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Introduction

In this first chapter we motivate our method via the assignment problem.

Through this problem, we highlight the basic ingredients and ideas of the

method. We then give an outline of how a typical chapter in the rest of the

book is structured, and how the remaining chapters are organized.

1.1 The assignment problem

Consider the classical assignment problem: Given a bipartite graph G = (V1 ∪

V2,E) with |V1| = |V2| and weight function w : E → R+, the objective is to

match every vertex in V1 with a distinct vertex in V2 to minimize the total

weight (cost) of the matching. This is also called the minimum weight bipartite

perfect matching problem in the literature and is a fundamental problem in

combinatorial optimization. See Figure 1.1 for an example of a perfect matching

in a bipartite graph.

One approach to the assignment problem is to model it as a linear program-

ming problem. A linear program is a mathematical formulation of the problem

with a system of linear constraints that can contain both equalities and inequal-

ities, and also a linear objective function that is to be maximized or minimized.

In the assignment problem, we associate a variable xuv for every {u,v} ∈ E.

Ideally, we would like the variables to take one of two values, zero or one

(hence in the ideal case, they are binary variables). When xuv is set to one, we

intend the model to signal that this pair is matched; when xuv is set to zero,

we intend the model to signal that this pair is not matched. The following is a

linear programming formulation of the assignment problem:

minimize
∑

u,v

wuv xuv

subject to
∑

v:{u,v}∈E

xuv = 1 ∀u ∈ V1
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Figure 1.1 The solid edges form a perfect matching in the bipartite graph.

∑

u:{u,v}∈E

xuv = 1 ∀v ∈ V2

xuv ≥ 0 ∀{u,v} ∈ E

The objective function is to minimize the total weight of the matching, while

the two sets of linear equalities ensure that every vertex in V1 is matched to

exactly one vertex in V2 in the assignment and vice-versa.

A fundamental result in the operations research literature [71] is the polyno-

mial time solvability (as well as the practical tractability) of linear programming

problems. There is also a rich theory of optimality (and certificates for it) that

has been developed (see e.g., the text by Chvatal [29]). Using these results,

we can solve the problem we formulated earlier quite effectively for even very

large problem sizes.

Returning to the formulation, however, our goal is to find a “binary” assign-

ment of vertices in V1 to vertices in V2, but in the solution returned, the

x-variables may take fractional values. Nevertheless, for the assignment prob-

lem, a celebrated result that is a cornerstone of combinatorial optimization [30]

states that for any set of weights that permit a finite optimal solution, there

is always an optimal solution to the preceding linear program (LP) that takes

binary values in all the x-variables.

Such integrality results of LPs are few and far between, but reveal rich under-

lying structure for efficient optimization over the large combinatorial solution

space [121]. They have been shown using special properties of the constraint
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matrix of the problem (such as total unimodularity) or of the whole linear sys-

tem including the right-hand side (such as total dual integrality). This book is

about a simple and fairly intuitive method that is able to re-prove many (but not

all) of the results obtained by these powerful methods. One advantage of our

approach is that it can be used to incorporate additional constraints that make

the problem computationally hard and allow us to derive good approximation

algorithms with provable performance guarantee for the constrained versions.

1.2 Iterative algorithm

Our method is iterative. Using the following two steps, it works inductively to

show that the LP has an integral optimal solution.

• If any xuv is set to 1 in an optimal solution to the LP, then we take this pair

as matched in our solution, delete them both to get a smaller problem, and

proceed to the next iteration.

• If any variable xuv is set to 0 in an optimal solution, we remove the edge

(u,v) to again get a smaller problem (since the number of edges reduces by

1) and proceed to the next iteration.

We continue these iterations till all variables have been fixed to either 0 or 1.

Given the preceding iterative algorithm, there are two claims that need to be

proven. First, the algorithm works correctly (i.e., it can always find a variable

with value 0 or 1) in each iteration, and, second, the selected matching is an

optimal (minimum weight) matching. Assuming the first claim, the second

claim can be proved by a simple inductive argument. The crux of the argument

is that in each iteration our solution pays exactly what the fractional optimal

solution pays. Moreover, the fractional optimal solution when restricted to the

residual graph remains feasible for the residual problem. This allows us to

apply an inductive argument to show that the matching we construct has the

same weight as the fractional optimal solution and is thus optimal. For the first

claim, it is not clear a priori that one can always find a variable with value 1 or

0 at every step. Indeed, the example in Figure 1.2 shows that there might not

be such a variable at some fractional optimal solution. However, we use the

important concept of the extreme point (or vertex) solutions of linear programs

to show that the preceding iterative algorithm works correctly.

Definition 1.2.1 Let P = {x : Ax = b,x ≥ 0} ⊆ R
n. Then x ∈ R

n is an extreme

point solution of P if there does not exist a nonzero vector y ∈ R
n such that

x + y,x − y ∈ P .
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Figure 1.2 (a) The fractional solution which places 1
2

on all the edges is an optimal

fractional solution but not an extreme point solution. The fractional solution in (a)

is the convex combination of the integral solutions in (b) and (c).

Extreme point solutions are also known as vertex solutions and are equivalent

to basic feasible solutions. These concepts are defined in Chapter 2. Pictorially

extreme point solutions are the corner points of the set of feasible solutions.

The following basic result shows that there is always an optimal extreme point

solution to bounded linear programs.

Lemma 1.2.2 Let P = {x : Ax = b,x ≥ 0} and assume that the optimum value

min{cT x : x ∈ P } is finite. Then for any feasible solution x ∈ P , there exists an

extreme point solution x ′ ∈ P with cT x ′ ≤ cT x.

The following rank lemma is an important ingredient in the correctness proofs

of almost all iterative algorithms in this monograph (see Chapter 2).

Lemma 1.2.3 (Rank Lemma) Let P = {x : Ax = b,x ≥ 0} and let x be an

extreme point solution of P such that xi > 0 for each i. Then the number of

variables is equal to the number of linearly independent constraints of A (i.e.

the rank of A).

1.2.1 Contradiction proof idea: Lower bound > upper bound

We give an outline of the proof that at each iteration there exists a variable

with value 0 or 1. Suppose for contradiction that 0 < xuv < 1 for every edge

{u,v} ∈ E. We use this assumption to derive a lower bound on the number of

variables of the linear program. Let n be the number of remaining vertices in

V1 (or V2, they have the same cardinality) at the current iteration. Then each

vertex in V1 must have two edges incident on it, since
∑

v∈V2:(u,v)∈E xuv = 1

and xuv < 1 for each (u,v) ∈ E. Thus, the total number of edges is at least 2n.
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This is a lower bound on the number of variables of the linear program, since

we have one variable for each edge.

On the other hand, using the rank lemma, we derive an upper bound on the

number of variables of the linear program. In the linear program for bipar-

tite matching, we have only 2n constraints (one for each vertex in V1 ∪ V2).

Moreover, these 2n constraints are dependent since the sum of the constraints

for vertices in V1 equals the sum of the constraints for vertices in V2. Hence,

the number of linearly independent constraints is at most 2n− 1. By the Rank

Lemma, the number of variables is at most 2n − 1. This provides us an upper

bound on the number of variables. Since our upper bound is strictly smaller than

the lower bound, we obtain the desired contradiction. Therefore, in an extreme

point solution of the linear program for bipartite matching, there must exist a

variable with value 0 or 1, and thus the iterative algorithm works. The number

of iterations can be simply bounded by the number of edges in the bipartite

graph. We give a formal proof of the preceding outline in Chapter 3.

1.2.2 Approximation algorithms for NP-hard problems

The preceding framework can be naturally adapted to provide an approxima-

tion algorithm via the iterative method. In particular, for this, the preceding

iterative algorithm typically has one or both of two additional steps: rounding

and relaxation.

(i) Rounding: Fix a threshold α ≥ 1. If there is a variable xi that has a value of

at least 1
α

in the optimal extreme point solution, then pick the corresponding

element in the solution being constructed.

(ii) Relaxation: Fix a threshold β. If there is a constraint
∑

i aixi ≤ b such

that
∑

i ai ≤ b+β, then remove the constraint in the residual formulation.

For the bipartite matching problem, we will see how the iterative algorithm

presented here can be adapted to give approximation algorithms for the gen-

eralized assignment problem in Chapter 3. Other generalizations include the

budgeted allocation problem in Chapter 3 and the hypergraph matching problem

in Chapter 9.

1.3 Approach outline

We now give an overview of the structure of the rest of the monograph. Early

chapters in the book contain two main components: The first deals with prov-

ing the integrality of the LP relaxation of a well-studied problem, while the

second shows how the iterative proof of integrality can be extended to design
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6 1 Introduction

approximation algorithms for NP-hard variants of these basic problems. Both

components follow the natural outline described next.

(i) Linear Programming Formulation: We start by giving a linear program-

ming relaxation for the optimization problem we study. If the problem is

polynomially solvable, this relaxation will be one with integral extreme

points, and that is what we will set out to show. If the problem is NP-hard,

we state an approximation algorithmic result, which we then set out to

prove.

(a) Solvability: Sometimes the linear programming relaxation we start

with will be exponential in size. We then show that the linear program

is solvable in polynomial time. Usually, this would entail providing

a polynomial time separation oracle for the program using the for-

malism of the ellipsoid method [67]. Informally, the separation oracle

is a procedure that certifies that any given candidate solution for the

program is either feasible or not and, in the latter case, provides a

separating hyperplane which is a violated inequality of the formula-

tion. In programs with an exponential number of such inequalities that

are implicity described, the design of the separation oracle is itself

a combinatorial optimization problem, and we sketch the reduction

to one.

(ii) Characterization of Extreme Point Solution: We then give a characteri-

zation result for the optimal extreme point solutions of the linear program

based on the rank lemma (Lemma 1.2.3). This part aims to show that any

maximal set of linearly independent tight constraints at this extreme point

solution can be captured by a sparse structure. Sometimes the proof of

this requires the use of the uncrossing technique [30] in combinatorial

optimization, which will be introduced in Chapter 4.

(iii) Iterative Algorithm: We present an iterative algorithm for constructing

an integral solution to the problem from an extreme point solution. The

algorithm has two simple steps.

(a) If there is a variable in the optimal extreme point solution that is set

to a value of 1, then include the element in the integral solution.

(b) If there is a variable in the optimal extreme point solution that is set

to a value of 0, then remove the corresponding element.

In each case, at each iteration, we reduce the problem and arrive at a resid-

ual version, then we recompute an optimal extreme point solution and

iterate the above steps until all variables have been set this way. In design-

ing approximation algorithms we also use the rounding and relaxation

steps as stated earlier.
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(iv) Analysis: We then analyze the iterative algorithm. This involves arguing

the following two facts. We establish, first, that the algorithm runs correctly

and, second, that it returns an optimal solution.

(a) Correctness: We show that the iterative algorithm is correct by argu-

ing that there is always a 1-element or a 0-element to pick in every

iteration. This crucially uses the characterization of tight constraints

at this optimal extreme point solution. The argument here also follows

the same contradiction proof idea (lower bound > upper bound): We

assume for a contradiction that there is no 1-element or 0-element and

get a large lower bound on the number of nonzero variables in the opti-

mal extreme point solution. On the other side, we use the sparsity of

the linearly independent tight constraints to show an upper bound on

the number of such constraints. This then contradicts the Rank Lemma

that insists that both these numbers are equal, and proves that there is

always a 1- or 0-element.

(b) Optimality: We finally show that the iterative algorithm indeed returns

an optimal solution using a simple inductive argument. The crux of

this argument is to show that the extreme point solution induced on the

residual problem remains a feasible solution to this residual problem.

For the NP-hard variants of the problems we study, our goal is to show that

the preceding framework can be naturally adapted to provide an approxima-

tion algorithm via the iterative method. In particular, recall that this iterative

algorithm typically has one or both of two additional steps: rounding and

relaxation.

(i) Rounding: Fix a threshold α ≥ 1. If there is a variable xi which in the

optimal extreme point solution has a value of at least 1
α

then include the

corresponding element in the solution.

Adding this rounding step does not allow us to obtain optimal integral

solution but only near-optimal solutions. Using the above step, typically

one obtains an approximation ratio of α for covering problems addressed

using this framework.

(ii) Relaxation: Fix a threshold β. If there is a constraint
∑

i aixi ≤ b such

that
∑

i ai ≤ b +β then remove the constraint in the residual formulation.

The iterative relaxation step removes a constraint and hence this con-

straint can be violated in later iterations. But the condition on the removal

of the constraints ensures that the constraint is only violated by an addi-

tive amount of β. This step enables us to obtain additive approximation

algorithms for a variety of problems.
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8 1 Introduction

To summarize, for designing approximation algorithms, we first study the

exact optimization problem in the above framework. We then use the preceding

two steps in various combinations to derive strong approximation algorithms

for constrained versions of these exact problems. In the last few chapters, we

find a few examples of approximation algorithms that do not strictly fit this

framework (e.g., multicriteria versions, cut problems, bin packing), but the

overall approach for these problems remains the same.

1.4 Context and applications of iterative rounding

One goal in presenting the collections of results in this book is to convince the

reader that iterative rounding is an effective tool in proving results in optimiza-

tion. As with any tool, a key question is: When is this tool applicable and what

are the alternates?

The iterative method for exact optimization used a rank-based argument of

the sparsity of the solution to argue integrality of a proposed linear programming

formulation of the underlying problem. In Section 13.2, we detail the earliest

application we know of this method to prove Steinitz’s result on rearrangements.

As we mentioned in the introduction, the iterative method for approximation

algorithms was introduced in the work of Jain on the survivable network design

problem. For this minimum-cost subgraph selection problem, Jain formulated

a covering linear program and showed how any extreme point always has a

positive variable of value at least half; he did this by using the sparsity of the

extreme point solution, which followed from a rank-based argument. In this

context, the iterative method is a specific version of the deterministic rounding

paradigm applied to LP relaxations for NP-hard problems. Thus, it fits in the

broader context of a variety of other LP rounding methods for the design of

approximation algorithms including randomized rounding, primal-dual meth-

ods, and Lagrangean relaxations. Among these methods, iterative rounding is

particularly applicable in solving multiobjective problems where a base prob-

lem is complicated by more than one objective function: Examples include

the bipartite matching problem complicated by additional load constraints at

each node to give the NP-hard generalized assignment problem, or the mini-

mum spanning tree (MST) problem complicated by degree constraints on nodes

gives the NP-hard bounded-degree MST problem. An understanding of the iter-

ative method applied to the base problem is then a useful guide to extending its

application to the constrained multiobjective versions.

1.5 Book chapters overview

In the next chapter, we develop all the preliminaries needed in the following

chapters. We discuss linear programs, and their polynomial time solvability
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1.5 Book chapters overview 9

using the separation oracle. We also outline the important rank lemma and other

properties about extreme point solutions. Finally, we discuss the LP duality

theorem and the complementary slackness conditions, and some basic facts

about submodular functions and graphs.

A first stream of chapters study problems in undirected graphs. In Chapter 3,

we give the first example to illustrate the iterative method on bipartite matching

and vertex cover problems. We also show how the proof for bipartite matching

leads to approximation algorithms for the generalized assignment problem and

the budgeted allocation problem. In Chapter 4, we study the classical spanning

tree problem and its extension to the minimum bounded degree spanning tree

problem. This chapter introduces the uncrossing technique in combinatorial

optimization. In Chapter 5, we generalize the arguments for undirected span-

ning trees to bases of matroids as well as to the common bases in the intersection

of two matroids, and also to the minimum bounded degree matroid basis prob-

lem and the maximum common independent set problem in the intersection

of k matroids. We also show integrality of the dual of matroid and matroid

intersection problems that lead to certain min–max results.

A second stream of chapters study problems in directed graphs. In Chapter 6,

we study the directed rooted spanning tree (or arborescence) problem, along

with a degree-bounded version and then generalize the method developed here

to a rooted k-connected subgraph problem providing a self-contained proof of

a result of Frank and Tardos [46]. This is developed further in Chapter 7 to

showing the integrality of submodular flow problems. For this last problem,

we again complement the proof of exact LP characterization with a description

of an approximation algorithm for the degree-bounded version built upon the

proof of the exact counterpart. For the submodular flow problem, we also give

a proof of the integrality of its dual.

We then present a few more advanced chapters applying the iterative method.

In Chapter 8, we apply the iterative method to general problems involv-

ing network matrices as constraint matrices (with integral right-hand sides)

and their duals. We then show the application of network matrices to derive

integrality of the duals of various linear programs encountered in earlier

chapters (such as those for matroid bases, matroid intersection, and submodu-

lar flow). In Chapter 9, we address the generalization of perfect and maximum

matchings in bipartite graphs to general graphs, and also address higher dimen-

sional matching problems. We then present a common generalization of Jain’s

2-approximation algorithm for the survivable network design problem (SNDP),

and a result of Boyd and Pulleyblank on 1-edges in the Held-Karp relaxation

for the Symmetric Traveling Salesman Problem (STSP) in Chapter 10. This
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10 1 Introduction

chapter also generalizes Jain’s result to degree bounded network design prob-

lems. In Chapter 11, we extend the application of the method to constrained

optimization problems such as partial covering and multicriteria problems. In

Chapter 12, we add the primal-dual complementary slackness conditions to

the iterative method to derive approximation results for some cut problems.

In Chapter 13 we present some early examples of iterative methods, including

the Beck-Fiala theorem on discrepancy and Karmarkar-Karp algorithm for bin

packing. Most chapters contain selected historical notes as well as exercises.

1.6 Notes

Polyhedral combinatorics, the compact polyhedral description of important

combinatorial optimization problems, is a fundamental and unifying tool in

algorithms, combinatorics, and optimization. A highlight of this line of research

is the pioneering work by Jack Edmonds [34]; we refer the reader to the

book [121] and the historical survey [119] by Schrijver for an encyclopedic

treatment of this subject.

Two closely related methods for proving integrality of polyhedra that are

widely covered in Schrijver’s book deserve mention: Total Unimodularity (TU)

and Total Dual Integrality (TDI). Informally, TU matrices are constraint matri-

ces such that for integral right-hand sides, the linear programming relaxations

provide integral solutions (whenever the solutions exist and are finite). Alter-

nately, using the relation between extreme points solutions and basic feasible

solutions to LPs developed in the next chapter, these matrices are those for

which every square submatrix has determinant value zero, plus one or minus

one. The class of Network matrices that we will study in Chapter 8 is an impor-

tant example of such TU matrices. Total Dual Integrality involves both the

constraint matrix and the right-hand side: A system of inequalities defined by a

constraint matrix and right-hand side vector is TDI if, for all integer objective

coefficients, the dual program has an integral solution (whenever it exists and

is finite). If a system is TDI for an integral right-hand side, then the polyhe-

don described by the system is integral hence giving another way of providing

characterizations of integral solutions to combinatorial optimization problems.

A popular example of an integral characterization that arises from a TDI sys-

tem is the description of matchings in general graphs that we develop using our

alternate iterative method in Chapter 9.

An implicit use of the iterative method is found in the alternate proof of

Steinitz’s theorem due to Grinberg and Sevastyanov [10, 65, 127]. Earlier uses

of the iterative relaxation method can be traced back to the proof of a discrepancy

theorem by Beck and Fiala [14] and the approximation algorithm for the bin
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