

Contents

	Prejace		page x1	
1	Introduction			
	1.1	The early days of MOS technology	1	
	1.2	Nature's freak of fate	2	
	1.3	Silicon dioxide becomes inadequate	2	
	1.4	High-k dielectrics	3	
	1.5	Characterizing the MOS system	4	
	1.6	Next episode	5	
	1.7	Overview of the subject	6	
Part I	Basic pr	operties		
2	Basi	c properties of the MOS system	11	
	2.1	Energy band diagram	11	
	2.2	Charges and potentials of the insulator	14	
	2.3	Charges and potentials of the semiconductor for an ideal MOS system	16	
	2.4	The capacitance of an ideal MOS system	21	
		2.4.1 The low-frequency capacitance	21	
		2.4.2 The high-frequency capacitance	24	
	2.5	Influence of insulator charge, insulator thickness and doping	25	
	2.6	The MOS capacitance at flatband	28	
	2.7	Influence of higher <i>k</i> -values	30	
	Refe	erences	31	
3	Basi	c properties of the gate stack	32	
	3.1	High-k oxides with properties interesting for gate stacks	32	
	3.2	Properties required for gate oxides	34	
	3.3	The dielectric constant	38	
		3.3.1 A schematic case	38	
		3.3.2 An isotropic three-dimensional case	40	
	3.4	Energy barriers at interfaces including bandgap materials	43	

6 **Contents**

	3.5	The S	chottky barrier	46
		3.5.1	The Cowley–Sze model	46
		3.5.2	Schottky barriers: chemical trends based on electronegativities	48
		3.5.3		
			material	51
		3.5.4	Chemical trends and Fermi-level pinning based on chemical	
			reactivities	53
	3.6	Energ	y band alignments of the MOS system	55
		3.6.1	Metal/oxide barriers: induced gap states and the Cowley-Sze model	. 55
		3.6.2	Semiconductor/oxide barriers: induced gap states and the	
			Cowley–Sze model	59
		3.6.3	Mönch's model based on electronegativities	61
		3.6.4	Ab initio calculations	62
		3.6.5	Summary of energy barrier models	66
	Refe	rences		68
4	Elect	ron sta	ites at MOS interfaces	71
	4.1	The ir	nfluence of interface states	71
	4.2		anonical ensemble for describing an atomic system	71
	4.3		rand canonical ensemble for describing an electron system	74
	4.4	_	tended ensemble for describing the trap system	77
	4.5		offluence of entropy	80
	4.6		e carrier capture and emission at traps	85
	4.7	_	e carrier generation at interface states	87
	4.8		on of minority carriers at the oxide/semiconductor interface	90
	4.9		om telegraph signals from single traps	92
	,	4.9.1	Single traps and the Ergodic Hypothesis	92
		4.9.2		94
	4.10		ity of thermal emission measurements performed on depletion regions	95
			mbination at oxide/semiconductor interfaces	98
		rences	inomiation at office/semiconductor interfaces	101
_		_		
5	Carri	er capt	ture at bulk oxide traps	104
		_	ground	104
	5.2	_	pation statistics for bulk oxide traps	104
	5.3		nal and optical processes of vibrational traps	108
	5.4	-	ion processes followed by capture	109
	5.5	-	re mechanisms	112
	5.6	-	ion probability at electrical potential distributions for high-k	
			ures with an interlayer	113
	5.7	_	re at multi-electron traps	116
	5.8	-	rsis of electron injection	119
	5.9	_	outed results	121
	Refe	rences		126

Contents

7

Part II Characterization techniques

6	Electi	rical characterization by Fermi-probe technique	131	
	6.1	Capacitance contribution from interface states	131	
	6.2	Charge carrier dynamics leading to interface state admittance	134	
	6.3	Admittance contribution from interface states	136	
	6.4	Influence from circuit elements: measured quantities	138	
	6.5	Influence from D_{it} and σ_n distributions	139	
	6.6	High-frequency <i>C</i> – <i>V</i> technique	141	
		6.6.1 The influence of interface states	141	
		6.6.2 High-frequency $C-V$ curves for three cases of D_{it}	141	
		6.6.3 Capture cross sections obtained from the high-frequency		
		<i>C–V</i> technique	145	
		6.6.4 D_{it} obtained from high-frequency $C-V$ data	149	
	6.7	Low-frequency <i>C–V</i> technique by the quasi-static method	151	
	6.8	The conductance method	153	
	6.9	Multiparameter admittance spectroscopy	157	
		6.9.1 The methodology	157	
		6.9.2 Influence of interface states on MPAS appearance	157	
	6.10	6 1 1 6	159	
		6.10.1 The methodology	159	
		6.10.2 Statistics for the charge pumping cycle	162	
	Refe	rences	167	
7	Electrical characterization by thermal activation			
	7.1	Thermally stimulated current method	168	
		7.1.1 Basic principle	168	
		7.1.2 TSC for investigating border traps	168	
	7.2	Deep level transient spectroscopy	173	
		7.2.1 Basic principle	173	
		7.2.2 Constant capacitance DLTS for investigation of MOS interface states	179	
		7.2.3 Capacitance-controlled DLTS by lock-in filtering	186	
		7.2.4 Limitations in DLTS for investigation of MOS interfaces	187	
	7.3	Conductance method for measuring thermal activation energies	189	
	Refer	rences	194	
8	Characterization of oxide/silicon energy band alignment: internal photoemission			
	and)	(-ray photoelectron spectroscopy	196	
	8.1	Internal photoemission	196	
		8.1.1 Basic principles	196	
		8.1.2 The photocurrent	197	
		8.1.3 The influence of absorption length and escape length	199	
		8.1.4 The emission probability $P(E)$	200	

8	Contents
0	CONTRAINS

		8.1.5 Image force barrier lowering	201
		8.1.6 IPE yield for silicon MOS structures	203
		8.1.7 Influence of interlayers and tunneling	210
	8.2	X-ray photoelectron spectroscopy	212
		8.2.1 Basic principles	212
		8.2.2 XPS for determination of energy offset values in MOS structures	213
		8.2.3 Charging effects	215
		8.2.4 Influence of interlayers	216
	Refe	rences	219
9	Electron spin-based methods		
	9.1	Electron spin resonance	221
		9.1.1 Basic principles	221
		9.1.2 The coupling between magnetic field and spin	222
	9.2	Hyperfine interaction	225
	9.3	Spin-dependent recombination at interface states	225
	Refe	rences	227
Part III R	eal M	OS systems	
10	MOS	systems with silicon dioxide dielectrics	231
	10.1	Engineering efforts at the dawn of MOS technology	231
	10.2	The Deal–Grove oxidation model	231
	10.3	Atomic structure and properties of the silicon/silicon dioxide interface	234
	10.4	Influence of the atomic structure on electrical properties of SiO _x /Si systems	240
	10.5	Interface states	241
		10.5.1 The influence of interface states on transistor performance	241
		10.5.2 The P_b center	242
		10.5.3 Relation between the P_b center and density of interface states	243
		10.5.4 Trapping properties of interface states	246
		10.5.5 Passivation and de-passivation of interface states	248
		10.5.6 Dissociation kinetics of the P_b center	252
	10.6	Bulk oxide traps: the E' center	255
	Refe	rences	256
11	MOS	systems with high-k dielectrics	261
	11.1	The motivation for high-k dielectrics	261
	11.2	The dielectric constant for high-k oxides	264
		11.2.1 Transition, rare-earth and ternary oxides	264
		11.2.2 Relationship between the <i>k</i> -value and phonon dynamics	266
		11.2.3 <i>k</i> -value of crystalline structures	270
	11.3	•	272
	11.4	Remote carrier scattering in transistor channels	275

	11.5	Energy offset values between silicon and high-k oxides	276
		Interface states	277
	11.7	Bulk oxide traps	287
		11.7.1 Theoretical treatment of oxygen vacancies in cubic HfO ₂	287
		11.7.2 Polarons and self-trapping	289
		Chemical stability	291
	Refer	ences	293
12	Gate	metals	297
	12.1	Metal properties influencing the transistor threshold voltage	297
	12.2	The Schottky barrier and effective work function of metal/high-k oxide	
		structures	299
	12.3	Tuning the metal/oxide energy barrier	303
		12.3.1 Relationship between annealing and metal work function: an examp	ple 303
		12.3.2 Influence of oxygen vacancies on effective work function	305
	Refer	ences	306
13	Transmission probabilities and current leakage in gate oxides		
	13.1	The concept of tunneling	308
	13.2	The WKB approximation	310
		13.2.1 Derivation of the transmission probability	310
		13.2.2 The influence of image force	313
	13.3	Direct and Fowler-Nordheim tunneling in the WKB approximation	314
		Tunneling involving traps	315
		13.4.1 Tunneling through a trap potential	315
		13.4.2 Tunneling probabilities for trap assisted tunneling	317
		13.4.3 Poole–Frenkel effect	320
	13.5	Gate leakage by tunneling	325
		13.5.1 Direct tunneling current for a single-layer oxide	325
	13.6	Tunneling through high- <i>k</i> oxides with interlayers	327
	Refer		330
14	MOS	systems on high-mobility channel materials	333
	14.1	Motivation for high-mobility channel materials in MOSFETs	333
	14.2	MOS systems on III–V materials	334
		14.2.1 N-channels built in InGaAs	334
		14.2.2 Interface states at III–V semiconductor/oxide interfaces	336
		14.2.3 Energy band alignment at oxide/ $In_{1-x}Ga_x$ As interfaces	339
	14.3	MOS systems on silicon- and germanium-based materials	341
	11.5	14.3.1 Channels built on Ge and SiGe	341
		14.3.2 Energy band alignment at oxide/Ge interfaces	343
	References		
	7 7		252
	Index		352

Contents