Green Catalysis and Reaction Engineering

Discover tools to perform Life Cycle Analysis (LCA) and develop sustainable chemical technologies in this valuable guide for chemists, engineers and practitioners. Tackling one of the key challenges of modern industrial chemical engineering, this book introduces tools to assess the environmental footprint and economics of key chemical processes that make the ingredients of everyday products such as plastics, synthetic fibers, detergents and fuels. Describing diverse industrial processes in detail, it provides process flow diagrams including raw material sourcing, catalytic reactors, separation units, process equipment and recycle streams.

The book clearly explains elements of LCA and how various software tools, available in the public domain and commercially, can be used to perform LCA. Supported by real-world practical examples and case studies provided by industrial and academic chemists and chemical engineers, this is an essential tool for readers involved in implementing LCA and developing next-generation sustainable chemical technologies.

Bala Subramaniam is the Dan F. Servey distinguished professor of chemical engineering and the director of the Center for Environmentally Beneficial Catalysis at the University of Kansas.
CAMBRIDGE SERIES IN CHEMICAL ENGINEERING

Series Editor
Arvind Varma, Purdue University

Editorial Board
Juan de Pablo, University of Chicago
Michael Doherty, University of California–Santa Barbara
Ignacio Grossmann, Carnegie Mellon University
Jim Yang Lee, National University of Singapore
Antonios Mikos, Rice University

Books in the Series
Baldea and Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems
Chamberlin, Radioactive Aerosols
Chau, Process Control: A First Course with Matlab
Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Edition
Cussler and Moggridge, Chemical Product Design, Second Edition
De Pablo and Schieber, Molecular Engineering Thermodynamics
Deen, Introduction to Chemical Engineering Fluid Mechanics
Denn, Chemical Engineering: An Introduction
Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer
Dorfman and Daoutidis, Numerical Methods with Chemical Engineering Applications
Duncan and Reimer, Chemical Engineering Design and Analysis: An Introduction
Fan, Chemical Loopping Partial Oxidation Gasification, Reforming, and Chemical Syntheses
Fan and Zhu, Principles of Gas–Solid Flows
Fox, Computational Models for Turbulent Reacting Flows
Vassiliadis et al., *Optimization for Chemical and Biochemical Engineering*

Weatherley, *Intensification of Liquid–Liquid Processes*

Wolf, Bielser, and Morbidelli, *Perfusion Cell Culture Processes for Biopharmaceuticals*

Zhu, Fan, and Yu, *Dynamics of Multiphase Flows*
Green Catalysis and Reaction Engineering

An Integrated Approach with Industrial Case Studies

BALA SUBRAMANIAM
University of Kansas
Dedicated to Appa and Amma
For their love, many sacrifices and dedication in nurturing and educating their six children
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 Sustainability Challenges of the Chemical Industry

1.1 Introduction 1
1.2 Green Chemistry and Green Engineering Principles 3
1.3 Quantitative Sustainability Assessment 3
1.4 LCA-Guided Development of Catalytic Processes 6
1.5 Summary 7

2 Multiphase Catalytic Processes and Sustainability Challenges

2.1 Introduction 13
2.2 The Many Roles of Conventional Solvents 13
2.3 Multiphase Catalytic Reactions 13
 2.3.1 Homogeneous Catalysis: Gas–Liquid (G–L) reactions 14
 2.3.2 Heterogeneous Catalysis: Gas–Liquid–Solid (G–L–S) and Liquid–Solid (L–S) reactions 17
 2.3.3 Desired Characteristics of an Ideal Solvent 18
 2.3.4 Types of Multiphase Reactors 19
2.4 Supercritical Fluids (SCFs) as Tunable Solvent Media 19
 2.4.1 Applications in Homogeneous Catalysis 21
 2.4.2 Applications in Heterogeneous Catalysis 22
 2.4.3 Applications in Biomass Processing 27
 2.4.4 Limitations of SCFs 28
2.5 Gas-eXpanded Liquids (GXLs) in Multiphase Catalysis 28
 2.5.1 GXL Applications 30
2.6 Summary and Outlook 36

3 Ethylene Production from Diverse Feedstocks and Energy Sources: Environmental Impact Assessment

3.1 Introduction 50
3.2 Methodology 50
 3.2.1 Simulation Tools 50
3.2.2 Simulation Assumptions 51
3.2.3 Process Descriptions for Ethylene Sourced from Various Feedstocks 52
3.3 Environmental Impacts 55
 3.3.1 Comparison of Gate-to-Gate Emissions with GaBi Predictions 55
 3.3.2 Cradle-to-Gate Life Cycle Assessment 55
3.4 Effects of Energy Source on Environmental Impacts 58
 3.4.1 Coal 58
 3.4.2 Natural Gas 60
 3.4.3 Fuel Oil 60
 3.4.4 Major Environmental Impacts of Various Energy Sources 60
3.5 Summary 63
4 Ethylene Epoxidation in Gas-Expanded Liquids with Negligible CO₂ Formation as a Byproduct: Comparative Sustainability Analysis with Conventional Process 67
 4.1 Introduction 67
 4.2 Process Simulation Tools and Assumptions 68
 4.3 Process Simulations 69
 4.3.1 Conventional Process 69
 4.3.2 CEBC-EO Process 71
 4.4 Economic Analysis 73
 4.4.1 Capital and Production Cost Categories 73
 4.5 Environmental Impact Analysis 73
 4.5.1 Raw Material Sources 74
 4.6 Comparative Economic Assessment 76
 4.7 Comparative Environmental Impact Assessment 80
 4.8 Opportunities for Improving the CEBC-EO Process 83
 4.9 Summary 84
5 Spray Reactor-Based Terephthalic Acid Production as a Greener Alternative to the Mid-Century Process 89
 5.1 Introduction 89
 5.2 Rationale for Spray Reactor 91
 5.3 Spray Reactor Performance 96
 5.4 Comparison of Product from Spray and Stirred Reactors 98
 5.5 Methodology for Quantitative Sustainability Assessment 99
 5.6 Process Simulations 100
 5.6.1 Conventional MC Process 100
 5.6.2 CEBC Spray Process 103
 5.7 Comparative Economic Analysis 104
Contents

5.8 Comparative Environmental Impact Analysis 108
 5.8.1 Environmental Impact Contributors 111
5.9 Opportunities for Improvements in the CEBC Spray Process 116
5.10 Extension of Spray Process to Produce 2,5-Furandicarboxylic Acid 117
5.11 Summary 118

6 Sustainability Assessments of Hydrogen Peroxide-Based and Tertiary Butyl Hydroperoxide-Based Propylene Oxide Technologies 123
 6.1 Introduction 123
 6.2 Process Simulations 124
 6.2.1 Conventional PO/TBA Process 124
 6.2.2 Hydrogen Peroxide/Propylene Oxide (HPPO) Process 127
 6.2.3 CEBC-PO Process 129
 6.3 Process Economics 131
 6.3.1 Capital and Production Cost Categories 131
 6.4 Environmental Impact Assessment 131
 6.4.1 Raw Material Sourcing 132
 6.5 Comparative Economic Assessment 136
 6.5.1 Capital Investment 136
 6.5.2 Production Costs 137
 6.6 Comparative Environmental Impact Assessment 139
 6.7 Opportunities for Improving the CEBC-PO Process 142
 6.8 Summary 142

7 Separation of Propane/Propylene Mixture by Selective Propylene Hydroformylation in Gas-Expanded Liquids: Economic and Environmental Impact Analyses 148
 7.1 Introduction 148
 7.2 Methodology 149
 7.2.1 Process Simulations 150
 7.2.2 Economic Analysis 151
 7.2.3 Life Cycle Analysis 151
 7.3 Comparative Economic Assessment 153
 7.4 Comparative Environmental Impact Assessment 156
 7.5 Analysis Limitations and Process Improvement Opportunities 157
 7.6 Summary 163

8 A Greener Higher Olefin Hydroformylation Process 167
 8.1 Introduction 167
 8.2 Process Simulations 168
 8.2.1 Conventional 1-Octene Hydroformylation Process 169
 8.2.2 CEBC-CXL Hydroformylation Process 170
 8.3 Process Economics 171
Contents

8.4 Environmental Impact Assessment 171
8.4.1 Raw Material Sourcing 173
8.5 Comparative Economic Assessment 174
8.6 Comparative Environmental Impact Assessment 178
8.7 Opportunities to Improve the CEBC-CXL Process 182
8.8 Summary 184

9 Solid Acid-Catalyzed Olefin/Isoparaffin Alkylation in Supercritical Carbon Dioxide 189
9.1 Introduction 189
9.2 Methodology 190
9.2.1 Simulations of Conventional and Solid Acid Processes 190
9.2.2 Economic Analysis 192
9.2.3 Environmental Impact Analysis 194
9.3 Comparative Economic Assessment 195
9.4 Comparative Environmental Impact Assessment 199
9.5 Summary 202

10 Epilogue: Outlook 205
10.1 Sustainable Development Goals (SDGs): A Call to Action for the Chemical Industry 205
10.2 Transition to a Sustainable Chemical Industry 206
10.3 Advanced Sustainability Assessment Models: Key to Expedite Discovery and Innovation 208
10.4 Concluding Remarks 208

Index 211
Preface

Humanity stands before a great problem of finding new raw materials and new sources of energy that shall never become exhausted. In the meantime, we must not waste what we have, but must leave as much as possible for coming generations.

Nobel laureate Svante Arrhenius (1925)

The purpose of this book is to show how life cycle assessment, when paired with technoeconomic analysis, can more effectively guide the development of sustainable chemical processes. It is true that the principles of green chemistry and engineering provide qualitative guidelines for developing greener processes. However, if we want to assess such technologies quantitatively in terms of their sustainability, we will need clear metrics and methods to compare them with conventional processes and products.

A 2018 United States Government Accountability Office report on chemical innovation for sustainability (www.gao.gov/products/GAO-18-307) concluded that quantitative sustainability assessment is essential for the real-world adoption of sustainable technologies. The 2019 United Nations Environment Program report (www.unenvironment.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions) arrived at the same conclusion. This book is therefore timely: it shows how to use existing tools to assess the sustainability of chemical processes in the early stages of development, in order to identify key economic and environmental problem areas. Identifying these areas is essential for making well informed business decisions and for encouraging investment in the kind of research that will eventually lead to the commercialization of green chemical technologies.

This book demonstrates various methods of quantifying the environmental impact of chemical manufacturing processes. In particular, it focuses on the chemical precursors we find in everyday products such as plastic bottles, synthetic fibers, shampoos, detergents and fuel additives. These commodity chemicals include ethylene (Chapter 3), ethylene oxide (Chapter 4), terephthalic acid (Chapter 5), propylene oxide (Chapter 6), butyraldehyde (Chapter 7), nonanals (Chapter 8) and isooctane (Chapter 9). Due to their high manufacturing capacities (billions of pounds per year), they rank among the top 18 chemicals that together account for nearly 75% of the chemical industry’s overall greenhouse gas emissions (Chapter 1). Their global demand has been steadily increasing and so has their environmental footprint.

Aiming to reduce the environmental burden of such chemicals and the conventional processes they are involved in, a number of research groups have proposed concepts
for greener processes. The approaches include (a) developing greener technologies for existing feedstock; (b) replacing existing petroleum or coal-based feedstock with renewable feedstocks such as those derived from biomass; and (c) replacing the target product itself with functionally equivalent and more benign substitutes. This book provides several examples of such alternatives – sustainable technologies formulated on the basis of innovations in catalyst design, tunable reaction media (e.g., supercritical fluids, gas-expanded liquids and ionic liquids) and novel reactor concepts which integrate reaction and separation (Chapter 2). Specific examples of these technologies include (a) homogeneous ethylene oxide and propylene oxide processes using methyltrioxorhenium as a catalyst and hydrogen peroxide as an oxidant that eliminates CO₂ as a byproduct (Chapters 4 and 6); (b) the development of highly selective heterogeneous olefin epoxidation catalysts composed of earth-abundant materials (Chapters 4 and 6); (c) an intensified one-step spray reactor concept for the inherently-safe formation of polymer-grade terephthalic acid and 2,5-furandicarboxylic acid at high yields and purity (Chapter 5); (d) highly selective hydroformylation of olefins in gas-expanded liquids (as benign and tunable solvents) with reduced energy intensity (Chapters 7 and 8); (e) soluble polymer-supported homogeneous hydroformylation catalysts that are easily retained in solution by nanofiltration membranes (Chapter 8); and (f) a stable solid acid catalyzed alkylation process for producing isooctane (Chapter 9).

One can’t meaningfully compare conventional and alternative processes without reliable data. The data for conventional manufacturing processes used throughout this book is sourced from the open literature, including patents. Simulations of the greener alternatives rely on reported laboratory-scale data. Most of the examples of greener process concepts were drawn from my research program, which made the data needed for process simulation readily available. However, convenience has not been the only reason for this choice: the writing of this book is the fruit of nearly three decades’ worth of research and teaching dedicated to finding sustainable alternatives to energy-intensive and environmentally-problematic chemical processes. Indeed, it was while teaching Development of Sustainable Catalytic Processes, a course for chemical engineering and chemistry graduate students at the University of Kansas, that I refined the examples which appear in the following pages.

Several features of this book distinguish it from other excellent books in the areas of green chemistry/catalysis, authored and edited by leaders in the field (such as David Allen, Paul Anastas, James Clark, Joseph DeSimone, Philip Jessop, Walter Leitner, Roger Sheldon, David Shonnard, William Tumas, John Warner and Julie Zimmerman). Allen and Shonnard have shown how to quantify the negative effects of chemical processes in various segments of the environment (such as air, water and soil). The other books enunciate the principles of green chemistry and engineering; provide examples of various types of reactions (such as oxidations, carboxylations, hydrogenations, hydroformylations and alkylations) performed in benign media (such as dense carbon dioxide and ionic liquids) with conventional and renewable feedstocks; and describe novel catalysts (chemo and bio) and continuous reactors that integrate separation with reduced usage of material and energy. They focus mainly on
the chemistry aspects of processes. This book supplements these efforts by also focusing on the engineering aspects and shows how lab-scale data from a “greener” catalytic process concept can be used to simulate a detailed process flow diagram that includes downstream separation of products, recycling of unreacted feedstock and catalyst and safety considerations. Detailed process-engineering simulations like these form the basis of technoeconomic and environmental impact analyses, which allow one to determine whether the greener concepts in question are in fact more sustainable than their conventional counterparts. This book also includes cradle-to-gate and gate-to-gate impact assessments. These delineate the environmental burden associated with raw material extraction and the chemical manufacturing process and, thus, encourage a life cycle approach to identifying bottlenecks and recommend process improvements for enhancing sustainability. Finally, this book makes ample use of publicly available toxic release inventory (TRI) data, reported by chemical companies and power generating stations, in order to assess methods for estimating environmental impact.

This book is intended for multiple audiences. Students, researchers and practitioners of green chemistry and engineering will find in the proposed comparative economic and environmental impact analysis approach a useful sustainability assessment framework. Readers can update this framework for themselves by incorporating new sustainability criteria (such as toxicology, product biodegradability and even social dimension) as and when appropriate metrics and tools emerge. The book can be used in a graduate-level course; as mentioned, several parts of it have already been used in a multidisciplinary graduate course at KU. The book may also be useful to undergraduates majoring in chemical engineering, supplementing their capstone process-design and environmental assessment/safety courses. Of particular value to instructors and students are the detailed operating parameters and methods provided for simulating the process-flow diagrams of several industrially important chemical manufacturing processes (Chapters 3–9). These could be used for process-design projects that not only perform traditional economic analysis but also incorporate environmental impact assessment exercises. For freshmen studying chemical engineering and chemistry, the book can serve as a general introduction to major industrial chemical manufacturing processes and the sustainability challenges they pose. Instructors will also find a rich array of examples to include in chemical reactor design and separations courses, such as alternative chemistries, reactors, feedstocks and solvents that reduce adverse environmental impact. I have used several examples of sustainable chemistry and reactor alternatives described in the book in the undergraduate Chemical Engineering Kinetics and Reactor Design course at KU.

My hope is that this book will be a useful teaching tool, promoting quantitative sustainability assessment as an indispensable research methodology for chemists and chemical engineers in their quest to achieve a greener chemical industry.
My PhD mentor, the late Professor Arvind Varma (University of Notre Dame and Purdue University), was instrumental in encouraging me to write this book. He was the consummate professional, excelling in whatever he did. Arvind was an exceptional role model and a source of inspiration and I am grateful for his friendship and support.

I have been most fortunate to have been associated with nearly 80 bright graduate students and postdoctoral researchers whose dedication and creativity helped shape our research program in sustainable catalysis and reactor engineering. I would like to particularly acknowledge Drs. Geoffrey Akien, Venu Arunajatesan, David Bochmann, Amit Chaudhari, Michael Clark, Andrew Danby, Jing Fang, Jackson Ford, Madhav Ghanta, Daniel Ginosar, Kening Gong, Hong Jin, Ashraf Jooma, Boris Kerler, Hyun-Jin Lee, Meng Li, Dupeng Liu, Michael Lundin, Christopher Lyon, Swarup Maity, Kakasaheb Nandiwale, Fenghui Niu, Qing Pan, Bhuma Rajagopalan, Maheswari Rajamanickam, Anand Ramanathan, Said Saim, Sagar Sarsani, Honghong (Crystal) Shi, Julian Silverman, Kirk Snively, Shenwei Tang, Maria José Tenorio, Anoop Uchagawkar, Jian-feng Wu, Zhuanzhuan (Shirley) Xie, Wenjuan Yan, Simin Yu, Hongda Zhu and Xiaobin Zuo. Several examples of greener process concepts and sustainability analyses covered in this book were derived from their research contributions.

I am grateful to my colleagues, past and present, at the University of Kansas (James Blakemore, Claudia Bode, Andrew Borovik, Daryle Busch, Marco Caricato, Raghunath Chaudhari, Darryl Fahey, Joseph Heppert, Timothy Jackson, Brian Laird, Kevin Leonard, Aaron Scurto, Juan Bravo-Suárez, Franklin ‘Feng’ Tao, Ward Thompson, Jon Tunge), Washington University in St. Louis (Milorad ‘Mike’ Dudukovic, Palghat Ramachandran), University of Iowa (Horacio Olivo, Tonya Peeples, John ‘Jack’ Rosazza), Prairie View A&M University (Ananda Amarasekara, Irvin Osborne-Lee), University of South Carolina (John Regalbuto) and River City Engineering, Lawrence, KS (Steve Chafin, Kent Pennybaker, Tom Ruddy) for stimulating research collaborations and discussions. Their wisdom and expertise have been valuable in developing many of the green chemistry and engineering concepts covered in the book. I am also thankful to my sabbatical hosts at ETH Zürich, Switzerland (Marco Mazzotti, Massimo Morbidelli) and the University of Nottingham (Steve Howdle, Peter Licence, Martyn Poliakoff) for providing me exceptional opportunities to learn from their outstanding sustainability-focused research programs.
Many of the examples of sustainable catalytic processes described in the book were borne out of the National Science Foundation Engineering Research Center (NSF ERC) grant (EEC-0310689) awarded to the Center for Environmentally Beneficial Catalysis (CEBC), headquartered at the University of Kansas. I am grateful to members of the CEBC Industry Advisory Board (IAB) and Science Advisory Board (SAB), who strongly encouraged quantitative sustainability assessments of all green technology concepts developed at the center and provided valuable guidance in this regard. The various member companies of the CEBC and the IAB representatives include Archer Daniels Midland (Tom Binder, Paul Bloom, Derek Butler, Erik Hagberg, Stephen Howard, Kevin Martin, Padmesh Venkitasubramanian), British Petroleum (Peter Matelski, Wayne Schammel, David Sikkenga), ChevronPhillips (Ron Abbott, Carlton Ash, Mark Hlavinka, Iacono Pasquale, Mitch Refvik, Orson Sydora), Conoco Phillips/Phillips66 (Joe Allison, Jim Kimble, Jane Yao), DuPont (Hasan Dindi, Mark Harmer, Keith Hutchenson, Carmo Pereira), Engelhard/BASF Catalysts/W. R. Grace (Mike Breen, Dorai Ramprasad), Evonik (Venu Arunajatesan, Jaime Blanton, Stefan Buchholz, Yücel Önal), ExxonMobil (Jihad Dakka, Thomas Degnan, Javier Guzman, David Spry, Kun Wang), Honeywell UOP (Paul Barger, Maureen Bricker, Peter Coughlin), Invista (William Tenn), Novozymes (Joseph Jump), Origin Materials (William Gong), Procter&Gamble (Patti Kallett, Jeffrey Scheibel), Reliance Industries Ltd. (Sanjeev Katti, Thomas Mathew), SABIC (Pankaj Gautam, David West, Xiankuan Zhang) and Solvay (Alastair McNeillie, Kendall Qualls).

The distinguished members of the SAB, who worked with the IAB to provide valuable feedback on the science and technology aspects of the various processes presented in this book, include Mahdi Abu-Omar (University of California, Santa Barbara), David Allen (University of Texas at Austin), Alexis Bell (University of California, Berkeley), Joseph DeSimone (University of North Carolina, Chapel Hill), Jonathan Dordick (Rensselaer Polytechnic Institute), Mahmoud El-Halwagi (Texas A&M University, College Station), Rodney Fox (Iowa State University), Michael Harold (University of Houston), Cynthia Jenks (Oak Ridge National Laboratory), John Kitchin (Carnegie Mellon University), Jack Norton (Columbia University), Christopher Roberts (Auburn University), Chunshan Song (Chinese University of Hong Kong), James Spivey (Louisiana State University), Daniel Stack (Stanford University), Peter Stair (Northwestern University) and Yong Wang (Washington State University). Their cumulative multi-scale expertise provided key guidance to shape the research and development of several green catalysis concepts described in this book. The center is particularly indebted to David Allen (University of Texas at Austin), chair of CEBC’s inaugural SAB, whose 2004 short course on quantitative environmental impact analysis laid a firm foundation for CEBC researchers to perform sustainability assessments.

Special thanks are due to Dr. Laurence Weatherley (Chair, Department of Chemical and Petroleum Engineering, University of Kansas) and the CEBC staff members (Edwin Atchison, Nancy Crisp, Jane Johns) for their support and encouragement throughout this writing effort. I would like to acknowledge the meticulous efforts of...
Megan E. Gannon in producing the graphics and the University of Kansas for the Dan F. Servey Distinguished Professorship that enabled this fulfilling scholarly pursuit.

Last but not the least, I am grateful to my wife Aruna, whose love, support and counsel have been valuable throughout my academic career to achieve goals such as this. Our daughter Hamsa and son Shiv are passionate about sustainable practices to protect our planet and have engaged me in several thought-provoking conversations that often challenge conventional thinking and approaches. They, along with our son-in-law Arun and adorable grandchildren Savitri and Maitreya, were cheerleaders of this effort.