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Preliminaries

In one sense, set theory is the study of mathematics using the
tools of mathematics. After millennia of doing mathematics, math-
ematicians started trying to write down the rules of the game.
Since mathematics had already fanned out into many subareas,
each with its own terminology and concerns, the first task was
to find a reasonable common language. It turns out that every-
thing mathematicians do can be reduced to statements about sets,
equality and membership. These three concepts are so fundamen-
tal that we cannot define them; we can only describe them. About
equality alone, there is little to say other than “two things are
equal if and only if they are the same thing.” Describing sets and
membership has been trickier. After several decades and some
false starts, mathematicians came up with a system of laws that
reflected their intuition about sets, equality and membership, at
least the intuition that they had built up so far. Most importantly,
all of the theorems of mathematics that were known at the time
could be derived from just these laws. In this context, it is com-
mon to refer to laws as axioms, and to this particular system as
Zermelo–Fraenkel Set Theory with the Axiom of Choice, or ZFC.
In the first unit of the course, through Chapter 4, we examine this
system and get some practice using it to build up the theory of
infinite numbers.

In another sense, set theory is a part of mathematics like any
other, rich in ideas, techniques and connections to other areas.
This perspective is emphasized more than the foundational aspects
of set theory throughout the course but especially in the second
half, Chapters 5–7. There, our choice of topics within set theory is
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2 Preliminaries

designed to give the reader an impression of the depth and breadth
of the subject and where it fits within the whole of mathematics.

To get started, we review some basic notation and terminology.
We expect that the reader is familiar with the following notions
but perhaps has not seen them expressed in exactly the same way.

Ordered pairs are used everywhere in mathematics, for example,
to refer to points on the plane in geometry. The precise meaning
of (x, y) is left to the imagination in most other courses but we
need to be more specific.

Definition 1.1 (x, y) = {{x}, {x, y}} is the ordered pair with

first coordinate x and second coordinate y.

It is convenient that (x, y) is defined in terms of sets. After all,
this is set theory, so everything should be a set! The main point
of the definition is that from looking at {{x}, {x, y}} we can tell
which is the first coordinate and which is the second coordinate.
Namely, if {{x}, {x, y}} has exactly two elements, then the first
coordinate is

x = the unique z such that {z} * {{x}, {x, y}}
and the second coordinate is

y = the unique z "= x such that {x, z} * {{x}, {x, y}}.
And, if {{x}, {x, y}} has just one element, which can only happen
if x = y, then the first and second coordinates are both

x = the unique z such that {z} * {{x}}.
To understand this formula, keep in mind that

{x, y} = {y, x}
and

{x, x} = {x}.
In particular,

{{x}, {x, x}} = {{x}, {x}} = {{x}}
and {x} is the only element of {{x}}.
Definition 1.2 A × B = {(x, y) | x * A and y * B} is the
Cartesian product of A and B.
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Preliminaries 3

Definition 1.3 R is a relation from A to B iff R is a subset of
A × B, that is

R ¦ A × B.

Sometimes, if we know that R is a relation, then we write xRy
instead of (x, y) * R. For example, we write

:
2 < π

not

(
:

2, π) *<

because the latter is confusing.

Definition 1.4 Let R be a relation from A to B and S ¦ A.

1. The domain of R is

dom(R) = {x * A | there exists y such that xRy}.

2. The image of S under R is

R[S] = {y * B | there exists x * S such that xRy}.

3. The range of R is

ran(R) = {y * B | there exists x such that xRy}.

Notice that ran(R) = R[dom(R)].

Definition 1.5 f is a function from A to B iff f is a relation
from A to B and, for every x * A, there exists a unique y such
that (x, y) * f .

If we happen to know that f is a function, then we write

f(x) = y

instead of (x, y) * f . When we write f : A ³ B, it is implicit that
f is a function from A to B. In certain situations, we refer to a
function f by writing x !³ f(x) or !f(x) | x * A!. There are times
when we write fx instead of f(x); this is when we are thinking of
elements x of A as indices and !fx | x * A! as an indexed family.
If the domain of f consists of ordered pairs, then it is common
to write f(x, x!) instead of f((x, x!)). Functions are also called
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4 Preliminaries

operations and maps. Some people distinguish between a function
f : A ³ B and its graph,

graph(f) = {(x, f(x)) | x * A},

but we do not. To us they are the same, that is, f = graph(f), as
we see from Definition 1.5.

Definition 1.6 If f : A ³ B is a function and S ¦ A, then the
restriction of f to S is

f � S = {(x, f(x)) | x * S}.

Definition 1.7 Let f : A ³ B be a function.

1. f is an injection iff for all x, x! * A, if x "= x!, then f(x) "= f(x!).

2. f is a surjection iff for every y * B, there exists x * A such
that f(x) = y.

3. f is a bijection iff f is both an injection and a surjection.

Injections are also called one-to-one functions. Surjections from
A to B are also called functions from A onto B. Bijections are
also called one-to-one correspondences.

Definition 1.8 If f is an injection from A to B, then we write
f21 for the unique injection g : f [A] ³ A with the property that
g(f(x)) = x for every x * A. In other words,

f21 = {(f(x), x) | x * A}.

Finally, we assume that the reader has good intuition about the
set of integers,

Z = {. . . ,22,21, 0, 1, 2, . . . },

the set of rational numbers,

Q = {m/n | m, n * Z and n "= 0}

and the set of real numbers, R. One thing we will do in this course
is define all these kinds of numbers, starting from the natural
numbers 0, 1, 2, 3, 4, etc. Each natural number will be the set of
natural numbers that precedes it. Thus 0 = ', where ' is the set
with no members. After that, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2},
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Preliminaries 5

4 = {0, 1, 2, 3}, etc. This happens to be very convenient because
then

m < n ñó m * n.

In other words, the usual ordering on the natural numbers coin-
cides with membership.

We use natural numbers to denote cardinality, for example,
when we say, “Lance Armstrong won the Tour de France seven
times.” And we use natural numbers to denote order, for example,
when we say, “the attorney general is seventh in the presidential
line of succession.” Another thing we will do in this course is ex-
tend the notions of cardinality and order into the infinite. Finite
cardinal and ordinal numbers are basically the same thing; one
could say that the difference between “seven” and “seventh” is
just grammatical. However, the difference between infinite cardi-
nal and ordinal numbers is more profound, as we will explain in
Chapters 3 and 4.

Exercises

Exercise 1.1 If R is a relation, then we define

R21 = {(y, x) | xRy}.
Give an example where R is a function but R21 is not.

Exercise 1.2 How many functions whose domain is the empty
set are there? In other words, given a set B, how many functions
f : ' ³ B are there?

Exercise 1.3 Explain why (x, y, z) = (x, (y, z)) is a reasonable
definition of an ordered triple.

Exercise 1.4 Equivalence relations play an important role in
this book. We assume that the reader has studied them before
but this exercise reviews all the necessary definitions and facts.
Let A be a set and R be a relation on A, that is, R ¦ A × A.
Then:

" R is a reflexive relation on A iff for every x * A, xRx.
" R is a symmetric relation on A iff for all x, y * A, if xRy, then

yRx.
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6 Preliminaries

" R is a transitive relation on A iff for all x, y, z * A, if xRy and
yRz, then xRz.1

" R is an equivalence relation on A iff R is a reflexive, symmetric
and transitive relation on A.

Assuming that R is an equivalence relation on A, for every x * A,
we define the equivalence class of x to be

[x]R = {y * A | xRy}.
It is also standard to write

A/R = {[x]R | x * A}.
A partition of A is a family F of non-empty subsets of A such that

" A is the union of F , that is,

A =
�

F = {x | there exists X * F such that x * X}
and

" the elements of F are pairwise disjoint, that is, for all X, Y * F ,
if X "= Y , then X + Y = '.

Now here are the exercises:

1. Let R be an equivalence relation on A. Prove that A/R is a
partition of A.

2. Let F be a partition of A. Prove that there exists a unique
equivalence relation R such that F = A/R.

1 Later in the book we will define transitive set, which is different from transitive

relation. Unfortunately, it will be important to pay attention to this subtle
difference in terminology.
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ZFC

In the most general terms, when we talk about a mathematical the-
ory, we have in mind a collection of axioms in a certain language.
The language of set theory has two symbols, = and *, although
sometimes we add symbols that are defined in terms of these two
to make things easier to read. For example, we write A ¦ B when
we mean that, for every x, if x * A, then x * B.

Zermelo–Fraenkel Set Theory with the Axiom of Choice, or ZFC

for short, is a certain theory in the language of set theory that we
will describe in this chapter. There are infinitely many axioms of
ZFC, each of which says something rather intuitive about sets,
equality and membership. In our list below, some axioms of ZFC
are presented individually whereas others are presented as schemes

for generating infinitely many axioms. One last comment about
terminology before we begin: throughout the course,

set = collection = family

and

member = element.

Also, the three phrases,

" x belongs to A,

" x is an element of A and

" x is a member of A,

all mean the same thing, namely x * A.
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8 ZFC

Empty Set Axiom

This axiom says that there is a unique set without members. For-
mally, it is written

#!A "x (x "* A) .

In plain English, this says:

There exists a unique A such that, for every x,

x is not an element of A.

The unique set without elements is written '.

Extensionality Axiom

This axiom says that two sets are equal if they have the same
members. Formally, it is written

"A "B [ "x (x * A ñó x * B) =ó A = B ] .

Because we defined

A ¦ B ñó "x (x * A =ó x * B) ,

another way to write the Extensionality Axiom is

"A "B [ (A ¦ B and B ¦ A) =ó A = B ] .

In other words, two sets are equal if each is a subset of the other.
By logic alone, if A = B, then A and B have the same members.

Combining this fact with the Extensionality Axiom, we have that

"A "B [ "x (x * A ñó x * B) ñó A = B ] .

Equivalently,

"A "B [ (A ¦ B and B ¦ A) ñó A = B ] .

Pairing Axiom

This axiom allows us to form singletons and unordered pairs. Its
formal statement is

"x "y #!A "z [z * A ñó (z = x or z = y)] .

If x "= y, then we write {x, y} for the unique set whose only
members are x and y and call it an unordered pair. We always
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ZFC 9

write {x} instead of {x, x} and call it a singleton. At this point,
it makes sense to define the first three natural numbers 0 = ',
1 = {0} and 2 = {0, 1}. We can also justify defining ordered pairs

by setting

(x, y) = {{x} , {x, y}}
whenever we are given x and y as we did in Definition 1.1. As a
reminder, when x = y, what we really have is

(x, x) = {{x}} .

Notice that, based on this definition, when we write (x, y), we can
tell that x is the first coordinate and y is the second coordinate.
Formally, this means we can prove that for all x, y, x! and y!,

(x, y) = (x!, y!) ñó (x = x! and y = y!).

Union Axiom

This axiom allows us to form unions. Its formal statement is

"F #!A "x [x * A ñó #Y * F (x * Y )] .

We write
�F for the unique set whose members are exactly the

members of the members of F . In other words,
�

F = {x | there exists Y * F such that x * Y }.

It is important to note that, in the Union Axiom, the family F is
allowed to be infinite. We often use different notation when F is
finite. For example, we define

A * B =
�

{A, B}

and

A * B * C =
�

{A, B, C}.

At this point, we can define the remaining natural numbers

3 = 2 * {2} = {0, 1, 2},

4 = 3 * {3} = {0, 1, 2, 3},

5 = 4 * {4} = {0, 1, 2, 3, 4}
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10 ZFC

and, in general,

n + 1 = n * {n} = {0, . . . , n}.

Power Set Axiom

This axiom allows us to form the set of all subsets of a given set.
Its formal statement is

"A #!F "X (X * F ñó X ¦ A).

We write P(A) for the unique set of subsets of A. In other words,

P(A) = {X | X ¦ A}.
We call P(A) the power set of A. As an example, let us see what
happens when we start with the empty set and take power sets
over and over. Define

V0 = ',

V1 = P(V0) = {'},

V2 = P(V1) = {', {'}},

V3 = P(V2) = {', {'}, {{'}}, {', {'}}}
and, in general,

Vn+1 = P(Vn).

The sets Vn will come up again later.

Comprehension Scheme

This axiom scheme gives us a way to form specific subsets of a
given set. It says the following.

For each “property” P (x), the following is an axiom:

"A #!B "x [x * B ñó (x * A and P (x))] .

Notice that the word “property” appears in quotes. There are
infinitely many properties, which is why ZFC has infinitely many
axioms. We will not give a formal definition of “property” because
it involves first-order logic, which is not a prerequisite. It is enough

www.cambridge.org/9781107008175
www.cambridge.org

