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1 Introduction

1.1 Introduction to Hilbert spaces

1.1.1 The basic idea

Hilbert spaces are the means by which the “ordinary experience of Euclidean
concepts can be extended meaningfully into the idealized constructions of more
complex abstract mathematics” (Bernkopf, 2008).

If our global plan is to abstract Euclidean concepts to more general math-
ematical constructions, then we better think of what it is in Euclidean space
that is so desirable in the first place. An answer is geometry — in geometry
one talks about points, lines, distances and angles, and these are familiar ob-
jects that our brains are well-adept to recognize and easily manipulate. Through
imagery we use pictures to visualize solutions to problems posed in geometry.
We may still follow Descartes and use algebra to furnish a proof, but typically
through spatial reasoning we either make the breakthrough or see the solution
to a problem as being plausible. Contrary to any preconception you may have,
Hilbert spaces are about making obtuse problems have obvious answers when
viewed using geometrical concepts.

The elements of Euclidean geometry such as points, distance and angle be-
tween points are abstracted in Hilbert spaces so that we can treat sets of objects
such as functions in the same manner as we do points (and vectors) in 3D space.
Hilbert spaces encapsulate the powerful idea that in many regards abstract ob-
jects such as functions can be treated just like vectors.

To others, less fond of mathematics, Hilbert spaces also encapsulate the logical
extension of real and complex analysis to a wider sphere of suffering.

The theory of Hilbert spaces is one that succeeds in drawing together appar-
ently different theories under a common framework via abstraction. The value of
studying Hilbert spaces is not in providing new tools, but in showing how simple
and familiar tools can be employed to tackle broad classes of problems. As a
theory it highlights that there is a huge amount of redundancy in the literature.
As a theory it requires relatively few ideas, but those ideas are deep.

1.1.2 Application domains

The usual application domains for Hilbert spaces are integral and differential
equations, generalized functions and partial differential equations, quantum me-
chanics, orthogonal polynomials and functions, optimization and approximation
theory. In signal processing and engineering: wavelets, optimization problems,
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1.1 Introduction to Hilbert spaces 3

Euclid of Alexandria, (c. 300 BC) — “Euclid” is the anglicized name of Eukleides, who
lived around 300 BC and is the “Father of Geometry,” a title bestowed because of his
very influential “Elements,” which has served as a textbook on geometry and mathe-
matical reasoning for more than two millennia. The style of Elements is in the form of
definitions, axioms, theorems, and proofs. To the mathematically challenged this must
come as the most torturous manuscript imaginable.

Not much is known about Euclid and his life, but along with Archimedes he is re-
garded as one of the greatest ancient mathematicians. His approach to geometry, which
was seen as capturing directly statements about physical reality, has led to the terminol-
ogy “Euclidean space.” Over 23 centuries Euclidean space has been re-visited, recast,
refined and generalized with notable extensions being “analytic geometry” (Cartesian
coordinates) of René Descartes (1596–1650), and an axiomatic system for geometry, the
1899 “Grundlagen der Geometrie,” of David Hilbert. The generalization of Euclidean
space in the field of functional analysis is associated with a different abstraction by
Hilbert and other researchers in the 1900s and called Hilbert space.
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4 Introduction

optimal control, filtering and equalization, signal processing on 2-sphere, Shan-
non information theory, communication theory, linear and nonlinear stability
theory, and many more.

1.1.3 Broadbrush structure

Notion (cocktail party definition). A Hilbert space is a complete inner product
space. This is fine, except we are yet to define precisely what we mean by space,
inner product and the adjective complete. But at a cocktail party where the
objective is to impress strangers, particularly of the opposite sex, then it doesn’t
matter.

Notion (broad definition). The term “vector” is ingrained in early mathematical
education as an ordered finite list of scalars, but in Hilbert space it is a more
general notion. We will alternatively use the term point in lieu of vector when
the situation is not ambiguous. So when working in Hilbert spaces the word
vector might represent a conventional vector, a sequence or a function (and even
more general objects).

There are four key parts to a Hilbert space: vector space, norm, inner product
and completeness. We can hear the minimalists screaming already.1 To have
a degree of comfort with Hilbert space is to have a clear notion of what these
four things really mean and we will shortly move in the direction to address any
deficiency. For the moment we are only interested in knowing what these mean
in a general, possibly vague, way.

Vector space

Vector spaces should be familiar and align with the notions developed when
dealing with the arithmetic of conventional vectors. Given two N -dimensional
complex-valued vectors a = (α1, α2, . . . , αN )

�

and b = (β1, β2, . . . , βN )
�

, where �

denotes transpose, vector spaces encapsulate the banal aspects like

γa + δb = γ(α1, α2, . . . , αN )
�

+ δ(β1, β2, . . . , βN )
�

= (γα1 + δβ1, γα2 + δβ2, . . . , γαN + δβN )
�

, γ, δ * C,
(1.1)

where C denotes the set of complex numbers. (Also, R denotes the set of real
numbers.)

Norm

The norm is a means to measure the size of vectors and define “convergence”
when we have sequences of vectors. The norm generalizes the notion of Euclidean
distance in R

N

�a� =
�

α2

1
+ α2

2
+ · · · + α2

N

�1/2
. (1.2)

1 One of the drivers in mathematics is to provide a minimalist list of notions in preference
to something that might be clearer and less clever. Engineers tend to think in terms of
robustness and redundancy and this is our preferred approach in this book.
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1.1 Introduction to Hilbert spaces 5

When armed with a norm we have a means to determine the distance between
two vectors. The norm is responsible for a substantial part of the action in
Hilbert spaces. It provides a measure of closeness, defines convergence and is
necessary to make sense of “completeness.”

Inner product

Inner product is a means to abstractly define orthogonality of vectors, projections
and angles. We point out now that an inner product will be defined in such a way
that it naturally induces a norm. That is, in the above list we are not implying
that it is necessary to specify a norm in addition to specifying the inner product.2

In Euclidean space R
N , an inner product can be defined as

�a, b� = α1β1 + α2β2 + · · · + αN βN , (1.3)

which induces (1.2) through �a� = �a, a�
1/2

. When armed with an inner product
we can do everything we can with a norm. Finally, we mention that the inner
product is also called a scalar product or the dot product.

Completeness

Completeness is a subtle concept associated with the norm to guarantee the
vector space is big enough by including the natural limits of converging vector
sequences.

Remark 1.1 (Banach space). In the above list were we to discard the inner
product we still end up with something quite powerful and useful, known as
a Banach space, named after Stefan Banach (1892–1945). A Banach space is
a complete normed space. This means a vector space equipped with a norm
and we have completeness. All Hilbert spaces are Banach spaces, but not
all Banach spaces are Hilbert spaces. In a Banach space the norm needs
to satisfy an additional condition known as the parallelogram equality to
be a Hilbert space. That is, there is a condition on the norm that has
a geometric interpretation. Loosely, we would say the norm needs to be a
Euclidean-like norm and emulate Euclidean distance, but generally in a more
abstract setting. When any result in Hilbert space does not strictly require
the existence of an inner product, then that result will naturally belong to
Banach space theory.

Remark 1.2 (Finite-dimensional spaces). There exists a rich set of texts and
works which make the theory of finite-dimensional vector spaces painfully
bland. Hilbert spaces subsume such finite-dimensional vector spaces.

Be wary of salesmen trying to sell you completeness in a finite-dimensional
space — completeness is automatic if the Hilbert space is finite-dimensional.
More generally any finite-dimensional Banach space is automatically com-
plete.

2 So in the Hilbert space context the norm is like a free set of steak knives, it comes at no
cost.
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6 Introduction

This is actually a non-trivial result. In real analysis, the property that a
sequence of real numbers which is Cauchy necessarily converges is the nub
of completeness. In summary, real numbers can be shown to be complete
and finite-dimensional spaces inherit that completeness.

Function spaces

The arena where the Hilbert space concept brings new insights is in the treat-
ment of functions, that is, where our “points” are now whole functions in a func-
tion space. This means we are generally (but not always) considering infinite-
dimensional vector spaces. Hilbert spaces do not need to be infinite-dimensional,
but represent a degree of overkill in abstraction when we want to consider finite-
dimensional vector spaces.

The preferred way to think about functions in Hilbert space is as points or
vectors in space rather than as a mapping. So in functional analysis, when one
says a “point or vector in Hilbert space” one means a “function.” The mental
image is a mathematical point in space (albeit infinite-dimensional space) —
akin to a conventional vector — not a squiggly line. Using the conventional
vector as an analog to guide thinking is very effective. That is, when dealing
with Hilbert space, it is very profitable to repeatedly ask the question: what
does this correspond to in the case of a finite-dimensional vector space?

Remark 1.3. A finite N -vector can be regarded as a function defined on
{1, 2, . . . , N}. Therefore, the terminology function space and functions in
Hilbert space can be used to cover both cases of finite-dimensional and
infinite-dimensional spaces.

It is tempting to think that function spaces must be infinite-dimensional or
that infinite-dimensional Hilbert spaces must be function spaces. Both associa-
tions are wrong as we now illustrate.

First, one example of a Hilbert space has elements that are sequences of real
numbers which satisfy certain conditions

{α1, α2, α3, . . .},

which can be added and scaled in obvious ways. When performing algebraic
manipulations on sequences, they should be treated as column vectors of infinite
size. This Hilbert space is infinite-dimensional, but does not involve what is
generally understood to be functions.

The second space we shall consider, to sharpen our thinking, is the space of
linear combinations of two functions, 1/2π (constant function) and (1/π) cos θ.
That is, all elements of the space look like

f(θ) =
α

2π
+

β

π
cos θ, α, β * R.

In the end, computations regarding the norms and inner products of such ele-
ments reduce to linear algebra of 2-vectors (α, β) and as such are not different
from R

2. So even though this is a function space, it is only two-dimensional.
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1.1 Introduction to Hilbert spaces 7

Problem

1.1. What besides a conventional vector, a sequence or a function might be
further examples for an abstract vector?

1.1.4 Historical comments

The theory of Hilbert spaces was initiated by David Hilbert (1862–1943), in
the early twentieth century in the context of the study of integral equations.3

Of course, he did not decide to write a few papers and name the theoretical
construct after him. Nor did he solely develop the theory. It is generally regarded
that a number of people developed the theory of Hilbert spaces, especially Erik
Ivar Fredholm (1866–1927), whose work directly influenced Hilbert. Hilbert’s
work was simplified, generalized and abstracted further by Hilbert’s student
Erhard Schmidt (1876–1959). Other researchers at the same time developed key
results including Frigyes Riesz (1880–1956) in his work (Riesz, 1907) and Ernst
Sigismund Fischer (1875–1954) in his contribution (Fischer, 1907). The term
“Hilbert space,” or at least the German equivalent, is generally attributed to
John von Neumann (1903–1957) in 1929.

It is tempting to regard Hilbert space theory as a generalization of familiar
Euclidean space, which is true. Yet the theory developed quite late in math-
ematics. The delays in the development of the theory were manyfold and we
will step through these as they align with conceptual barriers that need to be
hurdled to fully understand the theory at a sufficiently advanced level.

The theory came together due to a number of factors. The first factor related
to how to deal with the infinite (which will be explored more fully below). The
second factor concerned the ongoing dispute about the meaning of Fourier series,
developed by Jean Baptiste Joseph Fourier (1768–1830). That is, what class of
functions does the Fourier series expansion converge to and how does this relate
to the original function. The third factor concerned integration. For function
spaces the inner product is defined in terms of integrals. However, a sufficiently
general notion of an integral was late in arriving and the preferred notion was due
to Henri Lebesgue (1875–1941) in the early twentieth century.4 The Lebesgue
integral (and associated measure theory) is needed for a rigorous development of
the most useful classes of Hilbert spaces. However, the more subtle aspects of the
Lebesgue integral are not essential to come to grips with Hilbert space from an
application viewpoint. We will, however, highlight the nature of the subtleties
later. Finally, we mention that the development of Hilbert spaces received a
significant boost from the co-development of quantum mechanics in the 1920s,
largely through the work on operators by von Neumann.5

3 Integral equations are a natural complement to differential equations and arise, for example,
in the study of existence and uniqueness of functions which are solutions of partial differential
equations such as the wave equation. Convolution and Fourier transform equations also
belong to this class.

4 Lebesgue is pronounced in the French style, that is, with pursed lips, with every second
letter silent and the remainder mumbled.

5 Again the most useful type of operator, called a compact operator, emerged much earlier
and, in fact, inspired Hilbert to develop his first results in Hilbert spaces.
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8 Introduction

Hilbert, David (1862–1943) — Hilbert was a famous German mathematician who originally
hailed from Königsberg (no longer part of Germany and now renamed) and spent
the majority of his life in Göttingen. His biography records that he had a large 6m
blackboard constructed in his back-yard along with a covered walkway, which enabled
him to do his work outdoors in any weather. At the age of 45, he learned to ride
a bike and combined riding with weeding and pruning trees as part of a ritualistic
style of behavior when deep in thought on some mathematical problem in his back-
yard (Reid, 1986). He had a propensity to get elementary work, such as calculus,
garbled and confused in lectures sometimes leading to fiascos. He was described as “slow
to understand” (Reid, 1986, p. 172). His thinking was more strongly directed towards
existence-style arguments versus constructive ones. He elucidated the difference in
lectures by saying “Among those who are in this lecture hall, there is one who has the
least number of hairs.”

Hilbert was deeply influential in the development of many fields of mathematics
and mathematical physics. His influence came through the problems he worked on, his
major breakthroughs, and making Göttingen a major center for mathematical research.
The disproportionate strength of German mathematics in the world scene at the time
is a tribute to Hilbert and Felix Klein (1849–1925) who shared the vision of establishing
Göttingen as the world’s leading mathematics research center. The importance of such
individuals was driven home by the virtual destruction of Göttingen with political and
social changes, which caused many key people, who were to carry on Hilbert’s legacy,
to leave Germany. It was a tragedy for Hilbert to see in 1934 (after his retirement)
what he, Klein and Hermann Minkowski (1864–1909) had built was destroyed in a
short period when he lamented (possibly in anger) “Mathematics in Göttingen? There
is really none any more.”

www.cambridge.org/9781107010031
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-01003-1 — Hilbert Space Methods in Signal Processing
Rodney A. Kennedy, Parastoo Sadeghi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 Infinite dimensions 9

1.2 Infinite dimensions

It has been eluded to that the more relevant and interesting Hilbert spaces are
infinite-dimensional. In Hilbert space theory it is critical to have the correct
notion of infinity and it is not sufficient to regard the symbol > as being some-
thing obvious. In the following, we are going to explore the meaning behind
the various types of infinity. Although seemingly a large digression, it is only
conceptually challenging and not technically challenging. It is highly relevant to
understanding infinite-dimensional Hilbert spaces.

Sanity is optional

Mathematicians had a lot of trouble dealing with the infinite sets and finding the
most sensible approach to the topic was left to Georg Cantor (1845–1918) in the
late nineteenth century, who explored the boundary between sanity and insan-
ity (Dauben, 1990; Aczel, 2001). To understand his transfinite cardinals6 does
not cause insanity, but it probably helps to be well down that track. Cantor’s
ideas met initially a lot of resistance, but now are seen to be profound (or at
least profoundly crazy). Hilbert was greatly influenced by the ideas of Cantor,
as might be gleaned from the problem of the “Continuum Hypothesis,” which
was first amongst Hilbert’s list of 23 unsolved problems in the Paris conference
of the International Congress of Mathematicians in 1900.7

1.2.1 Why understand and study infinity?

We now consider some attributes about infinite sets which underpin the struc-
ture of infinite-dimensional Hilbert spaces. In case you have met the theory of
transfinite cardinals before and you want to skip this material then the cover-
age is: countable or denumerably infinite (transfinite) sets, 50; cardinality of
the continuum; integers are countable but not dense in the reals; rationals are
countable and dense in the reals; the continuum has a cardinality which is equiv-
alent to the set of all subsets of a countable set, which may be written c; the
existence of transfinite cardinals beyond c; etc. That is, to skip this material
is only recommended if you have a familiarity with the general conceptual and
arithmetical properties of transfinite cardinals.

Of critical importance in what is known as a separable Hilbert space is the
existence of a countable dense set. Having a countable set of vectors and having

6 Transfinite means beyond finite, i.e., infinite. The expression transfinite is preferred over
infinite since it is less well recognized and, therefore, more likely to impress strangers. In
short, the theory says there are different sizes of infinity with the smallest corresponding to
the cardinality of the integers.

7 Initially Hilbert had ten problems which were later expanded to 23. The Continuum Hy-
pothesis is the hypothesis that there is no infinite set whose cardinality or size is strictly
between that of the integers and that of the real numbers. The meaning behind the Con-
tinuum Hypothesis can be easily understood in the context of these notes. Kurt Gödel
(1906–1978) showed in 1940 that the Continuum Hypothesis cannot be disproved from the
standard set theory axiom system. Paul Joseph Cohen (1934–2007) showed in 1963 that
the Continuum Hypothesis cannot be proven from those same axioms either. Therefore,
mathematicians regard the problem of the Continuum Hypothesis resolved. Gödel starved
himself to death believing people were trying to poison him.
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10 Introduction

Cantor, Georg (1845–1918) — Cantor was a German mathematician and born in Saint
Petersburg, Russia. He initiated the theory of sets and the theory of transfinite num-
bers/cardinals. Famously, Cantor was institutionalized to an asylum a number of times
most likely suffering depression brought on by being unremittingly assailed by his con-
temporaries in mathematics. His correspondence with colleagues reflects that he and
his work were under constant criticism, particularly from Leopold Kronecker (1823–
1891) in Berlin.

Cantor was involved in generating innovative and philosophically deep work, which
challenged conventional thinking. Hilbert was one of his supporters, recognizing the
significance of the work, and remarked, albeit somewhat too late in 1925 when giving
a talk on “On the infinite” for a celebration in honor of Karl Weierstrass (1815–1897),
“No one shall drive us out of this paradise that Cantor created for us” (Reid, 1986,
pp. 176–177). It is now generally regarded that his work was a building block of modern
mathematics and revolutionized many mathematical fields. Had he known what his
impact was, then he might have enjoyed a better fate than dying in an institution in
1918. A comprehensive and scholarly biography of Cantor and his work is (Dauben,
1990) and a more popular account can be found in (Aczel, 2001).
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1.2 Infinite dimensions 11

that set dense yields a type of spanning property giving a natural generalization
of what happens in finite-dimensional spaces. Knowing what countable and dense
mean is important and will be explained later. These concepts derive from and
are mimicked in the simpler analogous structure of rational numbers within the
real numbers. The analogy is so faithful and can guide our intuition in function
spaces and hence it justifies a digression to hone the concepts.

1.2.2 Primer in transfinite cardinals

Primary or elementary school children know infinity is pretty big. Some know
that infinity plus one, two times infinity and infinity squared are at least as big
or even bigger.8 But some grown-ups have doubts. What is the nature of any
formal assertion involving infinity? Ultimately how do you measure infinite sets
or compare infinite sets? Satisfactory resolution of these questions had to wait
for the Theory of Transfinite Cardinals developed by Cantor in 1874.

With finite sets there are two natural ways to check if they have the same
number of members:

" count the members, call this the cardinality, and see if the two sets have
the same cardinality; or

" pair off the members from each set without leftovers (requiring no need to
compute the total number of elements in each set).

It is the latter technique that can be used on infinite sets to determine if one set
is larger or equal to another in cardinality. The former way, the one we tend to
prefer to use, turns out to be only sensible for finite sets.

The basic tools of working with transfinite sets is to either find a clever map-
ping taking one set to the other (and hence assert that one is “equal” to the
other) or establish a contradiction that one set cannot be put in one-to-one
correspondence with another (and hence assert that one is “bigger” than the
other).

Natural numbers and integers

Consider the three infinite sets

N = {1, 2, 3, . . .}, (1.4a)

Z
� = {0, 1, 2, 3, . . .}, (1.4b)

Z = {. . . , 23, 22, 21, 0, 1, 2, 3, . . .}, (1.4c)

corresponding to the set of all natural numbers, non-negative integers and inte-
gers, respectively. Cantor calls the cardinality of the set of all natural numbers
50 (aleph null); see Figure 1.1.9 It is also called the countably infinite, or de-
numerable, or denumerably infinite, or equipollent to the ordinal numbers —

8 This is essential for transfinite taunting.
9 That is, we could imagine replacing the symbol ∞ with ℵ0 although, fortunately no-one

follows this practice.
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