation from the Crab Pulsar on a logarithmic plot covering more than 17 decades (56 octaves) of the electromagnetic spectrum. The spectrum below 100 MHz (dashed line)

xvi List of illustrations

	is the apparently unpulsed source, presumed to be pulses which are lost	
	to 20 GeV with a steepening spectral index	123
9.5	The high-energy spectrum of the Crab Pulsar plotted as E^2F . The	120
	major part of the power is in high-energy X-rays and gamma-rays.	124
9.6	The polarisation of optical radiation from the Crab Pulsar. The Stokes	
	parameters Q, U are plotted at uniform intervals of pulsar rotation. The	
	main pulse and interpulse follow the same pattern of polarisation, but	
	with different intensities (Graham-Smith <i>et al.</i> 1996).	124
9.7	Giant pulse (GP) energy distribution at 600 MHz for the Crab Pulsar (Danay et al. 2000). Note the number of pulses per minute above pulses	
	(Popov <i>et al.</i> 2009). <i>N</i> is the number of pulses per minute above pulse energy F_{2} kJy us. The distributions for GPs occurring at the main (MP)	
	and interpulse (IP) are shown separately	126
98	A giant pulse occurring at a main pulse. The upper panel shows the	120
2.0	total intensity with a time resolution of 6.4 ns. The dynamic spectra in	
	the lower panels were recorded with a time resolution of 51 ns and a	
	frequency resolution of 19.5 MHz (Hankins & Eilek 2007).	127
9.9	A giant pulse occurring at an interpulse. The upper panel shows the	
	total intensity with a time resolution of 51 ns. The dynamic spectra in	
	the lower panels were recorded with a time resolution of 51 ns and a	
	frequency resolution of 19.5 MHz (Hankins & Eilek 2007).	127
9.10	Slow refractive scintillation of the Crab Pulsar (Rickett & Lyne 1990).	128
9.11	Pulse profiles of the Vela Pulsar in the radio, optical, X-ray and gamma-	120
0.12	The high energy spectrum of the Vala Pulsar plotted as $E^2 E$ (Abdo	150
9.12	at al 2010e). The major part of the power is in high-energy gamma-	
	ravs.	131
9.13	The spectrum of the Vela Pulsar from radio to GeV (Shibanov <i>et al.</i>	
	2003).	131
9.14	The integrated profile of Vela pulses at 1413 MHz. The smooth thick	
	line is the normal profile, with polarisation position angle above. The	
	sum of 21 selected pulses shows an extra component 4 ms after the	
	main peak (thick line is total intensity, the upper dashed line is lin-	
	ear polarisation and the lower dashed line is circular polarisation)	122
	(Jonnston <i>et al.</i> 2001b).	132
10.1	PSR B0540-69 in its nebula, observed at 5 GHz with the Australia	
	Telescope (Manchester, Staveley-Smith & Kesteven 1993b).	137
10.2	X-ray map of MSH 15–52. The pulsar PSR B1509–58 is at the centre	
	of the lower peak (Seward et al. 1984b).	138
10.3	Spectra of seven pulsars plotted as $\log \nu S_{\nu}$ against $\log \nu$ (log energy in	
	keV) (Thompson <i>et al.</i> 1999).	141
10.4	The observed distribution of (a) radio luminosities and (b) radio effi-	
	ciencies for millisecond, normal and Vela-like pulsars (Kramer <i>et al.</i> 2003)	142
	2003).	143

	List of illustrations	xvii
10.5 10.6	Observed pulsar luminosities plotted against the estimated Goldreich– Julian current of high-energy particles (Thompson <i>et al.</i> 1999). The wind nebulae formed by the Vela (left) and Crab (right) Pulsars, observed by the Chandra X-ray Observatory. The angular scale is the same for both; Vela is at a distance of 250 pc and the Crab is at 2 kpc, so that the Vela PWN is smaller by a factor of 16 than the Crab. Chandra images courtesy of NASA (Helfand, Gotthelf & Halpern	144
10.7	2001). The Guitar Nebula created by PSR B2224+65. The bow shock (upper	147
	arcsec long (Chatterjee & Cordes 2002).	147
10.8	The bow shock created by PSR J0437–4715, a millisecond pulsar with transverse velocity of around 100 km s ^{-1} . The binary companion star can be seen just inside the shell and the arrow represents the direction of the motion of the system. Hubble Space Telescope photograph:	
	courtesy of A. Fruchter.	148
10.9	Radio image at 1.4 GHz of the nebula G5.27–1.2, showing the comet- like protrusion which contains PSR B1757–24 (Frail & Kulkarni	
	1991).	149
11.1	The millisecond and binary pulsars are mostly located in the lower left of the $P-\dot{P}$ diagram. Young pulsars still associated with supernova remnants are shown as stars. The binaries are shown as circles. Lines	170
11.2	of constant characteristic age and dipole magnetic field are shown.	152 154
11.2	The eccentricities of double neutron star orbits plotted as a function of	154
	pulsar spin period (Faulkner <i>et al.</i> 2005).	157
11.4	orbital velocity curve for PSR B0655+64. The orbit is very nearly circular, so that the observed pulsar period, reduced to the barycentre of the Solar System, varies sinusoidally. The binary period is 24.7 hours	
	(Damashek et al. 1982).	157
11.5	The masses of the components of the binary PSR B1953+29. The curves show the mass m_c of the companion as a function of $\cos i$ for pulsar masses m_c (from bottom to top) of 0.5, 1.4 and 2.5 M_{\odot}	
	(Boriakoff, Buccheri & Fauci 1983).	158
11.6	The observed masses of neutron stars in binary systems, showing accuracies. (a) Double neutron star binaries. (b) Neutron star/white dwarf	150
117	Dinaries. The orbits of PSR B1259–63 (large ellipse) and its massive Be star	159
/	companion SS 2883 (small ellipse). The eclipse obscures the pulsar for 40 days. Depolarisation and other effects of the plasma outflow affect the radio emission over 150 days of the 3 ⁻¹ year orbit (Johnston et al.	
	the ratio emission over 150 days of the $S_{\overline{2}}$ year orbit (Johnston <i>et al.</i> 1996b).	164
11.8	Eclipse of the binary PSR B1957+20. An eclipse occurs between orbital phases 0.21–0.29 (Fruchter <i>et al.</i> 1988a,b).	165

xviii List of illustrations

11.9	Additional electron column density towards PSR B1957+20 near radio eclipse (Ryba & Taylor 1991).	165
11.10	The location of PSR B1821–24 in the globular cluster M28. The radius	100
	of the circle is 20 arcseconds. The pulsar is shown by a cross in the expanded inset (Lyne <i>et al.</i> 1987)	166
11.11	The position of the millisecond and binary pulsars in the $P-B$ diagram.	100
	The binaries are shown as circles, representing their orbits. Young	
	pulsars still associated with supernova remnants are shown as stars.	168
12.1	X-ray luminosity L_X vs. spin-down luminosity L_{sd} for 39 rotation-	
	powered pulsars (Possenti et al. 2002). The five groups of objects	
	are: millisecond pulsars (filled squares), Geminga-like (filled trian-	
	gies), vela-like (empty triangles), Crab-like (iiiied stars), older normal pulsars (empty squares). The line is an empirical fit	171
12.2	X-ray light curves at various wavelengths for Cen X-3, 4U 0900–40.	1/1
	and Her X-1 (from White, Swank & Holt 1983).	173
12.3	The X-ray source Her X-1. (a) The cycle of X-ray intensity (the	
	X-ray 'light-curve'), showing the periodic occultation; (b) sinusoidal	
	variation of pulse arrival time (Giacconi 1974).	174
12.4	The spin history of four X-ray pulsars (White, Nagase & Parmar 1995).	176
12.5	The geometry of binary X-ray systems, showing the relative diame-	
	of the companions are indicated for the high-mass systems. (Bradt &	
	McClintock 1983).	177
12.6	Sky map of binary X-ray pulsars (filled circles) and burst sources (open	
	circles) (after Joss & Rappaport 1984).	181
12.7	The surface structure of an accreting neutron star (after Lewin & Joss	101
12.0	1981). The Decid Decid V and a few	181
12.8	The Rapid Burster X-ray source (from Joss & Rappaport 1984).	182
13.1	The discovery of periodicity in an SGR giant flare. An 8 s period is seen	
	in the decay of the flare 1979 March 5 from SGR 0526–66, recorded	
	by the venera 12 venus probe in the $130-205$ keV energy range (Barat et al. 1970)	195
13.2	The giant flare from SGR 1900+14, 1998 August 27, recorded in the	105
10.2	energy range $20-150$ keV by the Ulysses spacecraft, showing the 5-	
	second modulation due to the neutron star rotation (after Hurley <i>et al.</i>	
	1999).	185
13.3	The SGRs and AXPs in the P/\dot{P} diagram, with normal pulsars. The	
	arrows indicate the movement of some objects across the diagram, as	100
	found from measured braking indices (courtesy C. Espinoza).	188
14.1	Bolometric light curve of SN 1987A (South African Astronomical	
14.0	Observatory).	193
14.2	A radio image of the supernova remnant Cas A at 5 GHz (Bell, Gull & Konderdine 1075)	109
	Kuluulullu 17/3).	170

	List of illustrations	xix
14.3	The Cygnus Loop, a supernova remnant, mapped in infrared at 60 μ m. The contours are overlaid in the Palomar Sky Survey E plate (Braun & Strom 1986)	199
14.4	The Crab Nebula. NASA/ESA Hubble Space Telescope (Alison Lol/Jeff Hester, Arizona State University).	201
14.5	The continuum spectrum of the Crab Nebula: (a) from radio to X-rays (from Woltjer 1987), (b) gamma-ray, from 1 MeV to 100 TeV (from Abdo <i>et al.</i> 2010c).	204
15.1	Integrated pulse profiles at 1.4 GHz for PSRs B0329+54 and B0355+54, showing the separate components fitted by gaussian curves (Kramer 1994).	208
15.2	Interpulse in PSR B1702–19 at 1.4 GHz, seen approximately 180° after the main pulse.	209
15.3	The relation of the profile width to the beam geometry. The radiation beam is shown as a symmetrical cone, angular width 2ρ , at inclination angle α to the rotation axis, cut by a line of sight with impact	
	parameter β .	210
15.4	Observed profile widths W_{10} for pulsars with periods from 1.5 ms to 3 s, at 1.4 GHz (Kramer <i>et al.</i> 1998).	210
15.5	Deduced beam radii ρ_{90} as a function of period <i>P</i> (Lyne & Manchester 1988).	212
15.6	Integrated profiles of PSR B0950+08, PSR B1133+16 and PSR B2045-16 at 610 MHz (full line), 240 MHz (dashed line) and 150 MHz (dotted line)	212
15.7	Profile widths W_{50} measured at a 50% intensity level versus frequency for eight pulsars detected at frequencies up to 32 GHz (Xilouris <i>et al.</i>	212
15.8	Component separations versus frequency for six pulsars, showing best	213
15.9	The relation of core component width $w_{50,core}$ to conal component	214
15.10	width $w_{50,conal}$. A model of core and conal beams, with various types of symmetrical profiles generated by lines of sight crossing at different impact	215
15 11	parameters.	216
13.11	0.4 to 5 GHz (Kramer <i>et al.</i> 1999).	217
15.12	Profiles of the millisecond pulsar PSR J1012+5307 at frequencies 1.4 and 0.82 GHz (Dyks, Rudak & Demorest 2010). Note the bifurcated	
	component at $\phi = 71^{\circ}$ and a less conspicuous notch at $\phi = 245^{\circ}$.	218
15.13	Changes in the integrated profiles due to mode changes in the pulsars PSR B1237+25 and PSR B0329+54 (Bartel <i>et al.</i> 1982).	219
15.14	The integrated pulse profile of the Vela Pulsar, PSR B0833–45, show- ing the smooth sweep of polarisation position angle. (a) Solid line, total intensity; broken line, linearly polarised intensity; circles, circularly	

xx List of illustrations

polarised intensity. (b) Position angle: circles, measured values; dashed line, model for $\alpha = 60^{\circ}$ and $\beta = 6.2^{\circ}$ (Krishnamohan & Downs 1983). 220 15.15 The integrated pulse profile of PSR B0525+21, showing two distinct components and a single smooth sweep of linear polarisation position angle (Weisberg et al. 1999). 221 The geometrical model for polarisation position angle, showing the 15.16 polarisation position angle ψ of linearly polarised radiation from a single point P which moves across the arc ST as the pulsar rotates. The zero of longitude ϕ is defined as the meridian through the magnetic axis, and position angles ψ are measured with respect to the projected direction of the rotation axis ψ_0 . The conical emission beam has an opening semi-angle ρ . The swing of polarisation position angle depends on the inclination angle α and the impact parameter $\beta = \zeta - \alpha$, which is the closest approach between the observer direction and the 222 magnetic axis. 15.17 Examples of integrated profiles, showing the total intensity, the linear and circularly polarised components and the position angle of the linear 223 component (Wu et al. 1993). 15.18 The fractional linear polarisation as a function of frequency for eight 224 pulsars (Xilouris et al. 1996). 15.19 Integrated pulse profiles for PSR B0144+59 from 408 MHz to 4850 MHz. The increasing circular polarisation is shown in the lightly shaded areas (von Hoensbroech & Xilouris 1997). 224 15.20 Polarised profiles for (a) PSR B0540+23, high polarisation with a smooth position angle curve; (b) PSR B0355+54, low linear polari-225 sation with an orthogonally polarised section. 15.21 Superposition of individual pulses from PSR B2020+28: polarisation position angle (top); polarisation fraction (centre); integrated profile (bottom) (Backer, Rankin & Campbell 1976). 226 15.22 The fractional linear polarisation as a function of frequency for five millisecond pulsars (Kramer et al. 1999). 227 15.23 High-energy pulse profiles (Abdo et al. 2010d). 228 15.24 Radiated energy versus spin-down energy. Dashed line $= \dot{E}$, i.e. 100 % efficiency of conversion of kinetic energy to gamma-rays. Dot-dashed line: $L = \dot{E}^{\frac{1}{2}}$ (Abdo *et al.* 2010d). 228 16.1 A sequence of pulses from PSR B0950+08 with the integrated profile obtained by adding together the sequence of individual pulses (Hankins & Cordes 1981). 231 16.2 The distribution of pulse power among the individual pulses from three pulsars, recorded at 408 MHz. PSR B0834+06 shows a small peak at zero intensity (the missing pulses). PSR B0950+08 shows a smooth, roughly gaussian distribution, with a peak near zero. PSR B1642-03

	List of illustrations	xxi
	has no missing pulses, and shows a smooth distribution about a single peak (Smith 1973).	232
16.3	Nulling in four pulsars. One-fifth of the pulse period is shown. Short bursts of pulses occur at various intervals (Wang, Manchester & Johnston 2007).	233
16.4	The position of pulsars showing nulling or drifting in a logarithmic plot of period P against its derivative \dot{P} . At least half of the normal pulsars show nulling or drifting; they are found mostly at low values of \dot{P} and towards the cut-off line where radio emission ceases. The pulsars without drifting sub-pulses are the dots; filled stars are pulsars with regular drifting sub-pulses; pulsars with variable or irregular drifting sub-pulses are the open stars; pulsars showing longitude stationary sub- pulse modulation are the open circles. Lines of equal surface magnetic field strength and characteristic ages are plotted, as well as a death line	
	(courtesy P. Weltevrede).	233
16.5	Drifting and nulling. Each horizontal line is centred on the expected arrival time, with time increasing downwards and to the right. The positions of each sub-pulse are shown. PSR B0329+54 shows a random pattern of sub-pulses, while PSR B0031-07 and PSR B0809+74 are typical drifters. PSR B0031-07 shows large nulls, missing about	
	twenty pulses (Taylor & Huguenin 1971).	236
16.6	An idealised pattern of drifting sub-pulses. Successive pulses appear at the fundamental period P_1 . The pattern repeats at interval P_3 . Sub-	226
16.7	Periodic intensity modulation due to frequency drifting. The figure shows a Fourier analysis of the intensities of a long train of pulses from each of four pulsars (Taylor & Huguenin 1971); the horizon- tal axis represents frequency in units of the pulsar rotational fre- quency. The periodicity P_3 is well defined in PSR B0809+74 and PSR B0943+10. Drifting is more complex in PSR B0031-07, and	230
	irregular in PSR B1133+16.	237
16.8	Periodic modulation of intensity in a pulsar with no apparent simple drifting. In a series of pulses from PSR B1237+25 the outer components of the pulse vary with a cycle of 0.36 pulse periods (Taylor &	220
16.0	The phase of the drifting sub-pulses at pulls of various lengths in	238
10.9	PSR B0809+74. The nulls start at around pulse number 60 and the null length is shown at the right of each track, followed in parentheses by the number of tracks in each average. The curves are exponential	
	relaxations (Lyne & Ashworth 1983).	241
16.10	The polarisation of individual sub-pulses from four pulsars, compared with their integrated profiles: (a) PSR B1929+10, (b) PSR B0031-07, (c) PSR B1237+25, (d) PSR B1919+21. The major axes of the polarisation ellipses represent the fractional linear polarisation and the	

xxii List of illustrations

16.11	position angle; left hand is represented by filled ellipses (Manchester, Taylor & Huguenin 1975). A periodic train of micropulses in a single pulse from PSR B0950+08, recorded simultaneously at 430 MHz and 1406 MHz (Boriakoff, Ferguson & Slater 1981).	242 243
17.1	Model pulse profiles for outer gap emission, comparing best fits for Outer Gap (OG) and Two Pole Caustic (TPC) models. The observed light curve is for PSR J0633+1746 (Geminga) (Romani & Watters 2010)	246
17.2	The Goldreich and Julian magnetosphere, showing the velocity-of-light cylinder, radius R_c . The neutral surface at sec $\theta = \sqrt{3}$ divides the positive and negative regions	240
17.3	Height <i>r</i> (km) of emission plotted against period for radio frequencies around 1.4 GHz (Kijak & Gil 1007)	240
17.4	Component widths and separations in the radiated beam of PSR B1133+16. The beam radius is found from the component separation, measured between peaks (full line) and between 50% (3 db) and 10% points. The 50% and 10% widths and separations are corrected for low-frequency interstellar broadening. The corresponding emission heights are in units of the stellar radius, set at 10 km (Mitra & Rankin 2002)	249
175	2002).	250
17.6	The swept-back equatorial magnetic field of a rapidly rotating dipole, with orthogonal magnetic and rotation axes.	252
17.7	The location of the outer magnetospheric gap at the last closed field line of the polar cap. In this diagram the dipole field is at angle α to the	255
17.8	The observed pulse phase for a source distributed along the outer gap depicted in Figure 17.7. The near vertical part shows the origin of the	255
17.9	The observed and model gamma-ray light curves for the Vela Pulsar. The model curve (Dyks & Rudak 2003) assumes radiation is emitted uniformly along the whole of outer gap. The magnetic pole inclination and the viewing angle were chosen to give the best fit.	255 256
18.1	The radiation pattern of cyclotron radiation (a) from an electron in a circular orbit perpendicular to a magnetic field, (b) from an electron streaming along the magnetic field. I , Q , V are Stokes parameters (after Epstein 1973)	250
18.2	Polarisation of radiation from an electron in a circular orbit	259
18.3	Spectrum of synchrotron radiation, on linear and logarithmic scales	261
18.4	Angular distribution of synchrotron radiation, on mean and rogarithmic scales. Angular distribution of synchrotron radiation from a collimated monoenergetic electron beam. Total power (I); circular component (V) ; linear component $L = (Q^2 + U^2)^{\frac{1}{2}}$; the angular scale is in units	201
	of γ^{-1} .	262

	List of illustrations	xxiii
19.1	The slot gap over a magnetic pole.	268
19.2	The cascade process within the polar gap.	268
19.3	Particle acceleration and radiation in the outer gap.	269
19.4	The integrated spectrum of the Crab Pulsar. Data from Kuiper, Hermsen & Stappers (2003); the TeV point is from Aliu <i>et al.</i> (2008). The broken lines, added by Campana <i>et al.</i> (2009), indicate possible separate X-ray and gamma-ray components.	270
19.5	The radiation pattern for outer gap emission, projected onto a cylin- drical surface aligned with the rotation axis. Only one hemisphere is shown; the radiation pattern surrounds the magnetic pole in the oppo- site hemisphere. The main parameter, the inclination α between the rotational and magnetic axes, is 65°, chosen to fit the Vela Pulsar. The broken line shows the cut across the pattern that produces the observed pulse profile in X-rays and gamma-rays, shown in the lower panel. The two smaller patches show the radio radiation from the polar caps (Romani & Yadigaroglu 1995).	272
19.6	Typical radio spectra of pulsars. The spectra are generally curved and often show a low-frequency cut-off.	273
19.7	Propagation of the X and O waves in the magnetosphere. Both waves are emitted along the magnetic field lines; the X wave travels in a straight line, but the O wave follows the curved field line up to a	
	disconnection point which depends on the wave frequency.	276
20.1	A thin-screen model of scintillation.	280
20.2	A wavefront W , scattered at a diffracting screen, emerges as a range of wavefronts W_s with a distribution of wave normals.	282
20.3	The limits of strong scintillation as a function of range of scale size and scattering angle. Weak scintillation occurs below the lines A and B. To the left of the line A (where $\phi = \pi$) the total phase deviation is less than one radian; to the right of the line B (where $z\theta = a$) the propagation path is less than the Fresnel distance. The broken lines (i) and (ii) represent respectively an interstellar medium with power- law index $\alpha > 4$ and one with index $\alpha < 4$. In this example the source	
20.4	is placed at distance $z = 0.1$ kpc and the wavelength $\lambda = 1$ m. Scintillation of PSR B0329+54 observed simultaneously over a range	285
	of radio frequencies.	285
20.5	Autocorrelation of scintillation in time and in frequency: the two- dimensional autocorrelation function of the data in Figure 20.4. A section along the frequency axis at zero time delay is shown	286
20.6	Examples of frequency drifting in the scintillation spectra of PSR B0628–28 and PSR B0823+26 (Gupta, Rickett & Lyne 1994).	287
20.7	The dynamic spectrum, and the secondary spectrum, of scintillation in the pulsar PSR 1929+10 at 430 MHz (D. R. Stinebring, private	- •
	communication).	288

xxiv List of illustrations

20.8	Time lag between scintillations of PSR B0329+54 recorded at Jodrell Bank and at Penticton. The time lag changes sinusoidally as the position angle P changes with the rotation of the Earth (after Galt & Lyne 1972).	290
20.9	Correlation between transverse velocities of pulsars, deduced from their scintillation, and the transverse velocities obtained from their proper motions.	291
20.10	Pulse lengthening by scattering in the interstellar medium. The pulse profile of PSR B1946+35 at 610 MHz and at 240 MHz.	292
20.11	Geometry of multiple scattering: (a) single scattering; (b) multiple scattering. S, source; O, observer.	292
20.12	Pulse broadening functions. 1, Scattering from a thin slab; 2, scattering from a more extended region; 3, scattering from irregularities filling the whole line of sight (after Williamson 1973).	293
20.13	Pulse lengthening in the Vela Pulsar. The traces cover the full period of 89 ms (after Ables, Komesaroff & Hamilton 1970).	293
20.14	The broadened pulse of the Vela Pulsar at 297 MHz compared with theory for scattering in a region localised either around the source or around the observer (after Williamson 1974)	295
20.15	Variable scattering in the Crab Nebula. Recordings at 408 MHz of the interpulse of the Crab Pulsar over a period of 6 weeks (after Lyne & Thorne 1975)	295
20.16	The observed relation between pulse lengthening and dispersion. The straight line has a slope of 4.4, as in Equation 20.23.	295
20.17	The apparent size θ'_s of a scattered source S, depending on the distance d of the screen in relation to the observer's distance D.	297
20.18	Slow variations in dispersion measure (<i>DM</i>) of PSR B1937+21 (Cognard <i>et al.</i> 1995).	299
20.19	Spatial variation of dispersion measure (DM) across the field of the globular cluster M15. (a) Location of pulsars, (b) the gradient of DM along the direction n. The nominal value $DM_0 = 67.25$ cm ⁻³ pc	
	(Anderson <i>et al.</i> 1992).	299
21.1	Hammer–Aitoff projection of the sky in Galactic coordinates, showing the magnetic field components obtained from pulsar Faraday rotation. The field is the weighted mean along the line of sight to all pulsars whose Faraday rotation had been measured in 1999. Plus signs and circles indicate respectively a field directed towards and away from us. The size of the symbols is proportional to the field strength within	

limits of 0.8 and 2.5 μG (Han, Manchester & Qiao 1999).
21.2 Rotation measures *R* projected onto the plane of the Galaxy. The arrows show the magnetic field direction, and the concentric brokenline circles delineate the boundaries of oppositely directed fields. The plus symbols and circle symbols indicate respectively fields directed

303

	List of illustrations	XXV
	towards and away from us. The size of the symbols is proportional to	
	field strength (Han, Manchester & Qiao 1999).	304
21.3	The distribution of RM values for pulsars with Galactic latitude $ b >$	
	8°. Positive values are shown as filled symbols; their areas are propor-	
	tional to R within limits of 5 and 150 rad m ⁻² (Han, Manchester &	
	Qiao 1999).	305
21.4	The distribution of rotation measures R for extragalactic radio sources	
	(Han, Manchester & Qiao 1999).	305

Preface

The stream of research and publications in pulsar astronomy has spread to a flood tide, encompassing a wide range of observations and astrophysics. In 1967, when the first pulsar was discovered, digital techniques, wide bandwidth radio receivers, space-based X-ray and gamma-ray telescopes were all unheard of. Observations are now expanding as fast as technical developments allow, and we are already looking forward to another major step forward, the building of the international Square Kilometre Array. Recent years have seen the outstanding success of X-ray and gamma-ray astronomy, extending to energies in the GeV and TeV regions. We have seen spectacular advances in pulsar timing and astrometry, leading to the most stringent tests of relativity theory, while an astonishing range of astrophysics has become accessible through pulsar astronomy, from the cold condensed matter of the neutron star interior and the extremely high energy of the surrounding magnetosphere, to the detailed structure of the interstellar medium.

Our intention in this new edition is to provide a guide rather than an encyclopaedia. Both of us are physicists and hands-on observers rather than theorists, and we naturally concentrate on techniques and discoveries, and on the interpretation of observations. Nevertheless we present the basic astrophysics, supplemented by references to papers which will lead to more complete explanations and into the more abstruse physics of, for example, condensed matter and relativity. We have in fact quoted many more references than previously throughout this edition, with the intention of spanning each topic from the first discoveries through to the most recent research paper. Many important references have doubtless been omitted, but those which have been included should lead to the whole of the literature; for such pursuits we trust that every reader has access to the excellent archive provided by the SAO/NASA Astrophysics Data System. In the same spirit, we have omitted the catalogue of pulsars, and recommend the use of the ATNF Pulsar Catalogue at http://www.atnf.csiro.au/research/pulsar/psrcat. We also recommend Handbook of Radio Astronomy (D. Lorimer & M. Kramer, Cambridge University Press, 2005) for a more detailed account of observing techniques and methods of data analysis, and Neutron Stars and Pulsars (W. Becker, Springer, 2009) for neutron star physics and high-energy observations.

Finally, and not least, we record our gratitude to the research team at Jodrell Bank Observatory, who have provided many of the discoveries in this book, and who have spent many hours scrutinising the text. The errors remaining are our own responsibility.

xxvii