
PART I

LINEAR ALGEBRAIC GROUPS

In this part we introduce the main objects of study, linear algebraic groups

over algebraically closed fields.

We assume that the reader is familiar with basic concepts and results from

commutative algebra and algebraic geometry. More specifically, the reader

should know about affine and projective varieties, their associated coordinate

ring, their dimension, the Zariski topology, and basic properties thereof.

In Chapter 1 we define our main objects of study. The examples which

will guide us throughout the text are certain subgroups or quotient groups

of the isometry group of a finite-dimensional vector space equipped with a

bilinear or quadratic form. We state the important result which says that

any linear algebraic group is a closed subgroup of some group of invertible

matrices over our fixed field, which is nearly obvious for all of our examples

(the proof will be given in Chapter 5). In Chapter 2, we show that the

Jordan decomposition of a matrix results in a uniquely determined Jordan

decomposition of elements in a linear algebraic group. This in turn gives

us the notion of semisimple and unipotent elements in these groups. We

establish the important result that any group consisting entirely of unipotent

elements is conjugate to a subgroup of the upper unitriangular matrices.

Chapter 3 is devoted to the structure theory of commutative linear alge-

braic groups. In particular, Theorem 3.1 focuses attention on groups consist-

ing entirely of unipotent elements or of semisimple elements. Theorem 3.2

classifies the connected one-dimensional linear algebraic groups. While one

can say something about the structure of connected commutative groups

consisting entirely of unipotent elements, these will not play a role in this

text. Hence we turn at this point to commutative groups consisting entirely

of semisimple elements and introduce the notion of a torus, its character
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group and its cocharacter group. These will play a crucial role in the classifi-

cation of semisimple groups. We turn in Chapter 4 to the structure theory of

connected solvable groups, for which the prototype is the group of upper tri-

angular invertible matrices. Indeed, the Lie–Kolchin theorem (Theorem 4.1

and Corollary 4.2) shows that any such group is isomorphic to a closed sub-

group of the group of upper triangular matrices. The importance of closed

connected solvable subgroups will become apparent in Chapter 6.

But before defining these so-called Borel subgroups, we must extend our

theory to cover group actions and in particular quotient groups; this is the

content of Chapter 5. The results on homogeneous spaces prepare the terrain

for establishing the main result of Chapter 6, the Borel fixed point theorem,

Theorem 6.1, some of whose many applications we discuss. We can also

finally define the radical of a linear algebraic group and establish its con-

nection with Borel subgroups. In these two chapters, we omit some essential

geometric arguments and notions. In particular, we do not prove results on

complete varieties but restrict ourselves only to projective varieties.

The last three chapters of this part are devoted to introducing the combi-

natorial data which classifies semisimple algebraic groups and to establish-

ing structural results and the classification theorem. The most important

ingredient of the data is a root system, which is obtained via the adjoint

representation of the group, acting on its tangent space; this theory is de-

scribed in Chapter 7. Theorem 8.17 is the main structural result on reductive

groups and we study in detail the case of the group SL2 in order to sketch a

proof of this result. The final chapter describes the classification of semisim-

ple algebraic groups in terms of the data mentioned above. We conclude by

explaining where our standard examples appear in this classification.
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1

Basic concepts

Throughout, k denotes an algebraically closed field of arbitrary characteris-

tic.

1.1 Linear algebraic groups and morphisms

Recall that a subset X of kn of the form

X = X(I) = {(x1, . . . , xn) ∈ kn | f(x1, . . . , xn) = 0 for all f ∈ I}

for some ideal I�k[T1, . . . , Tn] is called an algebraic set . Taking complements

of algebraic sets as open sets defines a topology on kn, the Zariski topology .

An affine algebraic variety is an algebraic set together with the induced

Zariski topology. (We will often omit the word “algebraic”.) For X ⊆ kn an

affine algebraic variety, let I�k[T1, . . . , Tn] denote the (radical) ideal of poly-

nomials vanishing identically onX. The quotient ring k[X] = k[T1, . . . , Tn]/I

is called the coordinate algebra or algebra of regular functions on X since it

can be naturally identified with the algebra of all polynomial functions on

X with values in k.

If X ⊆ kn, Y ⊆ km are affine varieties, their cartesian product X × Y is

naturally an algebraic set in kn+m, hence possesses the structure of an affine

variety. We will always consider the product X×Y equipped with the Zariski

topology, not with the product topology, which in general is different. Note

that k[X × Y ] ∼= k[X]⊗k k[Y ].

A map ϕ : X → Y between two affine varieties X,Y , which can be defined

by polynomial functions in the coordinates, is called a morphism of affine

varieties. Note that morphisms are continuous in the Zariski topology. A

morphism ϕ : X → Y induces functorially a k-algebra homomorphism ϕ∗ :

k[Y ]→ k[X] via ϕ∗(f) := f ◦ ϕ for f ∈ k[Y ].

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-00854-0 - Linear Algebraic Groups and Finite Groups of Lie Type
Gunter Malle and Donna Testerman
Excerpt
More information

http://www.cambridge.org/9781107008540
http://www.cambridge.org
http://www.cambridge.org


4 Basic concepts

X
ϕ ��

ϕ∗(f) ���
�

�
� Y

f

��
k

In fact, the above defines a contravariant equivalence between the category

of affine varieties with morphisms of varieties and the category of finitely

generated reduced k-algebras with k-algebra homomorphisms, the so-called

affine k-algebras, see [32, §1.5].
We can now define our main object of study.

Definition 1.1 A linear algebraic group is an affine algebraic variety

equipped with a group structure such that the group operations (multi-

plication and inversion)

µ : G×G −→ G, i : G −→ G,

(g, h) 	−→ gh, g 	−→ g−1,

are morphisms of varieties. (Recall our convention on the topology on G×G.)

Example 1.2 The base field k provides two natural examples of algebraic

groups:

(1) The additive group G = (k,+) of k is defined by the zero ideal I = (0)

in k[T ], and addition is given by a polynomial; hence G is an algebraic

group, with coordinate ring k[G] = k[T ]. The group G is called the

additive group, noted Ga.

(2) The multiplicative group G = (k×, ·) of k can be identified with the set

of pairs {(x, y) ∈ k2 | xy = 1} (where multiplication is componentwise,

again given by polynomials), which is the algebraic set defined by the

ideal I = (XY − 1) � k[X,Y ]. So here k[G] = k[X,Y ]/(XY − 1) ∼=
k[X,X−1]. The group G is called the multiplicative group and noted

Gm.

It is not immediately obvious from the above definition that the general

linear group

GLn := {A ∈ kn×n | detA 
= 0}

of invertible n× n-matrices over k is an algebraic group, since the determi-

nant condition is not a closed condition. But as for Gm above, GLn can be

identified with the closed subset

{(A, y) ∈ kn×n × k | detA · y = 1},
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1.1 Linear algebraic groups and morphisms 5

with componentwise multiplication, via A 	→ (A, detA−1). Clearly multi-

plication is a polynomial map, and by Cramer’s rule, the same holds for

inversion. Thus GLn is a further (and very important) example of a linear

algebraic group. Its coordinate ring is given by

k[GLn] = k[Tij , Y | 1 ≤ i, j ≤ n]/(det(Tij)Y − 1)

∼= k[Tij | 1 ≤ i, j ≤ n]det(Tij),

the localization of k[Tij | 1 ≤ i, j ≤ n] at the multiplicative set generated by

det(Tij). Note that GL1 = Gm.

Maps between linear algebraic groups should preserve not only the group

structure, but also the structure as an affine variety:

Definition 1.3 A map ϕ : G1 → G2 of linear algebraic groups is a mor-

phism of linear algebraic groups if it is a group homomorphism and also a

morphism of varieties, that is, the induced map ϕ∗ : k[G2] → k[G1] is a

k-algebra homomorphism.

Example 1.4 (1) If G ≤ GLn is a closed subgroup then the natural em-

bedding G ↪→ GLn is a morphism of linear algebraic groups.

(2) The determinant map det : GLn → Gm, A 	→ detA, is a group homo-

morphism and clearly also a morphism of varieties, so a morphism of

algebraic groups.

Proposition 1.5 Kernels and images of morphisms of algebraic groups

are closed.

For the proof of the above statement, we will make use of the following

property of morphisms of varieties, which will also be used in subsequent

chapters (see [66, Thm. 1.9.5] or [26, Cor. 2.2.8]):

Proposition 1.6 Let ϕ : X → Y be a morphism of varieties. Then ϕ(X)

contains a non-empty open subset of ϕ(X).

Proof of Proposition 1.5 Let ϕ : G→ H be a morphism of algebraic groups.

Since ker(ϕ) = ϕ−1(1) and ϕ is a continuous map, ker(ϕ) is closed. By

Proposition 1.6, ϕ(G) contains a non-empty open subset of ϕ(G); then ϕ(G)

is closed, by Exercise 10.3(d).

It is clear that any closed subgroup of GLn inherits the structure of a

linear algebraic group. In fact, the converse is also true:

Theorem 1.7 Let G be a linear algebraic group. Then G can be embedded

as a closed subgroup into GLn for some n.
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6 Basic concepts

The proof of this crucial characterization will be given as a corollary to

Theorem 5.5. For example, the map

Ga −→ GL2, c 	→
(
1 c

0 1

)
,

defines an embedding of the additive group Ga as a closed subgroup in GL2;

note that this map is in fact an isomorphism of algebraic groups onto its

image.

1.2 Examples of algebraic groups

We introduce some further important examples of linear algebraic groups

which will show up throughout the text. We start with three natural sub-

groups of GLn. Clearly the group of invertible upper triangular matrices

Tn :=

{(
∗ ∗. . .
0 ∗

)
invertible

}
= {(aij) ∈ GLn | aij = 0 for i > j},

its subgroup of upper triangular matrices with 1’s on the diagonal

Un :=

{(
1 ∗. . .
0 1

)}
= {(aij) ∈ Tn | aii = 1 for 1 ≤ i ≤ n},

and the group of diagonal invertible matrices

Dn :=

{(
∗ 0. . .
0 ∗

)
invertible

}
= {diag(a1, . . . , an) | ai 
= 0 for 1 ≤ i ≤ n},

are closed subgroups of GLn, hence linear algebraic groups.

Recall that a group is called nilpotent if its descending central series de-

fined by

C0G := G, CiG := [Ci−1G,G] for i ≥ 1,

eventually reaches 1. It is not hard to see that Un is a nilpotent group,

with Cn−1(Un) = 1. (One uses the filtration of Un by normal subgroups

Vm = {(aij) ∈ Un | aij = 0 for 1 ≤ j − i ≤ m}, for 1 ≤ m ≤ n− 1.)

Furthermore, the derived series of a group G is defined by

G(0) := G, G(i) := [G(i−1), G(i−1)] for i ≥ 1.

If there exists some d with G(d) = 1, then G is called solvable, and the min-

imal such d is the derived length of G. Clearly G(i) ≤ CiG, so any nilpotent

group is solvable.
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1.2 Examples of algebraic groups 7

In our example, Tn is solvable, with T(1)
n = Un. (Un is generated by

elementary matrices, all of which can be written as commutators.) We will

see later on (Corollary 4.2) that Tn is in some sense the prototype of a

connected solvable linear algebraic group.

We now define the various families of classical groups as groups of isome-

tries of non-degenerate bilinear or quadratic forms on finite-dimensional vec-

tor spaces. Recall that k is assumed to be algebraically closed.

The special linear groups

The special linear group

SLn :=
{
(aij) ∈ kn×n | det(aij) = 1

}
of n× n-matrices of determinant 1 is a closed subgroup of GLn, with coor-

dinate ring

k[SLn] = k[Tij | 1 ≤ i, j ≤ n]/(det(Tij)− 1).

As k is algebraically closed, we clearly have GLn = Z(GLn) · SLn.

The symplectic groups

For n ≥ 1 let J2n :=

(
0 Kn

−Kn 0

)
where Kn :=

(
0 1
. .
.

1 0

)
. The symplectic

group in dimension 2n is the closed subgroup

Sp2n =
{
A ∈ GL2n | AtrJ2nA = J2n

}
of GL2n; so it is the group of invertible linear transformations of the even-

dimensional vector space k2n leaving invariant the non-degenerate skew-

symmetric bilinear form with Gram matrix J2n (a so-called symplectic form).

Here, it is no longer so easy to explicitly write down the coordinate ring.

One can show that Sp2n is generated by transvections (see [79, 8.5]), and

hence Sp2n ≤ SL2n, and that for n = 1, any matrix of determinant 1 is

symplectic. So Sp2 = SL2, while for all n ≥ 2, Sp2n is a proper subgroup of

SL2n.

The conformal symplectic group is the closed subgroup of GL2n defined as

CSp2n :=
{
A ∈ GL2n | AtrJ2nA = cJ2n for some c ∈ k×

}
,

the group of transformations leaving J2n invariant up to a non-zero scalar.

It contains Sp2n as a closed normal subgroup.
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8 Basic concepts

The odd-dimensional orthogonal groups

First assume that char(k) 
= 2. For n ≥ 1 the orthogonal group in (odd)

dimension 2n+ 1 is defined by

GO2n+1 =
{
A ∈ GL2n+1 | AtrK2n+1A = K2n+1

}
with K2n+1 as above. Thus, this is the group of invertible linear transfor-

mations leaving invariant the non-degenerate symmetric bilinear form with

Gram matrix K2n+1.

If char(k) = 2, skew-symmetric and symmetric bilinear forms coincide, and

the previous construction just yields the symplectic group in dimension 2n.

For arbitrary k the orthogonal groups have to be defined using the quadratic

form

f : k2n+1 −→ k, f(x1, . . . , x2n+1) := x1x2n+1+x2x2n+· · ·+xnxn+2+x2
n+1,

on k2n+1 associated to K2n+1. The group of isometries

GO2n+1 = {A ∈ GL2n+1 | f(Ax) = f(x) for all x ∈ k2n+1}

of f is the odd-dimensional orthogonal group over k. (For char(k) 
= 2 this

defines the same group as before.)

Again there is a conformal version

CO2n+1 :=
{
A ∈ GL2n+1 | ∃c ∈ k× : f(Ax) = cf(x) for all x ∈ k2n+1

}
,

the odd-dimensional conformal orthogonal group, containing GO2n+1 as a

closed normal subgroup.

The even-dimensional orthogonal groups

For even dimension 2n ≥ 2 the orthogonal group is defined using the quadra-

tic form

f : k2n −→ k, f(x1, . . . , x2n) := x1x2n + x2x2n−1 + · · ·+ xnxn+1,

on k2n associated to K2n. The group of isometries

GO2n = {A ∈ GL2n | f(Ax) = f(x) for all x ∈ k2n}

of f is the even-dimensional orthogonal group over k. For char(k) 
= 2 we can

also obtain this as the group of invertible linear transformations leaving in-

variant the non-degenerate symmetric bilinear form with Gram matrix K2n:

GO2n =
{
A ∈ GL2n | AtrK2nA = K2n

}
.

The even-dimensional conformal orthogonal group is defined as before as

CO2n :=
{
A ∈ GL2n | ∃c ∈ k× : f(Ax) = cf(x) for all x ∈ k2n

}
.
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1.3 Connectedness 9

Our choice of symmetric, skew-symmetric and quadratic forms above may

seem a bit arbitrary. In fact, any non-degenerate symmetric bilinear form

leads to the same group up to conjugacy, and similarly for non-degenerate

skew-symmetric bilinear forms, respectively quadratic forms (see for example

[2, §7]), but for the choices made above, certain natural subgroups have a

particularly nice shape, as will become apparent later.

As a final example, let G be a finite group. Then G has a faithful permuta-

tion representation, that is, there is an embedding G ↪→ Sn into a symmetric

group Sn for some n. Moreover, Sn ↪→ GLn via the natural permutation

representation. Combining these two homomorphisms we get an embedding

G ↪→ GLn whose image is a closed subgroup (i.e., the set of zeros of a finite

set of polynomial functions). Therefore, any finite group can be considered

as a linear algebraic group, with the discrete topology.

1.3 Connectedness

We now recall a topological notion which will play a crucial role in the study

of linear algebraic groups.

Definition 1.8 A topological space X is called irreducible if it cannot be

decomposed as X = X1 ∪X2 where Xi is a non-empty proper closed subset

for i = 1, 2.

In view of the importance of this concept, we present some further ele-

mentary characterizations of irreducibility:

Proposition 1.9 The following are equivalent for an affine algebraic va-

riety X:

(i) X is irreducible.

(ii) Every non-empty open subset of X is dense.

(iii) Any two non-empty open subsets of X intersect non-trivially.

(iv) The vanishing ideal I of X is a prime ideal.

(v) k[X] is an integral domain.

Proof (i)⇔(ii): Indeed, if X1 ⊆ X is open then X = X1 ∪ (X \X1). Next,

(ii)⇔(iii) is obvious. The equivalence (i)⇔(iv) is shown in [32, Prop. 1.3C].

Finally, the equivalence of (iv) and (v) is well known.

Furthermore, we need the following basic properties (see [32, Prop. 1.3A,

1.3B and 1.4] and also Exercise 10.1):
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10 Basic concepts

Proposition 1.10 Let X,Y be affine varieties. Then we have:

(a) A subset Z of X is irreducible if and only if its closure Z is irreducible.

(b) If X is irreducible and ϕ : X → Y is a morphism then ϕ(X) is irre-

ducible.

(c) If X,Y are irreducible then X × Y is irreducible.

(d) X has only finitely many maximal irreducible subsets Xi, and X =
⋃
Xi.

In other words, every variety is a finite union of its maximal irreducible

subsets.

The maximal irreducible subsets in the preceding statement are called the

irreducible components of X. Note that by (a) irreducible components are

necessarily closed.

Definition 1.11 A topological space X is said to be connected if it cannot

be decomposed as a disjoint union X = X1 � X2, where the Xi’s are non-

empty closed subsets.

Note that any irreducible set is connected; the converse is not true in

general. See Exercise 10.2.

Example 1.12 Let’s next look at some linear algebraic groups.

(1) Ga and Gm are connected by Proposition 1.9(v) since k[Ga] = k[T ] and

k[Gm] = k[T, T−1] are integral domains.

(2) GLn is connected since k[GLn] = k[Tij ]det(Tij) is an integral domain,

being a localization of the polynomial ring k[Tij ].

The next result gives a first example of how the Zariski topology on a linear

algebraic group allows one to deduce group theoretic structural results.

Proposition 1.13 Let G be a linear algebraic group.

(a) The irreducible components of G are pairwise disjoint, so they are the

connected components of G.

(b) The irreducible component G◦ containing 1 ∈ G is a closed normal sub-

group of finite index in G.

(c) Any closed subgroup of G of finite index contains G◦.

Proof (a) Let X,Y be two irreducible components of G. Assume that g ∈
X∩Y . Since multiplication by g−1 is a morphism ofG onto itself, g−1X, g−1Y

are irreducible by Proposition 1.10(b) and 1 ∈ g−1X ∩ g−1Y . Therefore,

without loss of generality we may assume that 1 ∈ X ∩Y . Now, µ(X×Y ) =

XY is irreducible by Proposition 1.10(b), (c). As X = X · 1 ⊆ XY and
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