

PATH INTEGRALS AND HAMILTONIANS

Providing a pedagogical introduction to the essential principles of path integrals and Hamiltonians, this book describes cutting-edge quantum mathematical techniques applicable to a vast range of fields, from quantum mechanics, solid state physics, statistical mechanics, quantum field theory, and superstring theory to financial modeling, polymers, biology, chemistry, and quantum finance.

Eschewing use of the Schrödinger equation, the powerful and flexible combination of Hamiltonian operators and path integrals is used to study a range of different quantum and classical random systems, succinctly demonstrating the interplay between a system's path integral, state space, and Hamiltonian. With a practical emphasis on the methodological and mathematical aspects of each derivation, this is a perfect introduction to these versatile mathematical methods, suitable for researchers and graduate students in physics, mathematical finance, and engineering.

BELAL E. BAAQUIE is a Professor of Physics at the National University of Singapore, specializing in quantum field theory, quantum mathematics, and quantum finance. He is the author of *Quantum Finance* (2004), *Interest Rates and Coupon Bonds in Quantum Finance* (2009), and *The Theoretical Foundations of Quantum Mechanics* (2013), and co-author of *Exploring Integrated Science* (2010).

PATH INTEGRALS AND HAMILTONIANS

Principles and Methods

BELAL E. BAAQUIE

National University of Singapore

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107009790

© Belal E. Baaquie 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by CPI Group Ltd, Croydon CR0 4YY

A catalog record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Baaquie, B. E.

Path integrals and Hamiltonians : principles and methods / Belal E. Baaquie, National University of Singapore. pages cm

ISBN 978-1-107-00979-0 (hardback)

Differential operators.
 Differential equations.
 Hamiltonian operator.
 Path integrals.
 Title.

QC174.12.B24 2014

530.1201'51539-dc23 2013044323

ISBN 978-1-107-00979-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

This book is dedicated to the memory of Kenneth Geddes Wilson (1936-2013). Intellectual giant, visionary scientist, exceptional educator, altruistic spirit.

Contents

	Ackno	owledgements	page xv xviii
1	Synopsis		1
Par	rt one	Fundamental principles	5
2	The 1	mathematical structure of quantum mechanics	7
	2.1	The Copenhagen quantum postulate	7
	2.2	The superstructure of quantum mechanics	10
	2.3	Degree of freedom space ${\mathcal F}$	10
	2.4	State space $V(\mathcal{F})$	11
		2.4.1 Hilbert space	14
	2.5	Operators $\mathcal{O}(\mathcal{F})$	14
	2.6	The process of measurement	18
	2.7	The Schrödinger differential equation	19
	2.8	Heisenberg operator approach	22
	2.9	Dirac-Feynman path integral formulation	23
-		Three formulations of quantum mechanics	25
		Quantum entity	26
	2.12	Summary	27
3	Oper	rators	30
	3.1	Continuous degree of freedom	30
	3.2	Basis states for state space	35
	3.3	Hermitian operators	36
		3.3.1 Eigenfunctions; completeness	37
		3.3.2 Hamiltonian for a periodic degree of freedom	39
	3.4	Position and momentum operators \hat{x} and \hat{p}	40
		3.4.1 Momentum operator \hat{p}	41

viii		Contents	
	3.5	Weyl operators	43
	3.6	Quantum numbers; commuting operator	46
	3.7	Heisenberg commutation equation	47
	3.8	Unitary representation of Heisenberg algebra	48
	3.9	Density matrix: pure and mixed states	50
	3.10	Self-adjoint operators	51
		3.10.1 Momentum operator on finite interval	52
	3.11	Self-adjoint domain	54
		3.11.1 Real eigenvalues	54
	3.12	Hamiltonian's self-adjoint extension	55
		3.12.1 Delta function potential	57
	3.13	Fermi pseudo-potential	59
	3.14	Summary	60
4	The F	Seynman path integral	61
	4.1	Probability amplitude and time evolution	61
	4.2	Evolution kernel	63
	4.3	Superposition: indeterminate paths	65
	4.4	The Dirac–Feynman formula	67
	4.5	The Lagrangian	69
		4.5.1 Infinite divisibility of quantum paths	70
	4.6	The Feynman path integral	70
	4.7	Path integral for evolution kernel	73
	4.8	Composition rule for probability amplitudes	76
	4.9	Summary	79
5	Hami	ltonian mechanics	80
	5.1	Canonical equations	80
	5.2	Symmetries and conservation laws	82
	5.3	Euclidean Lagrangian and Hamiltonian	84
	5.4	Phase space path integrals	85
	5.5	Poisson bracket	87
	5.6	Commutation equations	88
	5.7	Dirac bracket and constrained quantization	90
		5.7.1 Dirac bracket for two constraints	91
	5.8	Free particle evolution kernel	93
	5.9	Hamiltonian and path integral	94
	5.10	Coherent states	95
	5.11	Coherent state vector	96
	5.12	Completeness equation: over-complete	98
	5.13	Operators; normal ordering	98

		Contents	ix
	5.14	Path integral for coherent states	99
		5.14.1 Simple harmonic oscillator	101
	5.15	Forced harmonic oscillator	102
	5.16	Summary	103
6	Path i	integral quantization	105
	6.1	Hamiltonian from Lagrangian	106
	6.2	Path integral's classical limit $\hbar \to 0$	109
		6.2.1 Nonclassical paths and free particle	111
	6.3	Fermat's principle of least time	112
	6.4	Functional differentiation	115
		6.4.1 Chain rule	115
	6.5	Equations of motion	116
	6.6	Correlation functions	117
	6.7	Heisenberg commutation equation	118
		6.7.1 Euclidean commutation equation	121
	6.8	Summary	122
Par	t two	Stochastic processes	123
7	Stoch	astic systems	125
	7.1	Classical probability: objective reality	127
		7.1.1 Joint, marginal and conditional probabilities	128
	7.2	Review of Gaussian integration	129
	7.3	Gaussian white noise	132
		7.3.1 Integrals of white noise	134
	7.4	Ito calculus	136
		7.4.1 Stock price	137
	7.5	Wilson expansion	138
	7.6	Linear Langevin equation	140
		7.6.1 Random paths	142
	7.7	Langevin equation with potential	143
		7.7.1 Correlation functions	144
	7.8	Nonlinear Langevin equation	145
	7.9	Stochastic quantization	148
		7.9.1 Linear Langevin path integral	149
	7.10	Fokker–Planck Hamiltonian	151
	7.11	Pseudo-Hermitian Fokker–Planck Hamiltonian	153
	7.12	Fokker–Planck path integral	156
	7.13	Summary	158

x Contents

Par	t three	Discrete degrees of freedom	159
8	Ising r	model	161
	8.1	Ising degree of freedom and state space	161
		8.1.1 Ising spin's state space V	163
		8.1.2 Bloch sphere	164
	8.2	Transfer matrix	165
	8.3	Correlators	167
		8.3.1 Periodic lattice	168
	8.4	Correlator for periodic boundary conditions	169
		8.4.1 Correlator as vacuum expectation values	171
	8.5	Ising model's path integral	171
		8.5.1 Ising partition function	172
		8.5.2 Path integral calculation of C_r	173
	8.6	Spin decimation	175
	8.7	Ising model on $2 \times N$ lattice	176
	8.8	Summary	179
9	Ising r	model: magnetic field	180
	9.1	Periodic Ising model in a magnetic field	180
	9.2	Ising model's evolution kernel	182
	9.3	Magnetization	183
		9.3.1 Correlator	184
	9.4	Linear regression	185
	9.5	Open chain Ising model in a magnetic field	189
		9.5.1 Open chain magnetization	190
	9.6	Block spin renormalization	191
		9.6.1 Block spin renormalization: magnetic field	195
	9.7	Summary	196
10	Fermi	ons	198
	10.1	Fermionic variables	199
	10.2	Fermion integration	200
	10.3	Fermion Hilbert space	201
		10.3.1 Fermionic completeness equation	203
		10.3.2 Fermionic momentum operator	204
	10.4	Antifermion state space	204
	10.5	Fermion and antifermion Hilbert space	206
	10.6	Real and complex fermions: Gaussian integration	207
		10.6.1 Complex Gaussian fermion	209
	10.7	Fermionic operators	211

		Contents	X1
	10.8	Fermionic path integral	211
	10.9	Fermion-antifermion Hamiltonian	214
		10.9.1 Orthogonality and completeness	216
	10.10	Fermion-antifermion Lagrangian	217
	10.11	Fermionic transition probability amplitude	219
	10.12	Quark confinement	220
	10.13	Summary	222
Par	t four	Quadratic path integrals	223
11	Simpl	e harmonic oscillator	225
	11.1	Oscillator Hamiltonian	226
	11.2	The propagator	226
		11.2.1 Finite time propagator	227
	11.3	Infinite time oscillator	230
	11.4	Harmonic oscillator's evolution kernel	230
	11.5	Normalization	233
	11.6	Generating functional for the oscillator	234
		11.6.1 Classical solution with source	234
		11.6.2 Source free classical solution	236
	11.7	Harmonic oscillator's conditional probability	239
	11.8	Free particle path integral	240
	11.9	Finite lattice path integral	241
		11.9.1 Coordinate and momentum basis	243
	11.10	Lattice free energy	243
	11.11	Lattice propagator	245
	11.12	1 1 2	246
	11.13	Eigenfunctions from evolution kernel	249
	11.14	Summary	250
12	Gauss	sian path integrals	251
	12.1	Exponential operators	252
	12.2	Periodic path integral	253
	12.3	Oscillator normalization	254
	12.4	Evolution kernel for indeterminate final position	256
	12.5	Free degree of freedom: constant external source	260
	12.6	Evolution kernel for indeterminate positions	261
	12.7	Simple harmonic oscillator: Fourier expansion	264
	12.8	Evolution kernel for a magnetic field	267
	12.9	Summary	270

xii Contents

Par	t five	Action with acceleration	271
13	Accel	eration Lagrangian	273
	13.1	Lagrangian	273
	13.2	Quadratic potential: the classical solution	275
	13.3	Propagator: path integral	277
	13.4	Dirac constraints and acceleration Hamiltonian	280
	13.5	Phase space path integral and Hamiltonian operator	283
	13.6	Acceleration path integral	286
	13.7	Change of path integral boundary conditions	289
	13.8	Evolution kernel	291
	13.9	Summary	293
14	Pseud	lo-Hermitian Euclidean Hamiltonian	294
	14.1	Pseudo-Hermitian Hamiltonian; similarity transformation	295
	14.2	Equivalent Hermitian Hamiltonian H_O	297
	14.3	The matrix elements of $e^{-\tau Q}$	298
	14.4	$e^{-\tau Q}$ and similarity transformations	301
	14.5	Eigenfunctions of oscillator Hamiltonian H_O	304
	14.6	Eigenfunctions of H and H^{\dagger}	305
		14.6.1 Dual energy eigenstates	307
	14.7	Vacuum state; $e^{Q/2}$	309
	14.8	Vacuum state and classical action	312
	14.9	Excited states of H	313
		14.9.1 Energy ω_1 eigenstate $\Psi_{10}(x, v)$	314
		14.9.2 Energy ω_2 eigenstate $\Psi_{01}(x, v)$	315
	14.10	Complex ω_1, ω_2	317
	14.11	State space $\mathcal V$ of Euclidean Hamiltonian	318
		14.11.1 Operators acting on V	320
		14.11.2 Heisenberg operator equations	322
	14.12	Propagator: operators	323
	14.13	Propagator: state space	324
	14.14	Many degrees of freedom	327
	14.15	Summary	329
15	Non-l	Hermitian Hamiltonian: Jordan blocks	330
	15.1	Hamiltonian: equal frequency limit	331
	15.2	Propagator and states for equal frequency	331
	15.3	State vectors for equal frequency	334
		15.3.1 State vector $ \psi_1(\tau)\rangle$	334
		15.3.2 State vector $ \psi_2(\tau)\rangle$	335

		Contents	xiii
	15.4	Completeness equation for 2×2 block	336
	15.5	Equal frequency propagator	337
	15.6	Hamiltonian: Jordan block structure	339
	15.7	2×2 Jordan block	340
		15.7.1 Hamiltonian	342
		15.7.2 Schrödinger equation for Jordan block	343
		15.7.3 Time evolution	344
	15.8	Jordan block propagator	344
	15.9	Summary	347
Par	t six N	Nonlinear path integrals	349
16	The qu	uartic potential: instantons	351
	16.1	Semi-classical approximation	352
	16.2	A one-dimensional integral	353
	16.3	Instantons in quantum mechanics	355
	16.4	Instanton zero mode	362
	16.5	Instanton zero mode: Faddeev-Popov analysis	364
		16.5.1 Instanton coefficient \mathcal{N}	368
	16.6	Multi-instantons	370
	16.7	Instanton transition amplitude	371
		16.7.1 Lowest energy states	372
	16.8	Instanton correlation function	373
	16.9	The dilute gas approximation	374
	16.10	Ising model and the double well potential	376
	16.11	E .	377
	16.12	Spontaneous symmetry breaking	380
		16.12.1 Infinite well	381
		16.12.2 Double well	381
	16.13	Restoration of symmetry	381
	16.14	Multiple wells	383
	16.15	Summary	383
17	Comp	act degrees of freedom	385
	17.1	Degree of freedom: a circle	386
		17.1.1 Poisson summation formula	387
		17.1.2 The S^1 Lagrangian	388
	17.2	Multiple classical solutions	388
		17.2.1 Large radius limit	391
	17.3	Degree of freedom: a sphere	391
	17.4	Lagrangian for the rigid rotor	393

xiv		Contents	
	17.5	Cancellation of divergence	395
	17.6	Conformation of DNA	397
	17.7	DNA extension	399
	17.8	DNA persistence length	401
	17.9	Summary	403
18	Concl	lusions	405
	Refere	ences	409
	Index		413

Preface

Quantum mechanics is undoubtedly one of the most accurate and important scientific theories in the history of science. The theoretical foundations of quantum mechanics have been discussed in depth in Baaquie (2013e), where the main focus is on the interpretation of the mathematical symbols of quantum mechanics and on its enigmatic superstructure. In contrast, the main focus of this book is on the mathematics of path integral quantum mechanics.

The traditional approach to quantum mechanics has been to study the Schrödinger equation, one of the cornerstones of quantum mechanics, and which is a special case of partial differential equations. Needless to say, the study of the Schrödinger equation continues to be a central task of quantum mechanics, yielding a steady stream of new and valuable results.

Interestingly enough, there are two other formulations of quantum mechanics, namely the operator approach of Heisenberg and the path integral approach of Dirac–Feynman, that provide a mathematical framework which is independent of the Schrödinger equation. In this book, the Schrödinger equation is never directly solved; instead the Hamiltonian operator is analyzed and path integrals for different quantum and classical random systems are studied to gain an understanding of quantum mathematics.

I became aware of path integrals when I was a graduate student, and what intrigued me most was the novelty, flexibility and versatility of their theoretical and mathematical framework. I have spent most of my research years in exploring and employing this framework.

Path integration is a natural generalization of integral calculus and is essentially the integral calculus of infinitely many variables, also called functional integration. There is, however, a fundamental feature of path integration that sets it apart from functional integration, namely the role played by the Hamiltonian in the formalism. All the path integrals discussed in this book have an underlying linear structure that is encoded in the Hamiltonian operator and its linear vector state space. It is this

xvi Preface

combination of the path integral and its underlying Hamiltonian that provides a powerful and flexible mathematical machinery that can address a vast variety and range of diverse problems. Path integration can also address systems that do not have a Hamiltonian and these systems are not studied. Instead, topics have been chosen that can demonstrate the interplay of the system's path integral, state space, and Hamiltonian.

The Hamiltonian operator and the mathematical formalism of path integration make them eminently suitable for describing quantum indeterminacy as well as classical randomness. In two chapters of the book, namely Chapter 7 on stochastic processes and Chapter 17 on compact degrees of freedom, path integrals are applied to classical stochastic and random systems. The rest of the chapters analyze systems that have quantum indeterminacy.

The range and depth of subjects that come under the sway of path integrals are unified by a common thread, which is the mathematics of path integrals. Problems seemingly unrelated to indeterminacy such as the classification of knots and links or the mathematical properties of manifolds have been solved using path integration. The applications of path integrals are almost as vast as calculus, ranging from finance, polymers, biology, and chemistry to quantum mechanics, solid state physics, statistical mechanics, quantum field theory, superstring theory, and all the way to pure mathematics. The concepts and theoretical underpinnings of quantum mechanics lead to a whole set of new mathematical ideas and have given rise to the subject of *quantum mathematics*.

The ground-breaking and pioneering book by Feynman and Hibbs (1965) laid the foundation for the study of path integrals in quantum mechanics and is always worth reading. More recent books such as those by Kleinert (1990) and Zinn-Justin (2005) discuss many important aspects of path integration and cover a wide range of applications. Given the complex theoretical and mathematical nature of the subject, no single book can conceivably cover the gamut of worthwhile topics that appear in the study of path integration and there is always a need for books that break new ground. The topics chosen in this book have a minimal overlap with other books on path integrals.

A major field of theoretical physics that is based on path integrals is quantum field theory, which includes the Standard Model of particles and forces. The study of quantum field theory leads to the concept of nonlinear gauge fields and to the concept of renormalization, both of which are beyond the scope this book.

The purpose of the book is to provide a pedagogical introduction to the essential principles of path integrals and of Hamiltonians; for this reason many examples have been worked out in full detail so as to elucidate some of the varied methods and techniques that have proven useful in actually performing path integrations. The emphasis in all the derivations is on the methodological and mathematical

Preface xvii

aspect of the problem – with matters of interpretation being discussed only in passing. Starting from the simplest examples, the various chapters lay the ground work for analyzing more advanced topics. The book provides an introduction to the foundations of path integral quantum mechanics and is a primer to the techniques and methods employed in the study of quantum finance, as formulated by Baaquie (2004) and Baaquie (2010).

Acknowledgements

I would like to acknowledge and express my thanks to many outstanding teachers, scholars, and researchers whose work motivated me to study path integral quantum mechanics and to grapple with its mathematical formalism.

I had the singular privilege of doing my Ph.D. thesis under the guidance of Nobel Laureate Kenneth G. Wilson; his visionary conception of quantum mechanics and of quantum field theory – rooted in the path integral – greatly enlightened and inspired me, and continues to do so today. As an undergraduate I had the honor of meeting and conversing a number of times with Richard P. Feynman, the legendary discoverer of the path integral, and this left a permanent impression on me.

I thank Frederick H. Willeboordse for his consistent support and Wang Qinghai, Andreas Keil, Tang Pan, Duxin, and Cao Yang for many helpful discussions.

I thank my wife Najma for being a wonderful companion and for her uplifting approach to family and professional life. I thank my precious family members Arzish, Farah, and Tazkiah for their delightful company and warm encouragement. They have made this book possible.

I am deeply indebted to my late father Muhammad Abdul Baaquie for being a life long source of encouragement and whose virtuous qualities continue to be a beacon of inspiration.