Elements of Friction Theory and Nanotribology

Combining the classical theories of contact mechanics and lubrication with the study of friction on the nanometer range, this multi-scale book for researchers and students alike guides the reader deftly through the mechanisms governing friction processes, based on state-of-the-art models and experimental results.

The first book in the field to incorporate recent research on nanotribology with classical theories of contact mechanics, this unique text explores atomic scale scratches, non-contact friction and fishing of molecular nanowires as observed in the laboratory. Beginning with simple key concepts, the reader is guided through progressively more complex topics, such as contact of self-affine surfaces and nanomanipulation, in a consistent style, encompassing both macroscopic and atomistic descriptions of friction, and using unified notations to enable use by physicists and engineers across the scientific community.

ENRICO GNECCO is a Senior Scientist at IMDEA Nanoscience, Madrid, where his research focuses on friction phenomena on the atomic scale, controlled manipulation of nanoparticles and theoretical bases of nanotribology.

ERNST MEYER is Professor of Experimental Physics at the University of Basel and module coordinator in the NCCR for Nanoscale Science. He is a former Chairman of the European Science Foundation collaborative network 'Nanotribo'. Cambridge University Press 978-1-107-00623-2 - Elements of Friction Theory and Nanotribology Enrico Gnecco and Ernst Meyer Frontmatter More information Cambridge University Press 978-1-107-00623-2 - Elements of Friction Theory and Nanotribology Enrico Gnecco and Ernst Meyer Frontmatter <u>More information</u>

Elements of Friction Theory and Nanotribology

Enrico Gnecco and Ernst Meyer

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107006232

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printing in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Gnecco, Enrico. Elements of friction theory and nanotribology / Enrico Gnecco and Ernst Meyer. pages cm Includes bibliographical references and index. ISBN 978-1-107-00623-2 1. Tribology. 2. Friction. 3. Elasticity. I. Meyer, E. (Ernst), 1962– II. Title. TJ1075.G58 2015 621.8'9–dc23 2014043415

ISBN 978-1-107-00623-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Prefa	<i>page</i> xi	
1	Intro	duction	1
	1.1	Historical notes	1
2	Dry f	riction and damped oscillators	5
	2.1	Amontons' law	5
	2.2	Applications to representative mechanical systems	7
	2.3	Viscous friction	12
Par	t I E	lastic Contacts	17
3	Elem	ents of the theory of elasticity	19
	3.1	Strain	19
	3.2	Stress	20
	3.3	Isotropic elastic materials	21
	3.4	Equilibrium of elastic bodies	24
	3.5	Elastic waves	25
4	Norn	nal contacts	27
	4.1	Pressure on an elastic half-space	27
	4.2	Indentation of an elastic half-space	31
	4.3	The Hertz theory	33
	4.4	Beyond the Hertz theory	39
	4.5	Influence of friction on normal contact	41
5	Tangential contacts		44
	5.1	Traction on an elastic half-space	44
	5.2	Partial slip	46
	5.3	Sliding of elastic objects	50
	5.4	Influence of oscillating forces	52

v

vi		Contents	
6	Elastic rolling		54
	6.1	Steady elastic rolling	54
	6.2	Three-dimensional rolling	57
	6.3	Sphere in a groove	59
	6.4	Tire mechanics	60
7	Beams, plates and layered materials		62
	7.1	Elastic deformation of beams	62
	7.2	Plate theory	66
	7.3	Elastic instabilities	68
	7.4	Shells	69
	7.5	Indentation of elastic plates	70
	7.6	Indentation of thin elastic layers	71
Pa	rt II	Advanced Contact Mechanics	73
8	Rough contacts		75
	8.1	Surface roughness	75
	8.2	Early models of rough contacts	78
	8.3	The Persson theory	81
	8.4	Advanced concepts in the Persson theory	85
	8.5	Contact of wavy surfaces	88
9	Viscoelastic contacts		90
	9.1	Stress-strain relation	90
	9.2	Constitutive models	92
	9.3	Viscoelastic indentation	95
	9.4	Rubber friction	97
	9.5	Rolling on viscoelastic bodies	99
10) Adhesive contacts		101
	10.1	The Johnson–Kendall–Roberts model	101
	10.2	The Derjaguin–Muller–Toporov model	102
	10.3	The Maugis–Dugdale model	103
	10.4	The Persson theory with adhesion	105
	10.5	Adhesion in biological systems	108
11	Thermal and electric effects		109
	11.1	Thermal effects in polymers	109
	11.2	Flash temperature	110
	11.3	Heat transfer between rough surfaces	112
	11.4	Electric contact resistance	113

		Contents	vii	
12	Plasti	c contacts	115	
	12.1	Plasticity	115	
	12.2	Criteria of yielding	118	
	12.3	Plastic flow	120	
	12.4	Plastic indentation	120	
	12.5	Compression and traction of a plastic wedge	122	
	12.6	Hardness	124	
	12.7	Plowing	125	
	12.8	Elastic-plastic indentation	126	
		Rolling on plastically deformed bodies	129	
		Rough plastic contacts	130	
	12.11	Plasticity of geomaterials	131	
13	Fracture		133	
		Fracture modes	133	
		The Griffith criterion	135	
		Dynamic fracture	136	
	13.4	Fracture in rubber-like materials	138	
14	Stick-	-	140	
	14.1	Stick-slip	140	
		Contact ageing	141	
		Lubricated friction	142	
		The Burridge–Knopoff model	146	
		Plastic flow	148	
	14.6	Earthquakes	151	
Part III Nanotribology 153				
15	Atom	ic-scale stick–slip	155	
	15.1	The Prandtl–Tomlinson model	155	
	15.2	Energy barrier	159	
	15.3	Thermal effects	161	
	15.4	Long jumps	163	
	15.5	Dynamic superlubricity	165	
	15.6	Constant driving force	165	
	15.7	The Frenkel–Kontorova model	168	
	15.8	Electronic and phononic friction	170	
16	Atomic-scale stick-slip in two dimensions		174	
	16.1	The Prandtl–Tomlinson model in two dimensions	174	
	16.2	Structural lubricity	178	
	16.3	Sliding of adsorbate layers	180	

viii		Contents	
17	Instr	umental and computational methods in nanotribology	183
	17.1	Atomic force microscopy	183
	17.2	Other scanning probe modes	186
	17.3	Other experimental techniques in nanotribology	188
	17.4	Molecular dynamics and nanotribology: methods	190
	17.5	Molecular dynamics and nanotribology: results	191
18	Expe	rimental results in nanotribology	196
	18.1	Friction measurements on the atomic scale	196
	18.2	Lateral and normal stiffness	199
	18.3	Load dependence of nanoscale friction	200
	18.4	Velocity dependence of nanoscale friction	201
	18.5	Temperature dependence of nanoscale friction	202
	18.6	Effect of contact vibrations	203
	18.7	Friction anisotropy	204
19	Nano	manipulation	207
	19.1	Contact mode manipulation	207
	19.2	Dynamic mode manipulation	208
	19.3	Nanoparticle trajectories during AFM manipulation	209
	19.4	Lifting up molecular chains	214
20	Wear	on the nanoscale	216
	20.1	Wear on the nanoscale	216
	20.2	Surface rippling	220
21	Non-	contact friction	224
	21.1	Experimental methods to measure non-contact friction	226
	21.2	Internal friction of cantilevers	228
	21.3	Origins of non-contact friction	231
	21.4	Giant non-contact friction	237
	21.5	Near-contact friction	237
Par	t IV	Lubrication	241
22	Drag	in a viscous fluid	243
	22.1	The Navier–Stokes equation	243
	22.2	Flow of a viscous fluid	245
	22.3	Motion in a viscous fluid	247
	22.4	Boundary layers and skin friction	250
	22.5	Drag crisis	253
	22.6	Streamlined bodies	253

		Contents	ix
23	Lubr	ication	256
	23.1	Hydrodynamic lubrication	256
	23.2	Elastohydrodynamic lubrication	262
	23.3	Hydrostatic lubrication	262
	23.4	Solid lubrication	263
24	Visco	us phenomena in confined or spreading liquids	265
	24.1	The Eyring model	265
	24.2	Capillary bridges	267
	24.3	Fluid flow between rough surfaces	270
	24.4	Squeezed films	272
	24.5	Spreading of liquids	275
App	oendix .	A Friction force microscopy	278
App	oendix .	B Viscosity of gases	282
App	pendix	C Slip conditions	284
	Refer	ences	285
	Index		301

Cambridge University Press 978-1-107-00623-2 - Elements of Friction Theory and Nanotribology Enrico Gnecco and Ernst Meyer Frontmatter More information

Preface

Friction permeates every aspect of our life. It accompanies us when we walk and our fingers when they slide on the display of a tablet. Friction produces very annoying results when a chalk is rubbed against a blackboard and may cause tremendous damage when it fails to hold two tectonic plates together and a powerful earthquake is suddenly generated. Friction can also be very useful, when a cat suddenly jumps in front of our car and the brake pedal avoids serious consequences; and even pleasant, when a talented violinist takes up a bow and starts playing his Stradivarius. In any case, friction is certainly not a boring subject, and writing a book about friction is definitely not an easy task.

In spite of an immense amount of experimental data, a general theory of sliding friction between two solid surfaces is still missing. The simple Amontons' law, stating that the friction is proportional to the normal force, has been found to work exceptionally well in a variety of situations. Based on this law, theoretical models with different degrees of complexity have been derived and successfully applied to reproduce real situations. Even if Amontons' law is universally accepted as empirical evidence rather than as a consequence of first principles, the attitude is rapidly changing and it is now possible to prove by analytical means that the friction between two rough elastic surfaces has to be almost proportional to the loading force. A different situation is encountered when studying the drag force accompanying the motion of a solid object in a viscous liquid. Here, the Navier– Stokes law works usually quite well, which made hydrodynamic lubrication an established subject a long time ago. Still, problems arise when the lubricants are confined and the friction can only be investigated, theoretically, using atomic-scale models.

In the past 25 years, significant progress has been achieved in the understanding of the basic principles of sliding friction. This progress was essentially caused by the invention of the atomic force microscope (AFM) and the tremendous growth of computational power. The AFM has allowed us to investigate the motion xii

Preface

of nano-asperities driven on solid surfaces with unprecedented space and force resolution. The atomic-scale friction features so measured are found to be in good agreement with a model developed by Ludwig Prandtl sixty years before the AFM was developed. On the other hand, molecular dynamics simulations involving a few hundred thousand atoms can be run nowadays in a reasonable time scale, although the duration of the processes reproduced by these virtual experiments is too short compared to the real measurements. Much more difficult is to explain the different wear processes which usually accompany the sliding. A detailed atomistic description of these phenomena is not feasible even with the fastest supercomputers. At the same time, it is not possible to visualize the structure of a wear scar on the atomic scale, although good progress is being made using transmission electron microscopy and, again, AFM.

Having this in mind, we believe that a 'modern' approach needs to be adopted to explain the fundamental friction theories, as we understand them nowadays, to undergraduate and graduate students in physics or engineering, and to anyone interested in this multidisciplinary and fascinating subject. In this book we have made a rather simple choice, and limited the discussion to theoretical results based on well-posed analytical derivations and numerical calculations, and to experiments aimed to shed light on nanoscale friction and performed in well-defined environmental conditions such as ultra-high vacuum. It was in no way our intention to present long tables of friction coefficients or to introduce purely phenomenological models. For this reason, no attempts to discuss abrasive, adhesive and other forms of wear have been made, with the exception of a few focused investigations on the nanoscale. Similarly, we have not included technical details regarding the chemical composition of contacting surfaces or lubricants, which would have led us too far from our goal.

Classifying and ordering the material is also not easy. A problem that we had to face was unifying the notation, since the same physical quantities are often addressed in different ways by physicists and engineers. Having in mind the various backgrounds of our readers, we have divided the book into four parts. In the first part, the basic theory of elastic contacts is discussed. The influence of friction on normal contacts, partial slips, sliding and rolling of elastic objects with simple geometric shapes is introduced with the minimal assumption that Amontons' law is applicable. The second part of the book focuses on more advanced and not always independent topics such as rough, viscoelastic, adhesive and plastic contacts, thermal and electric effects at the interface between two surfaces, fracture and macroscopic stick–slip. In all these frames, the connection to friction is rather obvious. A particular emphasis is given to the theory recently developed by Bo Persson, which, in our opinion, can explain several phenomena more elegantly than any alternative finite element model. In the third part theoretical models and

Preface

representative experiments at the basis of modern nanotribology are presented in more detail. Besides atomic-scale sliding friction, we will also discuss manipulation, wear and non-contact friction experiments and the Prandtl–Tomlinson model for atomic-scale stick–slip. The last part of the book is dedicated to the dynamics of viscous fluids and its application to lubrication. This part ends with an overview of important phenomena observed in tiny 'spots' such as capillary condensation, fluid flow between rough surfaces and spreading of liquid droplets on a solid surface. Friction force microscopy, gas viscosity and slip boundary conditions in the Navier–Stokes equation are briefly discussed in separated appendices. In this way, we hope that the main message conveyed by our book is that investigating friction is not a messy task but a rather elegant exercise.

Before starting, we would like to thank all the people who accompanied us in the study of friction and related phenomena. Even if it is not possible to cite all of them, special acknowledgment goes to Hans-Joachim Güntherodt, Alexis Baratoff, Roland Bennewitz, Shigeki Kawai, Marcin Kisiel, Anisoara Socoliuc, Sabine Maier, Karine Mougin, Raphael Roth, Pascal Steiner, Thilo Glatzel, Tibor Gyalog, Martin Bammerlin, Rodolfo Miranda, Carlos Pina, Johannes Gierschner, Reinhold Wannemacher, Pawel Nita, Santiago Casado, Patricia Pedraz, Carlos Pimentel, Robert Szoszkiewicz, Pasqualantonio Pingue, Ruben Perez, Juanjo Mazo, Renato Buzio, Ugo Vibusa and Stefano Brizzolari. We also thank Karyn Bailey, Emily Trebilcock, Roisin Munnelly, Bronte Rawlings and Simon Capelin from Cambridge University Press for assisting us in the publishing process, and Frances Lex for critical comments and improvements to the manuscript. Last but not least, E.G. is immensely grateful to his wife Tatiana and his son Valerio. Without their infinite patience in the uncountable hours spent in front of the screen, this book would have never reached its conclusion.