INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

The competent and intelligent optical design of today's state-of-the-art products requires an understanding of optical aberrations. This accessible book provides an excellent introduction to the wave theory of aberrations and will be valuable to graduate students in optical engineering, as well as to researchers and technicians in academia and industry interested in optical imaging systems.

Using a logical structure, uniform mathematical notation, and high-quality figures, the author helps readers to learn the theory of optical aberrations in a modern and efficient manner. In addition to essential topics such as the aberration function, wave aberrations, ray caustics, and aberration coefficients, this text covers pupil aberrations, the irradiance function, aberration fields, and polarization aberrations. It also provides a historical perspective by explaining the discovery of aberrations, and two chapters provide insight into classical image formation; these topics of discussion are often missing in comparable books.

JOSÉ SASIÁN is Professor of Optical Sciences at the College of Optical Sciences, University of Arizona. His research areas include aberration theory, optical design, light in gemstones, art in optics and optics in art, optical imaging, and light propagation in general.

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

JOSÉ SASIÁN University of Arizona

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107006331

© J. Sasián 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Sasián, José M. Introduction to aberrations in optical imaging systems / José Sasián. p. cm. Includes bibliographical references and index. ISBN 978-1-107-00633-1 (hardback) 1. Aberration. 2. Imaging systems – Image quality. 3. Optical engineering. I. Title. QC671.S27 2012 621.36'7 – dc23 2012027121

ISBN 978-1-107-00633-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> In appreciation and love to my family With love to Phitchanat

> In this sort of algebra one is to some extent dependent on luck (which no doubt favors the patient) in the reduction of apparently intractable expressions to something less resembling chaos. (Hans A. Buchdahl, *Optical Aberration Coefficients*)

Contents

	Prefa	<i>page</i> xiii	
	Ackne	owledgements	XV
	Haro	Harold H. Hopkins	
	Rolar	xix	
	Symb	ools	xxi
1	Intro	duction	1
	1.1	Optical systems and imaging aberrations	2
	1.2	Historical highlights	4
		References	9
2	Basic	concepts in geometrical optics	12
	2.1	Rays and wavefronts	13
	2.2	Symmetry in optical imaging systems	14
	2.3	The object and the image spaces	15
	2.4	The aperture stop, the pupils, and the field stop	16
	2.5	Significant planes and rays	16
	2.6	The field and aperture vectors	17
	2.7	Real, first-order, and paraxial rays	18
	2.8	First-order ray invariants	20
	2.9	Conventions for first-order ray tracing	21
	2.10	First-order ray-trace example	22
	2.11	Transverse ray errors	23
	2.12	Stop shifting	24
		Exercises	25
		Further reading	25
3	Imag	ing with light rays	26
	3.1	Collinear transformation	26

viii	Contents		
	3.2	Gaussian imaging equations	28
	3.3	Newtonian imaging equations	29
	3.4	Derivation of the collinear transformation equations	30
	3.5	Cardinal points and planes	31
	3.6	First-order rays' congruence with the collinear	
		transformation	32
	3.7	The camera obscura	33
	3.8	Review of linear shift-invariant systems theory	33
	3.9	Imaging with a camera obscura	35
	3.10	Optical transfer function of the camera obscura	36
	3.11	The modulation transfer function and image contrast	38
	3.12	Summary	39
		Exercises	40
		Further reading	40
4	Imaging with light waves		41
	4.1	Spherical, oblique, and plane waves	41
	4.2	Light diffraction by an aperture	43
	4.3	Far-field diffraction	47
	4.4	Diffraction by a circular aperture	49
	4.5	Action of an aplanatic lens system on a plane	
		wave	50
	4.6	Fourier transforming properties of a lens system	53
	4.7	4 <i>f</i> optical relay system	55
	4.8	Imaging with an 8f optical projection system	56
	4.9	Imaging with coherent illumination	58
	4.10	Imaging with incoherent illumination	59
	4.11	Imaging with partially coherent illumination	60
	4.12	The Weyl–Lalor relationship	62
	4.13	Summary	64
		Exercises	65
		References	65
		Further reading	66
5	The v	vave aberration function	67
	5.1	Theory of aberrations	67
	5.2	Learning aberration theory	68
	5.3	Heuristic approach to aberrations according to	
		symmetry	69
	5.4	The aberration function	69

		Contents	ix
	5.5	Determination of the wavefront deformation	73
	5.6	Parity of the aberrations	73
	5.7	Note on the choice of coordinates	74
	5.8	Summary	74
		Exercises	74
		References	74
6	The l	ocation and size of an image	76
	6.1	Change of focus and change of magnification	76
	6.2	Piston terms	78
	6.3	Change of reference sphere radius	79
	6.4	Images in the presence of defocus	79
	6.5	Chromatic aberrations	80
	6.6	Surface contributions to the chromatic aberrations	82
	6.7	Cases of zero surface contribution	85
	6.8	Chromatic coefficients for a system of thin lenses	86
	6.9	Cases of zero thin lens contribution	86
	6.10	The achromatic doublet lens	86
		Exercises	87
		Further reading	88
7	Wave	front aberrations	89
	7.1	Wavefront deformation	89
	7.2	Wave aberration fans	91
	7.3	Physical images in the presence of aberrations	91
	7.4	Wavefront variance	94
	7.5	Aberration balancing	95
	7.6	The Rayleigh–Strehl ratio	96
		Exercises	98
		Further reading	99
8	Ray a	berrations	100
	8.1	Relationship between the wavefront deformation and the	
		transverse ray error	100
	8.2	Components of the transverse ray aberrations	103
	8.3	Spot diagrams	106
	8.4	Through focus spot diagrams	107
	8.5	Images of extended objects	108
	8.6	Discussion of transverse ray aberrations	109
	8.7	Meridional and sagittal ray paths	116

Х		Contents	
	8.8	Summary	116
		Exercises	117
		Further reading	118
9	Rav c	austics	119
-	9.1	Principal curvatures and caustic	119
	9.2	Spherical aberration	120
	9.3	Coma aberration	123
	9.4	Astigmatism aberration	126
	9.5	Curvature of the wavefront deformation	127
	9.6	Astigmatic field curves	127
	9.7	Coddington equations	128
	9.8	Physical images along the optical axis	129
		Exercises	130
		Further reading	131
10	Aberr	ration coefficients	132
	10.1	Spherical aberration	132
	10.2	Petzval field curvature	134
	10.3	Aberration function when the stop is at the center	
		of curvature	136
	10.4	Aberration function when the aperture stop shifts	136
	10.5	Aberration function of a combination of two spherical	
		surfaces	138
	10.6	Cases of zero aberration	139
	10.7	Contributions from an aspheric surface	141
	10.8	Contributions from stop shifting	143
	10.9	Aberration coefficients of a Cooke triplet lens	144
		Exercises	145
		Further reading	146
11	Structural aberration coefficients		147
	11.1	Coefficient definition	147
	11.2	Vertex curvature of the field curves	149
	11.3	Structural aberration coefficients of a refracting surface	149
	11.4	Structural aberration coefficients of a reflecting surface	149
	11.5	Structural aberration coefficients of a thin lens	149
	11.6	Contrbutions to the structural aberration coefficients from a	
		parallel plate	152
	11.7	Structural aberration coefficients of an optical system	152
	11.8	Application to the achromatic doublet	153

		Contents	xi
	11.9 11.10	Application to the two-mirror Mersenne telescope Application to a diffractive lens Exercises Further reading	157 159 160 161
12	Pupil a 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8	berrations Definitions Beam deformation at the entrance pupil Pupil effects Object shift equations Invariance of aberrations Chromatic pupil aberrations The Bow–Sutton conditions Second-order chromatic coefficients revisited Exercises Further reading	162 162 164 165 167 168 168 170 170 172 172
13	Irradia 13.1 13.2 13.3 13.4 13.5 13.6 13.7	nce function Construction of the irradiance function Irradiance transport The element of throughput The radiance theorem Image and pupil aberrations relationships The sine condition The Herschel condition Exercises Further reading	173 173 176 177 179 179 181 184 186 186
14	Sixth-o 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9	order aberration coefficients Extrinsic aberrations Intrinsic aberrations Contributions from an aspheric surface Contributions from the sixth-order coefficients of asphericity Connections between pupil and image coefficients Fifth-order transverse ray aberrations Change of aberration coefficients with aperture vector location The Buchdahl–Rimmer coefficients Summary Exercises Further reading	187 188 189 195 197 198 200 201 202 203 204 204

xii	Contents		
15	Aberrations of non-axially symmetric systems		205
	15.1	Tilted component systems	205
	15.2	The Shack–Thompson aberration fields	206
	15.3	Plane symmetric optical systems	218
	15.4	Optical system tolerancing	222
		Exercises	222
		Further reading	223
16	Polariz	ation aberrations	225
	16.1	Polarization fields	225
	16.2	Amplitude transmittance and optical phase coefficients	231
	16.3	Amplitude and phase changes in the optical field	233
	16.4	Chipman's polarization aberrations	236
	16.5	Polarization fields' nodal characteristics	239
	16.6	Elliptical polarization	241
		Exercises	244
		Further reading	245
17	Conclu	ision	246
	Append	dix: Wave coefficients	247
	Index		258

Preface

This book provides an introduction to the theory of optical aberrations. Those interested will find a variety of topics that provide a solid foundation, and will appreciate the beautiful structure built in the theory of aberrations. Understanding the contents of this book will be useful for solving problems in optical design, optical imaging, and other related fields. The treatments in the book exploit symmetry properties to provide insight and derive useful results; highlighting symmetry properties is a recurring theme. The approach followed in the book is the wave aberration theory pioneered by H. H. Hopkins. However, the contents of this book take the wave theory of aberrations much further, and provide a comprehensive understanding of aberrations in optical imaging systems.

Chapter 1 provides an introduction and a historical overview. Chapter 2 provides basic concepts in geometrical optics. In order to appreciate the theory of aberrations it is necessary to have an understanding of optical image formation. To this end Chapter 3 provides a basic and insightful discussion on imaging with rays, and Chapter 4 provides a fresh and useful discussion on the fundamentals of imaging with light waves. Chapter 5 introduces and highlights the wave aberration function, which is central to the understanding of aberrations. Chapter 6 discusses secondorder effects which determine the location and size of an image. Chapter 7 discusses the primary aberrations. Chapter 8 discusses aberrations using the concept of light rays. Chapter 9 provides a novel treatment of ray caustics. Chapter 10 derives aberration coefficients, and Chapter 11 presents a basic discussion of structural aberration coefficients. Chapter 12 provides a discussion of pupil aberrations and a useful interpretation. Pupil aberrations have received little attention in the past. Chapter 13 takes further the independent work of G. G. Slyusarev and M. Reiss on irradiance changes in optical systems, and develops the irradiance function. Chapter 14 provides a "well-rounded" sixth-order theory which further exhibits the beauty and structure of the wave theory of aberrations. Chapter 15 discusses two useful theories for understanding optical systems that lack an axis of rotational

xiii

xiv

Preface

symmetry. Chapter 15 discusses the aberration function, in wave form, for plane symmetric systems. This function turns out to be also useful for constructing polarization fields and in building the theory for multiple aperture systems. Chapter 16 discusses the topic of polarization aberrations. The treatment follows the notation of previous chapters and continues to exhibit the overall structure of aberration theory, this time by no longer treating the optical field as a scalar quantity, but writing the field amplitude in vector form; this is a new treatment of the subject.

Overall, those who read and follow the material in this book will obtain a strong perspective in aberrations and appreciate the beauty and structure of wave aberration theory. The whole matter revolves around an understanding of how the optical field changes and propagates in an optical system. This understanding is essential for the intelligent design, fabrication, and test of optical systems.

> José Sasián College of Optical Sciences University of Arizona Tucson, Arizona, 2012

Acknowledgements

I would like to thank my colleagues at the College of Optical Sciences for insightful and valuable discussions about optics theories. Specific to writing this book, Robert R. Shannon read a draft of the book; Arvind S. Marathay and Thomas D. Milster read the chapters on image formation; John E. Greivenkamp shared his knowledge about first-order optics; Mazud Mansuripur provided helpful insights about the electromagnetic field; James H. Burge shared his views about the sine condition; James C. Wyant showed an interest in this book and in seeing it completed; I thank them for their valuable comments, insights, and interest.

Simon Capelin, Editorial Director at Cambridge University Press, prompted me to embark on the task. I would like to thank him, Claire L. Poole, Antoaneta Ouzounova, Abigail Jones, and Cambridge University Press, for kindly editing and publishing this book. I also thank Mairi Sutherland for her detailed editing of the manuscript. Takeshi Nakazawa and Chia-Ling Li helped me with proofing the draft and in producing the figures. I thank them as their work considerably helped me to finish this book.

I would like to acknowledge my colleagues Lakshmi Narayan Hazra at the University of Calcutta, and Yongtian Wang at the Beijing Institute of Technology, for valuable discussions on aberration theory. I thank Andrew Rakish from the European Southern Observatory for stimulating discussions about historical aspects of aberrations.

I would like to thank Christine Hopkins for kind permission to use the photograph of Harold H. Hopkins.

I would like to thank Tina E. Kidger for her help in obtaining the photograph of Harold H. Hopkins.

I would like to thank Pamela Shack for kind permission to include a photograph of Roland V. Shack.

I am grateful to Margy Green for providing a photo of the painting by artist Don Cowen used on the front cover of this book. The painting is located at the College xvi

Acknowledgements

of Optical Sciences at the University of Arizona. I also thank Kristin M. Waller for kindly obtaining permission to publish the photograph.

I would like to thank the Royal Society of England for kind permission to use Figure 1.4 in this book, which appeared as Fig. 28 in the Bakerian Lecture: Thomas Young, "On the Mechanism of the Eye," *Phil. Trans. R. Soc. Lond.* **91**(1801), 23–88.

I would like to thank Roland V. Shack for permission to use material from his class notes for the course OPTI 518 "Introduction to Aberrations," at the College of Optical Sciences at the University of Arizona. The treatment of the transverse ray aberrations, the definition of caustic, the treatment of the structural aberration coefficients, and the use of grid surfaces to illustrate the wavefront deformation, presented in this book, are due to him. The presentation of these treatments does not necessarily reflect his opinion on the subjects.

Harold H. Hopkins

The wave theory of aberrations was pioneered by H. H. Hopkins.¹ Of the numerous contributions to optics of H. H. Hopkins an important one is the equation that describes the process of physical imaging formation, namely,

$$I(u', v') = \iiint_{\infty} \Gamma(u_1 - u_2, v_1 - v_2) E(u_1, v_1) F(u' - u_1, v' - v_1) E^*(u_2, v_2)$$

× $F(u' - u_2, v' - v_2) du_1 du_2 dv_1 dv_2.$

Figure P.1 Harold H. Hopkins. With kind permission of Mrs. Christine Hopkins.

This equation, which relates the irradiance variations of an image, was published in *Proc. R. Soc. Lond.* A **217** (1952), 408–431 in a paper entitled "On the diffraction theory of optical images." It considers the properties of the illumination, the object

¹ A biography of H. H. Hopkins can be found in C. W. McCombie and J. C. Smith, "Harold Horace Hopkins," in *Biographical Memoirs of Fellows of the Royal Society*, Vol. 44, the Royal Society, 1998, 238–252.

CAMBRIDGE

xviii

Harold H. Hopkins

properties, and the imaging system. H. H. Hopkins also provided the equivalent form (here with different notation and derived in Chapter 4),

$$I(x, y) = \left(\frac{1}{f\lambda}\right)^2 \iint_{\infty} \sigma(x_0, y_0) |s(x, y)t(x, y) * spsf(x, y)|^2 dx_0 dy_0.$$

H. H. Hopkins left for us the insights and line of thought that led him to the discovery of these fundamental equations in the paper "The concept of partial coherence in optics," *Proc. R. Soc. Lond.* A **208** (1951), 263–277.

Roland V. Shack

R. V. Shack had many contributions to optics and to aberration theory.¹ His writing of the aberration function using the field and aperture vectors,

$$W(\vec{H},\vec{\rho}) = \sum_{j,m,n}^{\infty} W_{k,l,m} (\vec{H} \cdot \vec{H})^j (\vec{H} \cdot \vec{\rho})^m (\vec{\rho} \cdot \vec{\rho})^n,$$

an apparently trivial substitution, led to the discovery of binodal astigmatism and more generally to the concept of aberration fields and nodes.

Figure P.2 Roland V. Shack. With kind permission of Mrs. Pamela Shack. Photo by José Sasián.

¹ See, for example, J. E. Harvey and R. B. Hooker (eds.), *Robert Shannon and Roland Shack: Legends in Applied Optics*, SPIE Press 2005.

XX

Roland V. Shack

Several of the advancements in aberration theory presented in this book have been made possible by using Shack's form of the aberration function.

R. V. Shack was a student of Hopkins at Imperial College London in England. While R. V. Shack was professor at the College of Optical Sciences at the University of Arizona, he had an unusual gift for motivating and inspiring students and colleagues.

Roland V. Shack taught a variety of topics in aberration theory and he freely shared his knowledge of the subject. Meeting him in his office was a great pleasure as his conversation was highly motivational and inspiring. In explaining optics he used insightful and appealing figures and models. They were also artistic, which added an element of pleasure. A favorite model was for the ray caustic of astigmatism: two separated and perforated plates supporting a tight string, going back and forth many times between the plates, showed the ray paths and astigmatic line segments.

Symbols

Symbol	Description
λ	Wavelength of light
\vec{H}	Field vector
$\vec{ ho}$	Aperture vector
ϕ	Angle between the field and aperture vectors
Ж	Lagrange invariant
Φ, ϕ	Optical power
n	Index of refraction
r	Surface radius of curvature
и	Marginal ray slope
\overline{u}	Chief ray slope
S	Object conjugate distance
s'	Image conjugate distance
У	Marginal ray height
\overline{y}	Chief ray height
i	Marginal ray slope of incidence
\overline{i}	Chief ray slope of incidence
A = ni	Marginal ray refraction invariant
$\overline{A} = n\overline{i}$	Chief ray refraction invariant
$\nu = \frac{n_d - 1}{n_F - n_C}$	Glass V-number
W	Wavefront deformation
$W_{k,l,m}$	Image wave aberration coefficient
$\overline{W}_{k,l,m}$	Pupil wave aberration coefficient
$I_{k,l,m}$	Irradiance coefficient
\overline{S}	Stop shifting parameter
S	Object shifting parameter
σ	Structural coefficient
\overline{S}_{σ}	Strucutral stop shifting parameter
$FT\{ \}$	Fourier transform
**	Convolution operation