
1 Introduction

A solid material subjected to mechanical and thermal loading will change its shape and
develop internal stress and temperature variations. What is the best way to describe this
behavior? In principle, the response of a material (neglecting relativistic effects) is dic-
tated by that of its atoms, which are governed by quantum mechanics. Therefore, if we
could solve Schrödinger’s equation for all of the atoms in the material (there are about
1022=10 000 000 000 000 000 000 000 atoms in a gram of copper) and evolve the dynamics
of the electrons and nuclei over “macroscopic times” (i.e. seconds, hours and days), we
would be able to predict the material behavior. Of course, when we say “material,” we are
already referring to a very complex system. In order to predict the response of the mate-
rial we would first have to construct the material structure in the computer, which would
require us to use Schrödinger’s equation to simulate the process by which the material was
manufactured. Conceptually, it may be useful to think of materials in this way, but we can
quickly see the futility of the approach: the state of the art of quantum calculations involves
just hundreds of atoms over a time of nanoseconds.

Fortunately, in many cases it is not necessary to keep track of all the atoms in a material
to describe its behavior. Rather, the overall response of such a collection of atoms is often
much more readily amenable to an elegant, mathematical description. Like the pocket watch
on the cover of this book, the complex and intricate inner workings of a material are often
not of interest. It is the outer expression of these inner workings – the regular motion of the
watch hands or macroscopic material response – that is of primary concern. To this end,
lying at the opposite extreme to quantum mechanics, we find continuum mechanics and
thermodynamics (CMT). The CMT disciplines completely ignore the discreteness of the
world, treating it in terms of “macroscopic observables” – time and space averages over the
underlying swirling hosts of electrons and atomic nuclei. This leads to a theory couched in
terms of continuously varying fields. Using clear thinking inspired by our understanding
of the basic laws of nature (which have been validated by experiments) it is possible to
construct a remarkably coherent and predictive framework for material behavior. In fact,
CMT have been so successful that with the exception of electromagnetic phenomena, almost
all of the courses in an engineering curriculum from aerodynamics to solid mechanics are
simply an application of simplified versions of the general CMT theory to situations of
special interest. Clearly there is something to this macroscopically averaged view of the
world. Of course, the continuum picture becomes fuzzy and eventually breaks down when
we attempt to apply it to phenomena governed by small length and time scales.1 Those are

1 Having said that, it is important to note that continuum mechanics works remarkably well down to extremely
small scales. Micro electro mechanical systems (MEMS) devices, which are fully functioning microscopic
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exactly the “multiscale” situations that we explore in depth in the companion book to this
one titled Modeling Materials: Continuum, Atomistic and Multiscale Techniques (MM)
[TM11]. Here, we focus on CMT.

Continuum mechanics involves the application of the principles of classical mechanics
to material bodies approximated as continuous media. Classical mechanics itself has a long
and distinguished history. As Clifford Truesdell, one of the fathers of modern continuum
mechanics, states in the introduction to his lectures on the subject [Tru66a]:

The classical nature of mechanics reflects its greatness: Ever old and ever new, it continues
to pour out for us understanding and application, linking a changing world to unchanged
law.

The unchanged laws that Truesdell refers to are the balance principles of mechanics:
conservation of mass and the balance of linear and angular momentum. Together with
the first law of thermodynamics (conservation of energy), these principles lead to a set of
coupled differential equations governing the evolution of material systems.2 The resulting
general theory of continuum mechanics and thermodynamics is applicable to arbitrary
materials undergoing arbitrarily large deformations. We develop this theory and explore
its applications in two main parts. Part I on theory focuses on the basic theory underlying
CMT, going from abstract mathematical ideas to the response of real materials. Part II on
solutions focuses on the application of the theory to solve actual problems.

Part I begins with Chapter 2 on scalars, vectors and tensors and the associated notation
used throughout the book. This chapter deals with basic physical and mathematical concepts
that must be understood before we can discuss the mechanics of continuum bodies. First and
foremost we must provide basic definitions for space and time. Without such definitions
it is meaningless to speak of the positions of physical objects and their time evolution.
Newton was well aware of this and begins his Principia [New62] with a preface called the
Scholium devoted to definitions. In many ways Newton’s greatness lies not in his famous
laws (which are based on earlier work) but in his ability to create a unified framework out
of the confusion that preceded him by defining his terms.3 Once space and time are agreed
upon, the next step is to identify suitable mathematical objects for describing physical
variables. We seek to define such things as the positions of particles, their velocities and
more complex quantities like the stress state at a point in a solid. A key property of all
such variables is that they should exist independently of the particular coordinate system
in which they are represented. Variables that have this property are called tensors or tensor
fields. Anyone with a mathematical or scientific background will have come across the
term “tensor,” but few really understand what a tensor is. This is because tensors are often

machines smaller than the diameter of a human hair (∼100 microns), are for the most part described quite
adequately by continuum mechanics. Even on the nanoscale where the discrete nature of materials is apparent,
continuum mechanics is remarkably accurate to within a few atomic spacings of localized defects in the atomic
arrangement.

2 The second law of thermodynamics also plays an essential role. However, in the (standard) presentation of the
theory developed here it does not explicitly enter as a governing equation of the material. Rather, it serves to
restrict the possible response to external stimuli of a material (see Chapter 6).

3 Amazingly, more than 300 years after Newton published Principia, the appropriate definitions for space and
time in classical mechanics remain controversial. We discuss this in Section 2.1.
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defined with a purely rules-based approach, i.e. a recipe is given for checking whether
a given quantity is or is not a tensor. This is fine as far is it goes, but it does not lead
to greater insight. The problem is that the idea of a tensor field is complex and to gain
a true and full understanding one must immerse oneself in the rarefied atmosphere of
differential geometry. We have placed ourselves squarely between these two extremes
and have attempted to provide a more nuanced fundamental description of tensors while
keeping the discussion as accessible as possible. For this reason we mostly adopt the
Cartesian coordinate system in our discussions, introducing the more general covariant and
contravariant notation of curvilinear coordinates only where necessary.

Our next step takes us away from the abstract world of tensor algebra and calculus to the
description of physical bodies. As noted above, we know that in reality bodies are made of
material and material is made of atoms which themselves are made of more fundamental
particles and – who knows – perhaps those are made of strings or membranes existing
in a higher-dimensional universe. Continuum mechanics ignores this underlying discrete
structure and provides a model for the world in which a material is infinitely divisible. Cut
a piece of copper in two and you get two pieces of copper, and so on ad infinitum. The
downside of this simplification is that it actually becomes more complicated to describe
the shape and evolution of bodies. For a discrete set of particles all we need to know is
the positions of the particles and their velocities. In contrast, how can we describe the
“position” that an evolving blob of material occupies in space? This broadly falls under
the topic of kinematics of deformation covered in Chapter 3. The study of kinematics is
concerned exclusively with the abstract motion of bodies, taking no consideration of the
forces that may be required to impart such a motion. As a result, kinematics is purely the
geometric, descriptive aspect of mechanics, phrased in the language of configurations that
a blob of material can adopt. In a sense one can think of a configuration being the “sheet
music” of mechanics. The external mechanical and thermal loading are what ultimately
realize this configuration, just as the musicians and their instruments ultimately bring a
symphony to life.

A continuum body can take on an infinity of possible configurations. It is convenient to
identify one of these as a reference configuration and to refer all other configurations to
this one. Once a reference configuration is selected, it is possible to define the concept of
strain (or more generally “local deformation”). This is the change in shape experienced by
the infinitesimal environment of a point in a continuum body relative to its shape in the
reference configuration. Since it is shape change (as opposed to rigid motion) that material
bodies resist, strain becomes a key variable in a continuum theory. An important aspect of
continuum mechanics is that shape change can be of arbitrary magnitude. This is referred to
somewhat confusingly as “finite strain” as if contrasting the theory with another one dealing
with “infinite strain.” Really the distinction is with theories of “infinitesimal strain” (like
the theories of strength of materials and linear elasticity taught as part of an engineering
curriculum). This makes continuum mechanics a nonlinear theory – very general in the sort
of problems it can handle, but also more difficult to solve.

Having laid out the geometry of deformation, we must next turn to the laws of nature
to determine how a body will respond to applied loading. This topic naturally divides into
two parts. Chapter 4 focuses on this question from a purely mechanical perspective. This
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means that we ignore temperature and think only of masses and the mechanical forces
acting on them. At the heart of this description are three laws taken to be fundamental
principles in classical mechanics: conservation of mass and the balance of linear and of
angular momentum. Easily stated for a system of particles, the extension of these laws
to continuous media leads to some interesting results. The big name here is Cauchy, who
through some clever thought experiments was able to infer the existence of the stress tensor
and its properties. Cauchy was concerned with what we today would call the “true stress”
or for obvious reasons the “Cauchy stress.” This is the force per unit area experienced by
a point in a continuum when cut along some plane passing through that point. The notion
of configurations introduced above means that the stress tensor can be recast in a variety
of forms that, although lacking the clear physical interpretation of Cauchy’s stress, have
certain mathematical advantages. In particular, the first and second Piola–Kirchhoff stress
tensors represent the stress relative to the reference configuration mentioned above.

The second set of the laws of nature that must be considered to fully characterize a
continuum mechanics problem are those having to do with temperature, i.e. the laws of
thermodynamics discussed in Chapter 5. In reality, a material is not just subjected to
mechanical loading which leads to stresses and strains in the body; it also experiences
thermal loading which can lead to an internally varying temperature field. Furthermore, the
mechanical and thermal effects are intimately coupled into what can only be described as
thermomechanical behavior. Thermodynamics is for most people a more difficult subject
to understand than pure mechanics. This is another consequence of the “simplification”
afforded by the continuum approximation. Concepts like temperature and entropy that
have a clear physical meaning when studied at the level of discrete particles become far
more abstract at the macroscopic level where their existence must be cleverly inferred
from experiments.4 The three laws of thermodynamics (numbered in a way to make C
programmers happy) are the zeroth law, which deals with thermal equilibrium and leads to
the concept of temperature, the first law, which expresses the conservation of energy and
defines energy, and the second law, which deals with the concept of entropy and the direction
of time (i.e. why we have a past and a future). Unlike a traditional book on thermodynamics,
we develop these concepts with an eye to continuum mechanics. We do not talk about steam
engines, but rather show how thermodynamics contributes a conservation law to the field
equations of continuum mechanics, and how restrictions related to the second law impact
the possible models for material behavior – the so-called “constitutive relations” described
next.

The theory we have summarized so far appears wonderfully economical. Using a handful
of conservation laws inferred from experiments, a very general theoretical formulation is
established which (within a classical framework) fully describes the behavior of materials
subjected to arbitrary mechanical and thermal loading. Unfortunately, this theory is not
closed. By this we mean that the theoretical formulation of continuum mechanics and
thermodynamics possesses more unknowns than equations to solve for them. If one thinks
about this for a minute, it is not surprising – we have not yet introduced the particular nature

4 A student wishing to truly understand thermodynamics is strongly encouraged to also explore this subject from
the perspective of statistical mechanics as is done in Chapter 7 of [TM11].
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of the material into the discussion. Clearly the response of a block of butter will be different
than that of steel when subjected to mechanical and thermal loading. The equations relating
the response of a material to the loading applied to it are called constitutive relations and
are discussed in Chapter 6. Since we are dealing with a general framework which allows for
arbitrary “finite” deformation, the constitutive relations are generally nonlinear. Continuum
mechanics cannot predict the particular form of the constitutive relations for a given material
– these are obtained either empirically through experimentation or more recently using mul-
tiscale modeling approaches as described in MM [TM11]. However, continuum mechanics
can place constraints on the allowable forms for these relations. This is very important,
since it dramatically reduces the set of possible functions that can be used for interpreting
experiments or multiscale simulations. One constraint already mentioned above is the re-
strictions due to the second law of thermodynamics. For example, it is not possible to have a
material in which heat flows from cold to hot.5 Another fundamental restriction is related to
the principle of material frame-indifference (or “objectivity”). Material frame-indifference
is a difficult and controversial subject with different, apparently irreconcilable, schools
of thought. Most students of continuum mechanics – even very advanced “students” –
find this subject quite difficult to grasp. We provide a new presentation of material frame-
indifference that we feel clarifies much of the confusion and demonstrates how the different
approaches mentioned above are related and are in fact consistent with each other. A third
restriction on the form of constitutive relations is tied to the symmetry properties of the
material. This leads to vastly simplified forms for special cases such as isotropic materials
whose response is independent of direction. Even simpler forms are obtained when the
equations are linearized, which in the end leads to the venerable (generalized) Hooke’s
law – a linear relation between the Cauchy stress and the infinitesimal strain tensor.

The addition of constitutive relations to the conservation and balance laws derived before
closes the theory. It is now possible to write down a system of coupled, nonlinear partial
differential equations that fully characterize a thermomechanical system. Together with
appropriate boundary conditions (and initial conditions for a dynamical problem) a well-
defined (initial) boundary-value problem can be constructed. This is described in Chapter 7.
Special emphasis is placed in this chapter on purely mechanical static problems. In this
case, the boundary-value problem can be conveniently recast as a variational problem, i.e. a
problem where instead of solving a complicated system of nonlinear differential equations,
a single scalar energy functional has to be minimized. This variational principle, referred to
as the principle of minimum potential energy (PMPE), is of great importance in continuum
mechanics as well as more general multiscale theories such as those discussed in MM
[TM11]. A key component of the derivation of the PMPE is the theory of stability, which
is concerned with the conditions under which a mechanical system is in stable equilibrium
as opposed to unstable equilibrium. (Think of a pencil lying on a table as opposed to one
balanced on its end.) We only give a flavor of this rich and complex theory, sufficient for
our purposes of elucidating the derivation of PMPE.

5 This is true for thermomechanical systems. However, if electromagnetic effects are considered, the application
of an appropriate electric potential to certain materials can lead to heat flow in the “wrong” direction without
violating the second law.
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The discussion of stability and PMPE concludes the first part of the book. At this stage,
we are able to write down a complete description of any problem in continuum mechanics
and we have a clear understanding of the origins of all of the equations that appear in the
problem formulation. Unfortunately, the complete generality of the continuum mechanics
framework, with its attendant geometric and material nonlinearity, means that it is almost
always impossible to obtain closed-form analytical solutions for a given problem. So how
do we proceed? There are, in fact, three possible courses of action, which are described in
Part II on Solutions. First, in certain cases it is possible to obtain closed-form solutions.
Even more remarkably, some of these solutions are universal in that they apply to all
materials (in a given class) regardless of the form of the constitutive relations. In addition to
their academic interest, these solutions have important practical implications for the design
of experiments that measure the nonlinear constitutive relations for materials. The known
universal solutions are described in Chapter 8.

The second option for solving a continuum problem (assuming the analytical solution is
unknown or, more likely, unobtainable) is to adopt a numerical approach. In this case, the
continuum equations are solved approximately on a computer. The most popular numerical
approach is the finite element method (FEM) described in Chapter 9. In FEM the continuum
body is discretized into a finite set of domains, referred to as “elements,” bounded by
“nodes” whose positions and temperatures constitute the unknowns of the problem.6 When
substituting this representation into the continuum field equations, the result is a set of
coupled nonlinear algebraic equations for the unknowns. Entire books are written on FEM
and our intention is not to compete with those. We do, however, offer a derivation of the
key equations that is different from most texts. We focus on static boundary-value problems
and approach the problem from the perspective of the PMPE. In this setting, the FEM
solution to a general nonlinear continuum problem corresponds to the minimization of the
energy of the system with respect to the nodal degrees of freedom. This is a convenient
approach which naturally extends to multiscale methods (like those described in Chapter 12
of [TM11]) where continuum domains and atomistic domains coexist.

The third and final option for solving continuum problems is to simplify the equations
by linearizing the kinematics and/or the constitutive relations. This approach is discussed
in Chapter 10. As noted at the start of this introduction, this procedure leads to almost all
of the theories studied as independent subjects in an engineering curriculum. For example,
few students understand the connection between heat transfer and elasticity theory. The
ability of continuum mechanics to provide a unified framework for all of these subjects is
one of the reasons that this is such an important theory. Most students who take a continuum
mechanics course leave with a much deeper understanding of engineering science (once
they have recovered from the shell shock). We conclude in Chapter 11 with some suggested
further reading for readers wishing to expand their understanding of the topics covered in
this book.

6 It is amusing that the continuum model is introduced as an approximation for the real discrete material, but that
to solve the continuum problem one must revert back to a discrete (albeit far coarser) representation.
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2 Scalars, vectors and tensors

Continuum mechanics seeks to provide a fundamental model for material response. It is
sensible to require that the predictions of such a theory should not depend on the irrelevant
details of a particular coordinate system. The key is to write the theory in terms of variables
that are unaffected by such changes; tensors1 (or tensor fields) are the measures that
have this property. Tensors come in different flavors depending on the number of spatial
directions that they couple. The simplest tensor has no directional dependence and is called
a scalar invariant to distinguish it from a simple scalar. A vector has one direction. For two
directions and higher the general term tensor is used.

Tensors are tricky things to define. Many books define tensors in a technical manner
in terms of the rules that tensor components must satisfy under coordinate system trans-
formations.2 While certainly correct, we find such definitions unilluminating when trying
to answer the basic question of “what is a tensor?”. In this chapter, we provide an intro-
duction to tensors from the perspective of linear algebra. This approach may appear rather
mathematical at first, but in the end it provides a far deeper insight into the nature of
tensors.

Before we can begin the discussion of the definition of tensors, we must start by defining
“space” and “time” and the related concept of a “frame of reference,” which underlie the
description of all physical objects. The notions of space and time were first tackled by
Newton in the formulation of his laws of mechanics.

2.1 Frames of reference and Newton’s laws

In 1687, Isaac Newton published his Philosophiae Naturalis Principia Mathematica or
simply Principia, in which a unified theory of mechanics was presented for the first time.
According to this theory, the motion of material objects is governed by three laws. Translated
from the Latin, these laws state [Mar90]:

1 The term “tensor” was coined by William Hamilton in 1854 to describe the norm of a polynome in his theory
of quaternions. It was first used in its modern sense by Woldemar Voigt in 1898.

2 More correctly, tensors are defined in terms of the rules that their components must satisfy under a change of
basis. A rectilinear “coordinate system” consists of an origin and a basis. The distinction between a basis and a
coordinate system is discussed further below. However, we will often use the terms interchangeably.
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�

I Every body remains in a state, resting or moving uniformly in a straight line, except
insofar as forces on it compel it to change its state.

II The [rate of] change of momentum is proportional to the motive force impressed, and
is made in the direction of the straight line in which the force is impressed.

III To every action there is always opposed an equal reaction.

Mathematically, Newton’s second law (also called the balance of linear momentum) is

F ext =
d

dt
(mv), (2.1)

where F ext is the total external force acting on a system, m is its mass and v is the velocity
of the center of mass. For a body with constant mass, Eqn. (2.1) reduces to the famous
equation, F ext = ma, where a is acceleration. (The case of variable mass systems is
discussed further on page 13.)

Less well known than Newton’s laws of motion is the set of definitions that Newton
provided for the fundamental variables appearing in his theory (force, mass, space, time,
motion and so on). These appear in the Scholium to the Principia (a chapter with explana-
tory comments and clarifications). Newton’s definitions of space and time are particularly
eloquent [New62]:

Space “Absolute space, in its own nature, without reference to anything external, remains
always similar and unmovable.”

Time “Time exists in and of itself and flows equably without reference to anything
external.”

These definitions were controversial in Newton’s time and continue to be a source of active
debate even today. They were necessary to Newton, since otherwise his three laws were
meaningless. The first law refers to the velocity of objects and the second law to the
rate of change of velocity (acceleration). But velocity and acceleration relative to what?
Newton was convinced that the answer was absolute space and absolute time. This view
was strongly contested by the relationists led by Gottfried Leibniz, who as a point of
philosophy believed that only relative quantities were important and that space was simply
an abstraction resulting from the geometric relations between bodies [DiS02].

Newton’s bucket The argument was settled (at least temporarily) by a simple thought ex-
periment that Newton described in the Principia.3 Take a bucket half filled with water
and suspend it from the ceiling with rope. Twist the rope by rotating the bucket as far as
possible. Wait until the water settles and then let go. The unwinding rope will cause the
bucket to begin spinning. Initially, the water will remain still even though the bucket is
spinning, but then slowly due to the friction between the walls of the bucket and the water,
the water will begin to spin as well until it is rotating in unison with the bucket. When the

3 The story of this experiment and how it inspired later thinkers such as Ernst Mach and Albert Einstein is
eloquently told in Brian Greene’s popular science book on modern physics [Gre04].
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