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Introduction

1.1 Turbulence

Turbulence is the last great unsolved problem of classical physics.1 Although temporarily

abandoned by much of the community in favor of particle physics, the current popularity

of chaos and dynamical systems theory (as well as funding problems in particle physics) is

now drawing the physicists back. During the interim and up to the present, turbulence has

been avidly pursued by engineers.

Turbulence has enormous intellectual fascination for physicists, engineers, and mathe-

maticians alike. This scientific appeal stems in part from its inherent difficulty – most of the

approaches that can be used on other problems in fluid mechanics are useless in turbulence.

Turbulence is usually approached as a stochastic problem, yet the simplifications that can

be used in statistical mechanics are not applicable – turbulence is characterized by strong

dependency in space and in time, so that not much can be modeled usefully as a simple

Markov process, for example. The nonlinearity of turbulence is essential – linearization

destroys the problem. Many problems in fluid mechanics can be approached by supposing

that the flow is irrotational – that is, that the vorticity is zero everywhere. In turbulence,

the presence of vorticity is essential to the dynamics. In fact, the nonlinearity, rotationality,

and the dimensionality interact dynamically to feed the turbulence – hence, to suppose that

a realization of the flow is two-dimensional also destroys the problem. There is more, but

this is enough to make it clear that one faces the turbulence problem stripped of the usual

arsenal of techniques, reduced to hand-to-hand combat. One is forced to find unexpected

chinks in its armor almost by necromancy, and to fabricate new approaches from whole

cloth. This is its fascination.

At the same time, turbulence is of the greatest practical importance. The turbulent trans-

port of heat, mass, and momentum is usually some three orders of magnitude greater

than molecular transport. Turbulence is responsible for the vast majority of human energy

1 Remarks of this sort have been variously attributed to Sommerfeld, Einstein, and Feynman, although no one
seems to know precise references, and searches of some likely sources have been unproductive. Of course,
the allegation is a matter of fact, not much in need of support by a quotation from a distinguished author.
However, it would be interesting to know when the matter was first recognized. In this connection, similar
sentiments were expressed by Horace Lamb in his Hydrodynamics, beginning in the second edition in 1895,
and continuing through the sixth (and last) edition in 1932. We are indebted for this reference to Julian Hunt,
citing its use by George Batchelor in his book The Life and Legacy of G. I. Taylor, Cambridge University
Press, 1996.
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consumption, in automobile and aircraft fuel, pipeline pumping charges, and so forth. It

is responsible for the wind chill factor. In the atmosphere and ocean it is responsible for

the transport of gases and nutrients and for the uniformization of temperature that make

life on earth possible. For example, oxygen and carbon dioxide are not produced in the

same places – oxygen comes largely from the equatorial rain forests and carbon dioxide is

manufactured in industrial and urban centers such as New York City. Some mechanism is

necessary to bring the carbon dioxide to Brazil, and the oxygen to the Big Apple. Radia-

tion from the sun heats the surface of the earth; something is necessary to transfer the heat

quickly and uniformly to the atmosphere where we can benefit from it. Without turbulence

our speedy demise would be a race between frying our feet and freezing our heads, gasping

in an atmosphere with too much or too little oxygen and/or carbon dioxide.

These practical aspects are, of course, responsible for most of the funding for turbulence

research. It is absolutely essential as a design tool to be able to predict accurately the

forces on and heat transfer from aircraft and automobiles. For regulatory purposes it is

essential to be able to predict the results of siting of power plants and incinerators under

various synoptic conditions. Manufacturers cry out for the ability to predict fluctuations in

dopant distribution in the billets of silicon from which chips are formed. The military is

concerned about the information loss in battlefield communication links induced by index

of refraction fluctuations due to thermal turbulence. The list is endless.

From five centuries of observation and experiment, in many ways a reasonable physical

understanding of turbulence has emerged. It is no longer a complete mystery. We can cite

many simple physical arguments that shed light on common situations. When it comes

to accurate predictions, however, we are in trouble. Aircraft manufacturers, for example,

want accuracy corresponding roughly to the effect of adding one passenger to a Boeing

747. Automobile manufacturers want accuracy corresponding to the effect of adding one

outside rear-view mirror. Regulatory agencies want assurances of comparable accuracy

before going to court. Although our ability to calculate is improving constantly, we are not

yet close to this level of accuracy.

Direct numerical simulation is not a realistic possibility in most cases of practical impor-

tance. In the foreseeable future, the cost of such simulation will remain far beyond our

means, and will be limited to very low Reynolds numbers and simple geometries. In any

event, simulation by itself does not bring understanding.

In a given practical problem, there may be many things that one wishes to know. The

most common goals of computation are the mean forces and/or the mean heat transfer

at various locations in the flow. These involve knowledge of second order quantities, the

mean fluxes of momentum and heat. That is, the mean flux of j-momentum through a

surface with a normal in the i-direction is 2Ã�ui u j �, where ui is the fluctuating turbu-

lent velocity, �·� denotes an average, and Ã is the mean density. The flux of heat into an

i-surface is 2Ãcp�ui»�, where cp is the specific heat at constant pressure, and » is the

fluctuation in temperature. Both involve mean values of products of no more than two

fluctuating quantities. Computation of index of refraction fluctuations in the atmosphere

involves knowledge of the probability densities of fluctuating quantities, but an assump-

tion about the form of the densities, plus knowledge of the variances, is usually enough.

Hence, again, second order quantities are sufficient. A similar statement can be made about
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the dopant fluctuations in the silicon billet. There are more complex questions, however,

that require more complex information. For example, suppose we wish to simulate the

fluctuating pressure field on a panel, due to the presence of a turbulent boundary layer over

the surface, perhaps to predict the spurious noise field generated on a sonar dome. This

requires much more sophisticated modeling of the field.

It was in an effort to answer such deeper questions, that depend on a knowledge of

the structure of the flow, that we embarked on the work described here. As we shall see

below, many turbulent flows are characterized by considerable structure, and in particular

by characteristic recurrent forms that are collectively called coherent structures. These are

energetically dominant in many flows. We feel that, for flows in which these structures are

dominant, it should be possible to build a relatively realistic, low-dimensional model of

the flow by keeping only the dominant coherent structures, and simulating the effect of the

smaller, less energetic, apparently incoherent part of the flow in some way. In this book we

describe our tentative steps in this direction.

1.2 Low-dimensional models

Perhaps the first attempts to bring a dynamical systems perspective to turbulence studies

were those of Landau (e.g. [204]) and Hopf [163]. They suggested that the continu-

ous Fourier spectrum of temporal frequencies typical of turbulence might be produced

via bifurcations occurring as the Reynolds number is increased (which Hopf, betraying

his backgound, called ¿ rather than Re). They envisaged a sequence in which at first

periodic and then quasiperiodic attractors with increasing numbers of independent fre-

quencies were created. In the language of modern dynamical systems theory, we would

say that the resulting fluid flow corresponds to a phase flow on an n-dimensional torus

in the state (or phase) space of the dynamical system. Hopf even constructed a model

problem which exhibited just such a bifurcation sequence: what we might call a “route

to chaos,” except that we now realize that quasiperiodic flows are not strongly chaotic,

since these solutions do not depend sensitively on initial conditions. Perhaps more sig-

nificantly, Hopf also proposed that “to the flows observed in the long run after the

influence of the initial conditions has died down there correspond certain solutions of

the Navier–Stokes equations. These solutions constitute a certain manifold M(¿) in

phase space invariant under the phase flow. Presumably owing to viscosity M(¿) has a

finite number N (¿) of dimensions.” ( [163], p. 305.) Hopf envisaged a finite-dimensional

attractor.

Some twenty years after Hopf’s paper, Ruelle and Takens [322] built on this suggestion.

They observed that the quasiperiodic flows proposed by Landau and Hopf are not struc-

turally stable and so would be expected to appear only in unusual circumstances. Drawing

on the qualitative theory of (finite-dimensional) dynamical systems, which Anosov, Smale,

Arnold, and others had extensively developed in the meantime, they gave an example of

a structurally stable “strange” attractor that can appear after two or three quasiperiodic

bifurcations, and so can live on a torus of only four dimensions (subsequently this was

reduced to three: Newhouse et al. [258]). In connection with one of our themes, a footnote
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in their introduction is also noteworthy: “If a viscous fluid is observed in an experimental

setup which has a certain symmetry, it is important to take into account the invariance of

[the dynamical system] under the corresponding symmetry group.” ([322], p. 168.) Ruelle

gives an interesting account of the genesis of and tribulations encountered by their paper

in [321].

In none of this work was a clear connection made between a particular fluid flow

modeled by the Navier–Stokes equations with specific boundary conditions, and the

“abstract” dynamical systems which exhibited quasiperiodic or strange attractors. How-

ever, unknown to Ruelle, Takens, and virtually all other mathematicians and physicists in

1971, Lorenz [217] had provided an example almost ten years before. A meteorologist and

a former student of the dynamical systems pioneer, George Birkhoff, Lorenz was inter-

ested in the problem of weather prediction. He took a drastic truncation to three Fourier

modes of the coupled Navier–Stokes and heat equations for Boussinesq convection in a

two-dimensional layer (a Rayleigh–Bénard problem) and investigated them numerically

and analytically. He found strong evidence for a strange attractor, unfortunately far beyond

the Rayleigh number range in which his truncation was reasonable. Nonetheless, after its

general discovery in the early 1970s, due largely to the mathematician Jim Yorke, Lorenz’s

paper has had an enormous influence. In Chapter 6 we give a sketch of what is now called

the Lorenz attractor.

The events which first began to persuade fluid dynamicists that low-dimensional models

and strange attractors might have some practical interest for them were probably the

experiments of Gollub, Swinney, and their colleagues in the mid 1970s (see Swinney

and Gollub [361]). Working with small, closed fluid systems, and especially with the

Taylor–Couette flow between counter-rotating cylinders and thermal convection in small

boxes, they found striking experimental evidence of sequences of bifurcations leading to

“low-dimensional” chaos as the Taylor and Rayleigh numbers respectively were raised

modestly above the initial onset of linear instability. Power spectra displaying jumps from

two or three frequency quasiperiodic motions to broad band chaos were measured. Subse-

quently it became possible to link some of these results tightly with bifurcation analyses

of the governing equations, particularly in the Taylor–Couette problem (see Golubitsky

and Stewart [135], Golubitsky and Langford [133], Golubitsky et al. ([136], case study 6),

Iooss et al. [75, 95, 173, 174], and Laure and Demay [206], for example). There is an

enormous literature on this system: in his 1994 review, Tagg [363] estimates nearly 2000

papers while citing some 350 himself. Chossat and Iooss have published a book on the

mathematical aspects of the problem [76].

In some cases, previously unknown classes of solution were predicted which were sub-

sequently observed experimentally (e.g. Andereck et al. [6], Tagg et al. [364]). Again, the

symmetries of the experimental apparatus were crucial in this. It is probably fair to say

that the tools and viewpoint of dynamical systems theory are now acknowledged to have a

useful rôle to play in the study of such closed fluid systems, in which relatively few spatial

modes are active. These methods, including invariant manifold techniques, bifurcation the-

ory, and the unfolding of degenerate singularities, have joined more classical asymptotic

and perturbation methods for the study of hydrodynamic stability and “weakly” nonlinear

or pre-turbulent interactions.

www.cambridge.org/9781107008250
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-00825-0 — Turbulence, Coherent Structures, Dynamical Systems and Symmetry
Philip Holmes, John L. Lumley, Gahl Berkooz, Clarence W. Rowley
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment
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In this book we want to take a further tentative step. We propose that low-dimensional

dynamical systems can also provide models for, and hence contribute to the understand-

ing of, certain fully developed, open turbulent flows. As we remarked in the Preface, our

“low” is not so low in dynamical systems terms: we are thinking of sets of 10–100 ordinary

differential equations (ODEs). But in the fluid mechanical context this is very low and we

clearly cannot expect to reproduce fine-scale spatial details of the flow. Consequently, to

be sure of capturing the key behaviors, we will have to pay particular attention to the man-

ner in which the fluid velocity field in physical space is represented in the phase space

of the dynamical system. We shall focus on flows with predominant coherent structures,

and use the proper orthogonal or Karhunen–Loève decomposition (POD) to extract, from

experimental or simulated ensembles of data, those “modes” or empirical eigenfunctions

that carry the greatest kinetic energy on average. This procedure will provide us with the

basis for a sequence of subspaces, of increasing dimension, onto which the Navier–Stokes

(or other) equations can be projected by Galerkin’s method to yield sets of ODEs. In this

procedure we represent the fluid velocity field by a superposition of the empirical spa-

tial modes multiplied by (as yet unknown) time-dependent coefficients. Substituting this

representation into the governing equations and taking the inner product with each basis

function in turn yields a set of nonlinear ODEs for the modal coefficients. These entirely

deterministic dynamical systems will be the foundations for our low-dimensional models.

Our main goal is not to reproduce accurately the results of a direct numerical simulation

with fewer, more efficient modes. The fact that such empirical basis functions are adapted

to a particular flow geometry and Reynolds number, and are only available at the end of

extensive data collection and computation, probably makes them a poor choice for efficient

simulations in any case. Rather we are interested in understanding the fundamental mech-

anisms of turbulence generation in “simple” flows such as shear layers, jets, wakes, and

boundary layers. In this quest for understanding we often want to reduce the dimension of

our models to a minimum. Thus, even with the optimal bases of the POD, our truncations

are typically so severe that a bare projection is unsatisfactory and some sort of additional

modeling is needed to account for neglected modes and/or spatial locations. Such model-

ing might include relatively simple “eddy viscosity” energy transfer of the sort proposed

by Heisenberg and Smagorinsky (see Batchelor [32] or Tennekes and Lumley [368]) as

well as models to account for slow variations of the mean shear which drives the turbu-

lent fluctuations in flows such as boundary and shear layers, due to the turbulence itself.

Ideally, and in greater generality, we envisage the introduction of a probabilistic element

to our deterministic ODEs to reproduce the conditional probability measures that describe

the activity of the neglected modes as a function of the state of those modes included in

the model. Very little appears to be known about this issue, but we have encountered and

partially resolved a crude version of it in our treatment of the outer part of the boundary

layer in models of the wall region.

After determination of a “good” subspace, projection of the governing equations, and

modeling to account for neglected modes, we have a set of ODEs, for an understanding

of which we can appeal to the methods of dynamical systems theory along with other,

more widely known mathematical tools. If done properly, the projection and modeling

preserve the underlying symmetries of the fluid flow and of the governing equations and
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8 Introduction

boundary conditions. Such symmetries may include spanwise translations and reflections

for a shear layer or a boundary layer on an infinite flat plate, and rotations and reflections

for a circular jet or wake. Thus the ODEs will exhibit a corresponding symmetry: in the

language of dynamical systems theory, they will be equivariant under some group �, and

we have to take this into account in studying the bifurcations and other dynamical behavior

of the system. Behavior that is structurally unstable and hence rare in general may be

stable and relatively prevalent for such �-equivariant systems. We have already mentioned

heteroclinic attractors in the Preface, and the reader will find several more examples later

in the book.

The result of our dynamical systems analyses of the low-dimensional models is a (par-

tial) understanding of the structure of solutions in phase space and in particular of attracting

sets and how they change through bifurcations as external and modeling parameters are

varied. The final tasks are to map those results back into physical space, reconstructing the

space–time velocity field of the fluid flow from the empirical basis functions and their time-

dependent coefficients, to compare the resulting instantaneous and averaged quantities with

experiments, and to translate the understanding achieved in state space into insights about

the fluid flow itself.

This is the general strategy we propose: find good basis functions for the turbulent flow

in question, model to account for neglected effects, project the governing partial differ-

ential equations onto a low-dimensional subspace spanned by the most energetic modes,

analyze the resulting low-dimensional model, and finally return to the physical domain to

interpret that analysis. As we see in Chapter 2, not all turbulent fluid flows are energeti-

cally dominated by coherent structures, and so the approach we describe here is far from

offering a complete solution to “the problem of turbulence.” We believe, nonetheless, that

it provides one more approach and a set of new tools, or even weapons, for the unequal

combat referred to in the introduction to this chapter.

1.3 The contents of this book

As noted in the Preface, the book has four parts. The first two, which constitute well over

half the book, are fairly general in nature. We introduce key ideas from fluid mechan-

ics, turbulence theory, and dimension reduction methods in the first five chapters, and

from dynamical systems theory in the following four. Turbulence experts can probably

skip pieces of Part One, and dynamicists can certainly skip most of Part Two, but in both

places readers may find new viewpoints recommended and unfamiliar connections drawn.

We hope that these parts of the book will be of fairly lasting and general interest. The

remaining two parts are more specific and more speculative, for in them we focus on our

own work on the turbulent boundary layer and on other attempts to derive low-dimensional

models for turbulent and transition flows. We offer our own work mainly in the spirit of an

extended example, since it allows us to discuss and illustrate difficulties and limitations as

well as successes of the approach. We are far from claiming a complete understanding of

boundary layer turbulence via our models, but we hope that the reader who accompanies

us to the end of Chapter 13 will agree that some new things have been said.
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In the remaining four chapters of this first part, we give some background on turbu-

lence, describe coherent structures from an experimental viewpoint and summarize some

of the major findings relevant to shear dominated flows. In Chapter 2 we sketch some

experimental methods by which coherent structures in developed turbulent flows may

be found and characterized, and describe their relation to instabilities of simpler lam-

inar and transition flows. We also review the “classical” approach to turbulent flows,

via the averaged Navier–Stokes equations and careful order-of-magnitude and scaling

estimates. We discuss in some detail the cases of turbulent mixing and boundary lay-

ers (the main illustrative application of our approach is to the latter). We close with a

brief preview of how coherent structures might appear as attractors in simple dynamical

systems.

Chapter 3 is devoted to the proper orthogonal decomposition. We provide the basic

mathematical results, with enough elements of their proofs to illustrate both the scope

and limitations of representing turbulent fields by finite- (low-) dimensional projections.

We pay particular attention to the influence both of symmetries, in the physical flow and

in the particular data ensembles used, and of the ensemble averaging on which the method

is founded, on the sets of basis functions that it produces. We also describe the relation

of these empirical modes to certain other statistically based techniques for prediction and

analysis of turbulence, such as stochastic estimation.

In Chapter 4 we discuss the Galerkin method, and show how the Navier–Stokes equa-

tions, or in general any evolution equation, may be projected onto a finite-dimensional

subspace, and in particular onto a subspace spanned by empirical modes, to produce a

finite set of ODEs. We also discuss various “modeling” issues such as those mentioned in

Section 1.2.

Chapter 5 introduces recent work on the balanced proper orthogonal decomposition, and

on the balanced truncation method for linear systems on which it is based. This method is

particularly useful for systems with control inputs based on observation of specific flow

quantities, and we provide examples to illustrate its superiority to the proper orthogonal

decomposition in such cases.

The second part of the book is a mini-treatise on dynamical systems theory. Since we are

concerned only with low-dimensional models, we restrict ourselves to finite-dimensional

ODEs and iterated maps. In Chapter 6 we sketch the main ideas and tools, including lin-

earization, invariant manifolds, structural stability, the center manifold theorem, normal

forms, and local and global bifurcation theory. We end the chapter with a discussion of

attractors, the main example being the strange attractor of Lorenz. Throughout this and the

remaining chapters in this second part, we illustrate the theory with many simple and very

low-dimensional examples.

Chapter 7 deals with symmetries, bifurcations, and local and global dynamical behavior

of equivariant ODEs, leading up to an important example derived from spatial transla-

tion and reflection invariance, which can be understood in the context of Fourier mode

representations of traveling waves. This example, an O(2)-equivariant normal form for

the interaction of wavenumbers in the ratio 1:2, is a four-dimensional ODE possess-

ing heteroclinic attractors, which, while not strange, have an interesting structure which

seems relevant in models of many fluid flows with symmetries. The chapter ends with a
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brief description of how the POD method can be extended to provide empirical modes that

represent uniformly translating structures (traveling modes).

In Chapter 8 we exercise our new methods on a simple model problem: the

one-space-dimensional Kuramoto–Sivashinsky partial differential equation. We find the

O(2)-equivariant normal form of Chapter 7 buried in this system. In the final chapter of

this part, Chapter 9, we consider the effects of stochastic and other symmetry-breaking

perturbations on systems with heteroclinic cycles.

The third part of the book is devoted to a description of attempts by ourselves and our

students and colleagues, to apply our strategy to the wall region of the turbulent boundary

layer. Most of Chapter 10 contains discussions of the Galerkin projection and modeling

issues, introduced in Chapter 4, in the specific case of the wall region. We describe the

choice of specific subspaces and the resulting hierarchy of nested systems of increasing

dimension that results as more modes are included. The chapter contains a description of

the various symmetries that the low-dimensional model ODEs inherit from those of the

boundary layer itself, and ends with extensive discussions of the validity of the models for

the mean flow and losses to neglected modes.

In Chapter 11 we bring dynamical systems techniques to bear on the model ODEs and

provide relatively complete analyses of the bifurcations and dynamical behavior of the

boundary layer models. We illustrate and supplement our analyses with numerical simu-

lations of models of various dimensions and, here and in Chapter 10, we offer a critical

interpretation of the results, showing how the use of empirical basis functions can some-

times lead to paradoxical effects. The chapter includes reconstructions of the fluid velocity

fields and interpretations of our findings in phase space, in terms of the turbulent flow itself.

The first of the two chapters of Part Four contains brief reviews of work by other groups

in which the same general approach is taken. We do not pretend to give a complete survey

of this rapidly developing field, but the examples of “laboratory” open flows that we have

chosen, including jets, wakes, and transition in boundary layers, illustrate that our methods

have wide applicability. Related ideas have been and continue to be used in the meteoro-

logical commmunity (cf. [216]) – the work of Farrell and Ioannou is an interesting case in

point [105–107] – and there are clearly applications to many other problems involving the

dynamics of spatio-temporal patterns. In this second edition we have added references to

some recent work, including new sections on time periodic flows in internal combustion

engines and other applications (12.6 and 12.7).

In the closing Chapter 13 we speculate in broader terms on the place and uses of low-

dimensional models among the many other approaches to turbulence. It seems clear that

such models offer new understanding of turbulence generation involving coherent struc-

tures, and so contribute to the intellectual challenge alluded to in the second paragraph of

the present chapter. Can they also be of help in answering technological questions such as

those mentioned towards the end of Section 1.1? A particular interest of our own is in the

use of such models in formulating strategies for the active control of turbulence and, in

addition to the material in Chapter 5, we provide a brief description of our ideas at the end

of Chapter 12. In Chapter 13 we also mention a number of other recent developments that

are related to our story, including mathematical ideas such as inertial manifolds and other

reduction methods which offer new approaches to the Navier–Stokes equations.
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1.4 Notation and mathematical jargon

By now the reader knows that in this book we propose the application of ideas in the

qualitative theory of dynamical systems to the description and analysis of turbulent flows.

While qualitative theory had its beginnings in Poincaré’s studies of problems in celes-

tial mechanics about one hundred years ago [282], it was soon thereafter hijacked by

pure mathematicians and only in the last ten to twenty years has it begun to see broad

applications in the sciences and engineering. The explosion of interest in “chaos theory,”

encouraged by books such as Gleick’s [128], has certainly sparked a general awareness

that there are new ideas and methods out there, but we recognize that many of the basic

concepts and technical issues may remain mysterious for potential users, including the

intended readership of this book. Rather than try to skate over what may be unfamiliar

mathematical material for some readers, we have tried to introduce it with simple exam-

ples drawn from the world of low-dimensional ordinary differential equations. By working

such examples in some detail, we hope to leave our readers in a position to fill in miss-

ing steps in more complicated cases and to tackle new ones that may arise in their own

research. But this is emphatically not a dynamical systems textbook: we do not state, much

less prove, even the most basic theorems in the field, and those formal definitions that are

included are given in passing, usually indicated by italics.

Even with an approach based on examples, so foreign to “pure” dynamical systems

theorists, we cannot avoid introducing and using a modicum of mathematical jargon. Our

defense of this is twofold: (1) we believe that, once learned, the symbolism of dynamical

systems theory, largely drawn from topology, makes the precise description of key ideas

such as invariant manifolds and attractors much simpler and more compact than is possible

with the English language alone, and (2) we hope that this book might be the beginning of

an exploration of the current research literature, in which case the symbolism will have to

be mastered anyway. After each new excess of jargon in the text, we try to give a (rough)

characterization in words, and we encourage readers who are repelled by abstract formulae

to clench their teeth and read on to get to the examples and pictures.

Nonlinear analysis is built on linear analysis and, to avoid doubling the length of this

book, we must assume some familiarity with the fundamental ideas of finite-dimensional

linear vector spaces, spanning sets of vectors, bases, norms, inner products, linear sub-

spaces, eigenvalue problems, and the like. Similarly, one of the major applications of

this beautiful theory is to the solution of linear ordinary differential equations, and we

assume a basic knowledge of that as well. Books such as Strang’s Linear Algebra and its

Applications [358] or Boyce and DiPrima’s Elementary Differential Equations and Bound-

ary Value Problems [56] provide the necessary background. More geometrically oriented

introductions to nonlinear ordinary differential equations are Hirsch et al.’s Differential

Equations, Dynamical Systems and an Introduction to Chaos [156], Arnold’s Ordinary

Differential Equations [15], and Glendinning’s Stability, Instability and Chaos [129], all

of which are written from a more mathematical viewpoint. The last of these is a good

introduction to many of the modern concepts presented in Part Two of the present book.

Here, to prepare for the onslaught, we recall some of the mathematical notations we

shall use. First there are the standard names for some commonly encountered spaces:
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12 Introduction

R
n : n-dimensional real Euclidean space, the elements of which are vectors x =

(x1, x2, . . . , xn), with each x j a real number. The real line R
1 is simply written R.

C
n : n-dimensional complex Euclidean space; as above, but each x j is a complex

number. C
1 is written C.

We normally denote vectorial quantities by boldface letters x and scalar quantities by

italic letters x . Single bars | · | denote the Euclidean norm or absolute value of whatever is

inside them; they also denote the modulus in the case of a complex number. Other norms

are generally indicated by double bars: � · �. We occasionally use the supremum norm,

written sup |x|, which indicates the least upper bound. If A is a subset of R, the number

M is an upper bound for A if a f M for all a in A. When M is the smallest such num-

ber, it is the least upper bound. The infimum inf |x| or greatest lower bound is defined

analogously.

The inner product (also scalar or dot product) of two elements u, v in R
n or C

n is

given by:

(u, v) =

n
�

i=1

uiv
7
i = v"u,

where in the second expression 7 denotes the complex conjugate, and in the third

expression " denotes complex conjugate transpose.

A set V is open if and only if for every point x * V there is a neighborhood Bx of x with

Bx contained in V . A set U is closed if and only if for each point y not in U there is

a neighborhood By of y entirely disjoint from U . Alternatively, a set is closed if and

only if it contains all its limit points. Examples are given directly below.

[a, b]: the closed interval of the real line R, delimited by the points a < b: all points x

satisfying a f x f b. A curved parenthesis denotes that the endpoint is not included,

thus (a, b) denotes the open interval (a < x < b) and (a, b] the half open interval

a < x f b. This notation extends to higher dimensions; thus [0, 1]× [0, 1] or [0, 1]2

denotes the (closed) unit square in R
2 with corners at (0, 0), (1, 0), (1, 1), and (0, 1);

here × means the direct product.

L2: the (Hilbert) space of square integrable real or complex-valued functions, an exam-

ple of an infinite-dimensional inner product space. Often the domain of definition

is indicated in parentheses: thus L2([0, 1]) denotes the space of functions defined

over the unit interval 0 f x f 1. Square integrable means that the functions f (x)

belonging to L2([0, 1]) satisfy

� f � =

�

� 1

0

| f (x)|2dx

�
1
2

< >. (1.1)

In general the integral is taken over the domain of definition, ". The boundary of

the domain is customarily written as "". Note that L2 is an inner product space, the

inner product being defined by

( f, g) =

�

"

f (x)g7(x)dx, (1.2)
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