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Preface

It is difficult to pinpoint the origins of the theory of fusion systems:

it could be argued that they stretch back to Burnside and Frobenius,

with arguments about the fusion of p-elements of finite groups. Another

viewpoint is that it really started with the theorems on fusion in finite

groups, such as Alperin’s fusion theorem, or Grün’s theorems.

We will take as the starting point the important paper of Solomon

[Sol74], which proves that, for a Sylow 2-subgroup P of Spin
7
(3), there

is a particular pattern of the fusion of involutions in P that, while not

internally inconsistent, is not consistent with living inside a finite group.

This is the first instance where the fusion of p-elements looks fine on its

own, but is incompatible with coming from a finite group.

Unpublished work of Puig during the 1990s and even before (some

of which is collected in [Pui06]), together with work of Alperin–Broué

[AB79], is the basis for constructing a fusion system for a p-block of a

finite group. It was with Puig’s work where the axiomatic foundations

of fusion systems started, and where some of the fundamental notions

begin. It cannot be overestimated how much the current theory of fusion

systems owes to Puig, both in originating the definition and related

notions, and in furthering the theory.

Various results that could be considered part of local finite group

theory (the study of p-subgroups, normalizers, conjugacy, and so on)

were extended to p-blocks of finite groups during the 1990s and early

part of the twenty-first century, but at the time were not viewed as

taking place in the more general setting of fusion systems. With this

theory now becoming more popular, more and more results are being

cast in this language, and extended to this area.

The internal theory of fusion systems, starting from these foundations,

has developed rapidly, and in many respects has mimicked the theory of
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x Preface

finite groups, with normal subsystems, quotients, the generalized Fitting

subsystem, composition series, soluble fusion systems, and so on. How-

ever, there is also a topological aspect to this theory.

Along with the representation theory, topology has played an impor-

tant role in the development of the theory: Benson [Ben98a] constructed

a topological space that should be the 2-completed classifying space of

a finite group whose fusion pattern matched that which Solomon con-

sidered. Since such a group does not exist, this space can be thought

of as the shadow cast by an invisible group. Benson predicted that this

topological space is but one facet of a general theory, a prediction that

was confirmed with the development of p-local finite groups.

Although we will not cover the topic of p-local finite groups here (we

only meet the definition in Chapter 9), they can be thought of as some

data describing a p-completed classifying space of a fusion system. In

the case where the fusion system arises from a finite group, the corre-

sponding p-local finite group describes the normal p-completed classify-

ing space.

In this direction, we have Oliver’s proof [Oli04] [Oli06] of the Martino–

Priddy conjecture [MP96], which states that two finite groups have ho-

motopy equivalent p-completed classifying spaces if and only if the fusion

systems are isomorphic. The topological considerations have fuelled de-

velopment in the algebraic aspects of fusion systems and vice versa, and

the two viewpoints are somewhat intertwined. Having said that, we will

not deal with the topological theory here beyond that which is given in

Part I, and concentrate on the more algebraic aspects.

As this is a young subject, still in development, the foundations of

the theory have not yet been solidified; indeed, there is some debate

as to the correct definition of a fusion system! (It should be noted that

the definitions are all equivalent, and so the choice is only apparent.)

The definition of a ‘normal’ subsystem is also under discussion, and

which definition is used often indicates the intended applications of the

theory. Here we have made a choice based upon the evidence available

now; this might change as time goes on. Since group theorists, repre-

sentation theorists, and topologists all converge on this area, there are

several different conventions and styles, as well as approaches.

The first three chapters are preliminary in nature, and deal with

group theory, representation theory, and topology. The first chapter is

essentially a run-through of the theory of fusion in finite groups, giv-
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Preface xi

ing for example the p-complement theorems of Frobenius, Burnside,

and Glauberman–Thompson. The second chapter introduces the

representation theory aspects, and in particular develops the block the-

ory needed to construct the fusion system associated to a p-block of a

finite group. The third chapter develops the topological methods used in

the theory, but since the main thrust of this work is the algebraic theory

of fusion systems, we necessarily skip over many of the details in this

chapter.

The remaining six chapters deal with the theory of fusion systems.

The fourth chapter starts by defining fusion systems and in particular

saturated fusion systems, then constructing local subsystems, proving

Alperin’s fusion theorem, and introducing strongly closed subgroups. In

Chapter 5, we start looking at the normal and quotient structure of

fusion systems, introducing morphisms, quotients, weakly normal and

characteristic subsystems, the centre, and so on. The sixth chapter deals

with methods used to prove saturation, and introduces weakly normal

maps as well.

Chapter 7 deals with topics around control of fusion, with analogues

of the Glauberman–Thompson normal p-complement theorem, Glauber-

man’s ZJ-theorem, and the two normal subgroups Op(G) and Op
′

(G),

the former of which is the object of the theory of transfer. After prov-

ing the existence of a certain kind of biset associated to any saturated

fusion system in Section 7.6, we use the biset to develop the transfer for

a fusion system.

Chapter 8 focuses on work of Aschbacher which attempts to trans-

late some aspects of local finite group theory into the domain of fusion

systems. We prove here that, for constrained fusion systems, there is

a one-to-one correspondence between the normal subsystems of the fu-

sion system and the normal subgroups of the associated model. Other

highlights include a description of the generalized Fitting subsystem of

a fusion system, and the proof of L-balance for fusion systems, which

is considerably easier than the proof of the corresponding theorem for

finite groups.

The final chapter consists of questions about exotic fusion systems

(i.e., fusion systems that do not come from groups), with a few details

on some of the known exotic fusion systems, theorems on which exotic

fusion systems do not come from blocks of finite groups, and Oliver’s

conjecture relating modular representation theory of p-groups to the

existence and uniqueness of centric linking systems. A solution to this

www.cambridge.org/9781107005969
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-00596-9 — The Theory of Fusion Systems
David A. Craven
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xii Preface

conjecture would remove the requirement of the classification of the finite

simple groups for the proof of the Martino–Priddy conjecture.

The choice of definitions and conventions has been influenced by the

background of the author: as I am a group theorist and group represen-

tation theorist, the conventions here will be the standard group theory

conventions, rather than topology conventions. In particular, homomor-

phisms will be composed from left to right. The only chapter where this

will be relaxed is Chapter 3, the topological chapter; the reason for this is

that to keep left-to-right notation would go against every other topology

book in existence, and require writing functors on the right, something

that I, even as a group theorist, cannot bring myself to do.

It remains for me to thank various people, most notably Adam Glesser

for reading much of this work and for being a sounding board for various

ideas, mathematical, pedagogical and notational. Thank you to George

Raptis for reading Chapter 3, and explaining some of the topological

ideas to an algebraist, making the exposition in that chapter consid-

erably clearer. Proof reading and valuable comments were given by (in

alphabetical order): Tobias Barthel, Michael Collins, Radha Kessar, Bob

Oliver, Oscar Randal-Williams, George Raptis, Raphaël Rouquier, Jason

Semeraro and Matt Towers. Any errors that remain in this work are, of

course, my own.

David A. Craven, Oxford
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