Thermal Physics: Concepts and Practice

Thermodynamics has benefited from nearly 100 years of parallel development with quantum mechanics. As a result, thermal physics has been considerably enriched in concepts, technique and purpose, and now has a dominant role in developments of physics, chemistry and biology. This unique book explores the meaning and application of these developments using quantum theory as the starting point.

The book links thermal physics and quantum mechanics in a natural way. Concepts are combined with interesting examples, and entire chapters are dedicated to applying the principles to familiar, practical and unusual situations. Together with end-of-chapter exercises, this book gives advanced undergraduate and graduate students a modern perception and appreciation for this remarkable subject.

Allen L. Wasserman is Professor (Emeritus) in the Department of Physics, Oregon State University. His research area is condensed matter physics.

Thermal Physics

Concepts and Practice

ALLEN L. WASSERMAN

Oregon State University

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107006492

© A. Wasserman 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Wasserman, Allen L. Thermal physics : concepts and practice / Allen L. Wasserman. p. cm. Includes bibliographical references and index. ISBN 978-1-107-00649-2 (Hardback) 1. Thermodynamics. 2. Entropy. 3. Statistical mechanics. I. Title. QC311.W37 2011 536'.7-dc23

2011036379

ISBN 978-1-107-00649-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface				
1	Intro	1		
	1.1	The beginning	1	
	1.2	Thermodynamic vocabulary	3	
	1.3	Energy and the First Law	4	
	1.4	Quantum mechanics, the "mother of theories"	6	
	1.5	Probabilities in quantum mechanics	9	
	1.6	Closing comments	11	
2	A roa	d to thermodynamics	12	
	2.1	The density operator: pure states	12	
	2.2	Mixed states	15	
	2.3	Thermal density operator ρ_{op}^{τ} and entropy	20	
	Prob	lems and exercises	23	
3	Work	, heat and the First Law	25	
	3.1	Introduction	25	
	3.2	Exact differentials	28	
	3.3	Equations of state	28	
	3.4	Heat capacity	38	
	3.5	Concluding remarks	47	
	Prob	47		
4	A ma	49		
	4.1	Thermodynamic differentials	49	
	4.2	Exact differentials	50	
	4.3	Euler's homogeneous function theorem	54	
	4.4	A cyclic chain rule	55	
	4.5	Entropy and spontaneous processes	60	
	4.6	Thermal engines	65	
	Problems and exercises			

۷

vi			Contents	
	5	Thern	nodynamic potentials	73
		5.1	Introduction	73
		5.2	Enthalpy and throttling	79
		5.3	Entropy and heat capacity	81
		Prob	blems and exercises	83
	6	Know	ving the "unknowable"	85
		6.1	Entropy: ticket to the Emerald City	85
		6.2	The bridge	86
		6.3	Thermodynamic hamiltonians	87
		6.4	Microcanonical (Boltzmann) theory	89
		6.5	Gibbs' canonical theory	93
		6.6	Canonical thermodynamics	94
		6.7	Degeneracy and \mathcal{Z}	96
		6.8	Closing comments	103
		Prob	blems and exercises	103
	7	The ic	deal gas	106
		7.1	Introduction	106
		7.2	Ideal gas law	107
		7.3	Quasi-classical model	108
		7.4	Ideal gas partition function	109
		7.5	Thermodynamics of the ideal gas	111
		7.6	Gibbs' entropy paradox	113
		7.7	Entropy of mixing	114
		7.8	The non-ideal gas	115
		Prob	blems and exercises	115
	8	The t	wo-level system	117
		8.1	Anomalous heat capacity	117
		8.2	Schottky model	117
		8.3	Two-level systems and negative temperature	120
		Prob	plems and exercises	122
	9	Lattic	ce heat capacity	123
		9.1	Heat capacity of solids	123
		9.2	Einstein's model	124
		9.3	Einstein model in one dimension	124
		9.4	The three-dimensional Einstein model	128
		9.5	Debye model	131
		Prob	plems and exercises	133

vii	Contents		
	10 Electomore: ontrony enringe	126	
	10 1 Naive one-dimensional elastomer	130	
	10.2 Florgation as an extensive observable	138	
	10.3 Properties of the naive one-dimensional "rubber hand"	140	
	10.4 "Hot rubber bands": a thermodynamic analysis	143	
	10.5 A non-ideal elastomer	146	
	10.6 Three-dimensional elastomer thermodynamics	149	
	Problems and exercises	151	
	11 Magnetic thermodynamics	154	
	11.1 Magnetism in solids	154	
	11.2 Magnetic work	156	
	11.3 Microscopic models and uniform fields	160	
	11.4 Local paramagnetism	161	
	11.5 Simple paramagnetism	162	
	11.6 Local paramagnet thermodynamics	164	
	11.7 Magnetization fluctuations	167	
	11.8 A model for ferromagnetism	169	
	11.9 A mean field approximation	170	
	11.10 Spontaneous magnetization	172	
	11.11 Critical exponents	173	
	11.12 Curie–Weiss magnetic susceptibility $(T > T_c)$	174	
	11.13 Closing comment	174	
	12 Open systems	175	
	12.1 Variable particle number	175	
	12.2 Thermodynamics and particle number	176	
	12.3 The open system	176	
	12.4 A "grand" example: the ideal gas	182	
	12.5 Van der Waals' equation	184	
	12.6 A star is born	186	
	12.7 Closing comment	191	
	Problems and exercises	191	
	13 The amazing chemical potential	192	
	13.1 Introduction	192	
	13.2 Diffusive equilibrium	193	
	13.3 Thermodynamics of chemical equilibrium	196	
	13.4 A law of mass action	198	
	13.5 Thermodynamics of phase equilibrium	200	
	13.6 Gibbs–Duhem relation	201	
	13.7 Multiphase equilibrium	202	

viii	Contents		
	12.9 The Clausius Claneuron equation	202	
	13.0 Surface adsorption: Langmuir's model	203	
	12.10 Dissociative adaptation	204	
	12.11 Crystelling histokility	207	
	Droklame and evening	208	
	Problems and exercises	210	
	14 Thermodynamics of radiation	212	
	14.1 Introduction	212	
	14.2 Electromagnetic eigen-energies	213	
	14.3 Thermodynamics of electromagnetism	214	
	14.4 Radiation field thermodynamics	216	
	14.5 Stefan–Boltzmann, Planck, Rayleigh–Jeans laws	217	
	14.6 Wien's law	220	
	14.7 Entropy of thermal radiation	221	
	14.8 Stefan–Boltzmann radiation law	221	
	14.9 Radiation momentum density	224	
	Problems and exercises	225	
	15 Ideal Fermi gas	228	
	15.1 Introduction	228	
	15.2 Ideal gas eigen-energies	228	
	15.3 Grand partition function	229	
	15.4 Electron spin	230	
	15.5 Fermi–Dirac thermodynamics	231	
	15.6 Independent fermion model	233	
	15.7 The chemical potential $(T \neq 0)$	234	
	15.8 Internal energy $(T \neq 0)$	236	
	15.9 Pauli paramagnetic susceptibility	237	
	15.10 Electron gas model	238	
	15.11 White dwarf stars	241	
	Problems and exercises	243	
	16 Ideal Bose–Einstein system	246	
	16.1 Introduction	246	
	16.2 Ideal Bose gas	247	
	16.3 Bose–Einstein thermodynamics	248	
	16.4 The ideal BE gas and the BE condensation	240	
	Problems and exercises	253	
	17 Thermodynamics and the cosmic microwave background	255	
	17.1 Introduction	255	
	17.1 Thirduction	233	
	17.2 Thermouynamic method	257	

17.3Moving frame thermodynamic potential $\hat{\Omega}$ 25717.4Radiation energy flux261Problems and exercises262Appendix AHow pure is pure? An inequality263A.1 $0 < Tr(\rho_{t,p})^2 \leq 1$ 263Appendix BBias and the thermal lagrangian264B.1Properties of \mathcal{F} 264B.2The "bias" function265B.3A thermal Lagrangian266C.1The theorem268C.2The proof268C.2The proof268Appendix CEuler's homogeneous function theorem269Appendix DOccupation numbers and the partition function269Appendix DDefinition271E.1Definition271E.2Examples271Appendix FAlab experiment in elasticity275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.3Work and uniform fields279G.4Thermodynamic potentials and magnetic fields285H.1Maxwell's equations and electromagnetic fields285H.2Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293	ix	Contents	Contents		
17.4Radiation energy flux261Problems and exercises262Appendix AHow pure is pure? An inequality263A.1 $0 < Tr(\rho_{xp}^{-})^2 \leq 1$ 263Appendix BBias and the thermal Lagrangian264B.2The "bias" function265B.3A thermal Lagrangian266Appendix CEuler's homogeneous function theorem268C.1The theorem268C.2The proof268Appendix DOccupation numbers and the partition function269Appendix DDecupation numbers and the partition function269Appendix CBale experiment in elasticity275F.1Definition271E.2Examples271Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields278G.3Work and uniform fields279G.4Thermodynamics with internal fields285H.1Maxwell's equations and electromagnetic fields285H.2Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian293I.1Introdu		17.3 Moving frame thermodynamic potential $\tilde{\Omega}$	257		
Problems and exercises262Appendix AHow pure is pure? An inequality263A.1 $0 < Tr(\rho_{ij}^*)^2 \leq 1$ 263Appendix BBias and the thermal Lagrangian264B.1Properties of \mathcal{F} 264B.2The "bias" function265B.3A thermal Lagrangian266C.1The theorem268C.2The proof268Appendix CEuler's homogeneous function theorem268C.2The proof268Appendix DOccupation numbers and the partition function269Appendix DDesity of states271E.1Definition271E.2Examples271Appendix FAlab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields278G.3Work and uniform fields279G.4Thermodynamics with internal fields283H.1Maxwell's equations and electromagnetic fields285H.2Electromagnetic waves285H.3Electromagnetic waves285H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		17.4 Radiation energy flux	261		
Appendix AHow pure is pure? An inequality263A.1 $0 < \mathcal{T}r (\rho_{0p}^*)^2 \leq 1$ 263Appendix BBias and the thermal Lagrangian264B.1Properties of \mathcal{F} 264B.2The "bias" function265B.3A thermal Lagrangian266Appendix CEuler's homogeneous function theorem268C.1The theorem268C.2The proof268Appendix DOccupation numbers and the partition function269Appendix DOccupation numbers and the partition function269Appendix EDensity of states271E.1Definition271E.2Examples275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.3Work and uniform fields279G.4Thermodynamic potentials and magnetic fields278G.3Work and uniform fields279G.4Thermodynamics with internal fields283H.1Maxwell's equations285H.2Electromagnetic vector potential285H.3Electromagnetic vector potential285H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		Problems and exercises	262		
A.1 $0 < Tr(\rho_{op}^{1})^{2} \leq 1$ 263Appendix BBias and the thermal Lagrangian264B.1Properties of \mathcal{F} 264B.2The "bias" function265B.3A thermal Lagrangian266Appendix CEuler's homogeneous function theorem268C.1The theorem268C.2The proof268Appendix DOccupation numbers and the partition function269Appendix EDensity of states271E.1Definition271E.2Examples271Appendix FA lab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields283Appendix HMaxwell's equations and electromagnetic fields285H.1Maxwell's equations285H.2Electromagnetic waves285H.3Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		Appendix A How pure is pure? An inequality	263		
Appendix BBias and the thermal Lagrangian264B.1Properties of \mathcal{F} 264B.2The "bias" function265B.3A thermal Lagrangian266Appendix CEuler's homogeneous function theorem268C.1The theorem268C.2The proof268C.2The proof269Appendix DOccupation numbers and the partition function269Appendix DDensity of states271E.1Definition271E.2Examples271Appendix FAlab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields278G.3Work and uniform fields285H.1Maxwell's equations and electromagnetic fields285H.2Electromagnetic vector potential285H.3Electromagnetic vector potential285H.4Quantized electromagnetic hamiltonian290Appendix Ifermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		A.1 $0 < Tr(\rho_{op}^{\tau})^2 \le 1$	263		
B.1Properties of \mathcal{F} 264B.2The "bias" function265B.3A thermal Lagrangian266Appendix CEuler's homogeneous function theorem268C.1The theorem268C.2The proof268Appendix DOccupation numbers and the partition function269Appendix EDensity of states271E.1Definition271E.2Examples271Appendix FAlab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields278G.3Work and uniform fields279G.4Thermodynamics with internal fields285H.1Maxwell's equations285H.2Electromagnetic vector potential285H.3Electromagnetic vector potential288H.4Quantized electromagnetic fields293I.1Introduction293I.2Expansion method; $\beta \mu \gg 1$ 293		Appendix B Bias and the thermal Lagrangian	264		
B.2The "bias" function265B.3A thermal Lagrangian266Appendix CEuler's homogeneous function theorem268C.1The theorem268C.2The proof268Appendix DOccupation numbers and the partition function269Appendix EDensity of states271E.1Definition271E.2Examples271Appendix FAlab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields279G.4Thermodynamics with internal fields285H.1Maxwell's equations285H.2Electromagnetic vector potential288H.4Quantized electromagnetic fields285H.3Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Diracintegals293I.1Introduction293I.2Expansion method: $βμ \gg 1$ 293		B.1 Properties of \mathcal{F}	264		
B.3A thermal Lagrangian266Appendix CEuler's homogeneous function theorem268C.1The theorem268C.2The proof268Appendix DOccupation numbers and the partition function269Appendix EDensity of states271E.1Definition271E.2Examples271Appendix FAlab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields279G.4Thermodynamics with internal fields285H.1Maxwell's equations285H.2Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $βμ \gg 1$ 293		B.2 The "bias" function	265		
Appendix CEuler's homogeneous function theorem268C.1The theorem268C.2The proof268Appendix DOccupation numbers and the partition function269Appendix EDensity of states271E.1Definition271E.2Examples271Appendix FA lab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields279G.4Thermodynamics with internal fields283Appendix HMaxwell's equations285H.1Maxwell's equations285H.2Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian200Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		B.3 A thermal Lagrangian	266		
C.1The theorem268C.2The proof268Appendix DOccupation numbers and the partition function269Appendix EDensity of states271E.1Definition271E.2Examples271Appendix FA lab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields279G.4Thermodynamics with internal fields285H.1Maxwell's equations285H.2Electromagnetic vector potential285H.3Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals2931.1Introduction2931.2Expansion method: $\beta \mu \gg 1$ 293		Appendix C Euler's homogeneous function theorem	268		
C.2The proof268Appendix DOccupation numbers and the partition function269Appendix EDensity of states271E.1Definition271E.2Examples271Appendix FAlab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields279G.4Thermodynamics with internal fields285H.1Maxwell's equations285H.2Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		C.1 The theorem	268		
Appendix DOccupation numbers and the partition function269Appendix EDensity of states271E.1Definition271E.2Examples271Appendix FA lab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields279G.4Thermodynamics with internal fields283Appendix HMaxwell's equations285H.1Maxwell's equations285H.2Electromagnetic vector potential285H.3Electromagnetic vector potential281H.4Quantized electromagnetic hamiltonian293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		C.2 The proof	268		
Appendix EDensity of states271E.1Definition271E.2Examples271Appendix FA lab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields279G.3Work and uniform fields279G.4Thermodynamics with internal fields283Appendix HMaxwell's equations285H.1Maxwell's equations285H.2Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian293I.1Introduction293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		Appendix D Occupation numbers and the partition function	269		
E.1Definition271E.2Examples271Appendix FA lab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields279G.3Work and uniform fields279G.4Thermodynamics with internal fields283Appendix HMaxwell's equations and electromagnetic fields285H.1Maxwell's equations285H.2Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		Appendix E Density of states	271		
E.2Examples271Appendix FA lab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields279G.4Thermodynamics with internal fields283Appendix HMaxwell's equations and electromagnetic fields285H.1Maxwell's equations285H.2Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		E.1 Definition	271		
Appendix FA lab experiment in elasticity275F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields279G.3Work and uniform fields279G.4Thermodynamics with internal fields283Appendix HMaxwell's equations and electromagnetic fields285H.1Maxwell's equations285H.2Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		E.2 Examples	271		
F.1Objectives275F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields279G.3Work and uniform fields279G.4Thermodynamics with internal fields283Appendix HMaxwell's equations and electromagnetic fields285H.1Maxwell's equations285H.2Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		Appendix F A lab experiment in elasticity	275		
F.2Results and analysis277Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields278G.3Work and uniform fields279G.4Thermodynamics with internal fields283Appendix HMaxwell's equations and electromagnetic fields285H.1Maxwell's equations285H.2Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		F.1 Objectives	275		
Appendix GMagnetic and electric fields in matter278G.1Introduction278G.2Thermodynamic potentials and magnetic fields278G.3Work and uniform fields279G.4Thermodynamics with internal fields283Appendix HMaxwell's equations and electromagnetic fields285H.1Maxwell's equations285H.2Electromagnetic vector potential288H.3Electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		F.2 Results and analysis	277		
G.1Introduction278G.2Thermodynamic potentials and magnetic fields278G.3Work and uniform fields279G.4Thermodynamics with internal fields283Appendix HMaxwell's equations and electromagnetic fields285H.1Maxwell's equations285H.2Electromagnetic waves285H.3Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		Appendix G Magnetic and electric fields in matter	278		
G.2Thermodynamic potentials and magnetic fields278G.3Work and uniform fields279G.4Thermodynamics with internal fields283Appendix HMaxwell's equations and electromagnetic fields285H.1Maxwell's equations285H.2Electromagnetic waves285H.3Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		G.1 Introduction	278		
G.3Work and uniform fields279G.4Thermodynamics with internal fields283Appendix HMaxwell's equations and electromagnetic fields285H.1Maxwell's equations285H.2Electromagnetic waves285H.3Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		G.2 Thermodynamic potentials and magnetic fields	278		
G.4Thermodynamics with internal fields283Appendix HMaxwell's equations and electromagnetic fields285H.1Maxwell's equations285H.2Electromagnetic waves285H.3Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		G.3 Work and uniform fields	279		
Appendix HMaxwell's equations and electromagnetic fields285H.1Maxwell's equations285H.2Electromagnetic waves285H.3Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		G.4 Thermodynamics with internal fields	283		
H.1Maxwell's equations285H.2Electromagnetic waves285H.3Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix Fermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		Appendix H Maxwell's equations and electromagnetic fields	285		
H.2Electromagnetic waves285H.3Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix Fermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		H.1 Maxwell's equations	285		
H.3Electromagnetic vector potential288H.4Quantized electromagnetic hamiltonian290Appendix IFermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		H.2 Electromagnetic waves	285		
H.4Quantized electromagnetic hamiltonian290Appendix Fermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		H.3 Electromagnetic vector potential	288		
Appendix Fermi-Dirac integrals293I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		H.4 Quantized electromagnetic hamiltonian	290		
I.1Introduction293I.2Expansion method: $\beta \mu \gg 1$ 293		Appendix I Fermi–Dirac integrals	293		
I.2 Expansion method: $\beta \mu \gg 1$ 293		I.1 Introduction	293		
		I.2 Expansion method: $\beta \mu \gg 1$	293		

x	Contents	
	Appendix J Bose–Einstein integrals	296
	J.1 BE integrals: $\mu = 0$	296
	J.2 BE integrals: $\mu < 0$	297
	Index	299

Preface

In the preface to his book Statistical Mechanics Made Simple Professor Daniel Mattis writes:

My own experience in thermodynamics and statistical mechanics, a half century ago at M.I.T., consisted of a single semester of Sears, skillfully taught by the man himself. But it was a subject that seemed as distant from "real" physics as did poetry or French literature.¹

This frank but discouraging admission suggests that thermodynamics may not be a course eagerly anticipated by many students – not even physics, chemistry or engineering majors – and at completion I would suppose that few are likely to claim it was an especially inspiring experience. With such open aversion, the often disappointing performance on GRE^2 questions covering the subject should not be a surprise. As a teacher of the subject I have often conjectured on reasons for this lack of enthusiasm.

Apart from its subtlety and perceived difficulty, which are probably immutable, I venture to guess that one problem might be that most curricula resemble the thermodynamics of nearly a century ago.

Another might be that, unlike other areas of physics with their epigrammatic equations – Newton's, Maxwell's or Schrödinger's, which provide accessibility and direction – thermal physics seems to lack a comparable unifying principle.³ Students may therefore fail to see conceptual or methodological coherence and experience confusion instead.

With those assumptions I propose in this book alternatives which try to address the disappointing experience of Professor Mattis and undoubtedly others.

Thermodynamics, the set of rules and constraints governing interconversion and dissipation of energy in macroscopic systems, can be regarded as having begun with Carnot's (1824) pioneering paper on heat-engine efficiency. It was the time of the industrial revolution, when the caloric fluid theory of heat was just being questioned and steam-engine efficiency was, understandably, an essential preoccupation. Later in that formative period Rudolf Clausius introduced a *First Law of Thermodynamics* (1850), formalizing the principles governing macroscopic energy conservation.

xi

¹ Daniel Mattis, *Statistical Mechanics Made Simple*, World Scientific Publishing, Singapore (2003).

 $^{^{2}\,}$ Graduate Record Examination: standardized graduate school admission exam.

³ R. Baierlein, "A central organizing principle for statistical and thermal physics?", *Am. J. Phys.* **63**, 108 (1995).

xii

Preface

Microscopic models were, at the time, largely ignored and even regarded with suspicion, to the point where scientific contributions by some proponents of such interpretations were roundly rejected by the editors of esteemed journals. Even with the intercession in support of kinetic models by the respected Clausius (1857), they stubbornly remained regarded as over-imaginative, unnecessary appeals to invisible, unverifiable detail – even by physicists. A decade later when Maxwell (1866) introduced probability into physics bringing a measure of statistical rigor to kinetic (atomic) gas models there came, at last, a modicum of acceptance.

Within that defining decade the already esteemed Clausius (1864) invented a novel, abstract quantity as the centerpiece of a *Second Law of Thermodynamics*, a new principle – which he named *entropy* – to change forever our understanding of thermal processes and, indeed, all natural processes. Clausius offered no physical interpretation of entropy, leaving the matter open to intense speculation. Ludwig Boltzmann, soon to be a center of controversy, applied Maxwell's microscopic probability arguments to postulate a statistical model of entropy based on counting discrete "atomic" configurations referred to, both then and now, as "microstates".⁴ However, Boltzmann's ideas on entropy, which assumed an atomic and molecular reality, were far from universally embraced – a personal disappointment which some speculate led to his suicide in 1906.

Closing the book on 19th-century thermal physics, J. W. Gibbs reconciled Newtonian mechanics with thermodynamics by inventing *statistical mechanics*⁵ based on the still mistrusted presumption that atoms and molecules were physical realities. In this indisputably classic work, novel statistical "ensembles" were postulated to define thermodynamic averages, a statistical notion later adopted in interpreting quantum theories. Shortcomings and limited applicability of this essentially Newtonian approach notwithstanding, it provided prescient insights into the *quantum mechanics*, whose full realization was still a quarter century in the future.

Quantum mechanics revolutionized physics and defines the modern scientific era. Developing in parallel with it, and synergistically benefiting from this reshaped scientific landscape, thermal physics has come to occupy a rightful place among the pillars of modern physics.

Quantum mechanics' natural, internally consistent unification of statistics with microscopic mechanics immediately suggests the possibility of a thermodynamics derived, in some way, from microscopic quantum averages and quantum probabilities. But thermodynamic systems are not simply the isolated quantum systems familiar from most quantum mechanics courses. Thermodynamics is about *macroscopic* systems, i.e. many-particle quantum systems that are never perfectly isolated from the remainder of the universe. This interaction with the "outside" has enormous

⁴ Boltzmann's microstates suggested to Planck (1900) what eventually became the quantization he incorporated into his theory of electromagnetic radiation.

⁵ J. W. Gibbs, *The Elementary Principles of Statistical Mechanics*, C. Scribner, New York (1902).

xiii

Preface

consequences which, when taken into account quantitatively, clarifies the essence of thermodynamics.

Many thermal variables may then be approached as macroscopic quantum averages and their associated thermal probabilities as macroscopic quantum probabilities, the micro-to-macro translation achieved in part by an entropy postulate. This approach gives rise to a practical organizing principle with a clear pedagogical path by which thermodynamics' structure attains the epigrammatic status of "real physics".

Thermal physics is nevertheless frequently taught in the spirit of its utile 19thcentury origins, minimizing both 20th- and 21st-century developments and, for the most part, disregarding the beauty, subtlety, profundity and laboratory realities of its modern rebirth – returning us to Professor Mattis' reflections. In proposing a remedy for his justifiable concerns, the opening chapter introduces a moderate dose of quantum-based content, both for review and, hopefully, to inspire interest in and, eventually, better understanding of thermodynamics. The second chapter develops ideas that take us to the threshold of a thermodynamics that we should begin to recognize. In Chapter 6 thermodynamics flies from a quantum nest nurtured, ready to take on challenges of modern physics.

Students and practitioners of thermodynamics come from a variety of disciplines. Engineers, chemists, biologists and physicists all use thermodynamics, each with practical or scientific concerns that motivate different emphases, stress different legacies and demand different pedagogical objectives. Since contemporary university curricula in most of these disciplines integrate some modern physics, i.e. quantum mechanics – if not its mathematical details at least its primary concepts and aims – the basic thermodynamic ideas as discussed in the first two chapters should lie within the range of students of science, engineering and chemistry. After a few chapters of re-acquaintance with classic thermodynamic ideas, the book's remaining chapters are dedicated to applications of thermodynamic ideas developed in Chapter 6 in practical and model examples for students and other readers.

Parts of this book first appeared in 1997 as notes for a course in thermal physics designed as a component of the revised undergraduate physics curriculum at Oregon State University. An objective of this revision was to create paradigmatic material stressing ideas common to modern understandings and contemporary problems. Consequently, concepts and dynamic structures basic to quantum mechanics – such as hamiltonians, eigen-energies and quantum degeneracy – appear and play important roles in this view of thermal physics. They are used to maintain the intended "paradigm" spirit by avoiding the isolation of thermal physics from developments of the past 100 years while, hopefully, cultivating in students and teachers alike a new perception of and appreciation for this absolutely remarkable subject.

This work has been funded in part by NSF Grants: DUE 9653250, 0231194, 0837829.