Cellular Biophysics and Modeling
A Primer on the Computational Biology of Excitable Cells

Cellular Biophysics and Modeling is what every neuroscientist should know about the mathematical modeling of excitable cells. Combining empirical physiology and nonlinear dynamics, this text provides an introduction to the simulation and modeling of dynamic phenomena in cell biology and neuroscience. It introduces mathematical modeling techniques alongside cellular electrophysiology. Topics include membrane transport and diffusion, the biophysics of excitable membranes, the gating of voltage and ligand-gated ion channels, intracellular calcium signaling, and electrical bursting in neurons and other excitable cell types. It introduces mathematical modeling techniques such as ordinary differential equations, phase plane analysis, and bifurcation analysis of single compartment neuron models. With analytical and computational problem sets, this book is suitable for life sciences majors, in biology to neuroscience, with one year of calculus, as well as graduate students looking for a primer on membrane excitability and calcium signaling.

Greg Conradi Smith is a Professor in the Department of Applied Science and Neuroscience Program Faculty Affiliate at William & Mary, Williamsburg, VA, USA. He was co-organizer of the Cold Spring Harbor Laboratory Summer School on Computational Cell Biology (2008–2014). His research focuses on mathematical aspects of cell physiology and neuroscience.
Cellular Biophysics and Modeling
A Primer on the Computational Biology of Excitable Cells

GREG CONRADI SMITH
William & Mary, Williamsburg, VA
Contents

Preface page xi

1 Introduction 1
 1.1 Why Study Biophysics? 1
 1.2 Neurons are Brain Cells 2
 1.3 Cellular Biophysics 3
 1.4 Dynamical Systems Modeling 5
 1.5 Benefits and Limitations of Mathematical Models 6
 1.6 Minimal Models and Graphical Methods 7
 1.7 Biophysics and Dynamics Together 8
 1.8 Discussion 9

Part I Models and Ordinary Differential Equations 13

2 Compartmental Modeling 15
 2.1 Physical Dimensions and Material Balance 15
 2.2 A Model of Intracellular Calcium Concentration 16
 2.3 The Initial Value Problem and its Solution 17
 2.4 Checking the Solution 19
 2.5 Interpreting the Solution 19
 2.6 Calcium Dynamics and Disease 22
 2.7 Appendix: Solving $dc/dt = j - kc$ with $c(0) = c_0$ 24
 2.8 Discussion 25

 Supplemental Problems 27
 Solutions 33
 Notes 39

3 Phase Diagrams 42
 3.1 Phase Diagram for a Single Compartment Model 42
 3.2 Stable and Unstable Steady States 44
 3.3 Phase Diagram of a Nonlinear ODE 45
 3.4 Classifying Steady States 47
 3.5 Stability Analysis Requiring Higher Derivatives 49
 3.6 Scalar ODEs with Multiple Stable Steady States 50
 3.7 Discussion 51

 Supplemental Problems 55
 Solutions 57
 Notes 58

4 Ligands, Receptors and Rate Laws 59
 4.1 Mass Action Kinetics 59
vi CONTENTS

4.2 Reaction Order and Physical Dimensions of Rate Constants 60
4.3 Isomerization – ODEs and a Conserved Quantity 61
4.4 Isomerization – Phase Diagram and Solutions 63
4.5 Bimolecular Association of Ligand and Receptor 65
4.6 Sequential Binding 69
4.7 Sigmoidal Binding Curves 70
4.8 Binding Curves and Hill Functions 72
4.9 Discussion 74
 Supplemental Problems 75
 Solutions 77
 Notes 79

5 Function Families and Characteristic Times 81
5.1 Functions and Relations 81
5.2 Scaling and Shifting of Functions 82
5.3 Qualitative Analysis of Functions 84
5.4 Characteristic Times 88
5.5 Discussion 90
 Supplemental Problems 93
 Solutions 94
 Notes 96

6 Bifurcation Diagrams of Scalar ODEs 98
6.1 A Single-Parameter Family of ODEs 98
6.2 Fold Bifurcation 99
6.3 Transcritical Bifurcation 101
6.4 Pitchfork Bifurcations 102
6.5 Bifurcation Types and Symmetry 105
6.6 Structural Stability 106
6.7 Further Reading 108
 Supplemental Problems 109
 Solutions 110
 Notes 111

Part II Passive Membranes 113

7 The Nernst Equilibrium Potential 115
7.1 Cellular Compartments and Electrical Potentials 115
7.2 Nernst Equilibrium Potential 116
7.3 Derivation of the Nernst Equation 119
7.4 Calculating Nernst Equilibrium Potentials 121
7.5 Chemical Potential 122
7.6 Discussion 124
 Supplemental Problems 129
 Solutions 130
 Notes 130
 CONTENTS

Supplemental Problems 197
Solutions 197
Notes 198

12 Voltage-Clamp Recording 199
12.1 Current-Clamp and Voltage-Clamp Recording 199
12.2 Modeling Delayed Activation of Ionic Currents 203
12.3 Voltage Clamp and Transient Ionic Currents 206
12.4 Modeling Transient Ionic Currents 209
12.5 Further Reading and Discussion 211
Supplemental Problems 213
Solutions 213
Notes 215

13 Hodgkin-Huxley Model of the Action Potential 216
13.1 The Squid Giant Axon 216
13.2 The Hodgkin-Huxley Model 219
13.3 Excitability in the Hodgkin-Huxley Model 221
13.4 Repetitive Spiking (Oscillations) 224
13.5 Further Reading and Discussion 225
Supplemental Problems 229
Solutions 230
Notes 230

Part IV Excitability and Phase Planes 233

14 The Morris-Lecar Model 235
14.1 The Morris-Lecar Model 235
14.2 The Reduced Morris-Lecar Model 237
14.3 The Morris-Lecar Phase Plane 239
14.4 Phase Plane Analysis of Membrane Excitability 241
14.5 Phase Plane Analysis of Membrane Oscillations 244
14.6 Further Reading and Discussion 248
Supplemental Problems 249
Solutions 251
Notes 251

15 Phase Plane Analysis 252
15.1 The Phase Plane for Two-Dimensional Autonomous ODEs 252
15.2 Direction Fields of Two-Dimensional Autonomous ODEs 255
15.3 Nullclines for Two-Dimensional Autonomous ODEs 256
15.4 How to Sketch a Phase Plane 258
15.5 Phase Planes and Steady States 263
15.6 Discussion 265
Supplemental Problems 268
Solutions 269
Notes 273
16 Linear Stability Analysis 275
 16.1 Solutions for Two-Dimensional Linear Systems 275
 16.2 Real and Distinct Eigenvalues – Saddles and Nodes 278
 16.3 Complex Conjugate Eigenvalues – Spirals 281
 16.4 Criterion for Stability 284
 16.5 Further Reading and Discussion 285
 Supplemental Problems 290
 Solutions 291
 Notes 293

Part V Oscillations and Bursting 295
17 Type II Excitability and Oscillations (Hopf Bifurcation) 297
 17.1 Fitzhugh-Nagumo Model 297
 17.2 Phase Plane Analysis of Resting Steady State 300
 17.3 Loss of Stability with Increasing λ (Depolarization) 303
 17.4 Analysis of Hopf Bifurcations 304
 17.5 Limit Cycle Fold Bifurcation 310
 17.6 Further Reading and Discussion 313
 Supplemental Problems 315
 Solutions 316
 Notes 317

18 Type I Excitability and Oscillations (SNIC and SHO Bifurcations) 319
 18.1 Saddle-Node on an Invariant Circle 319
 18.2 Saddle Homoclinic Bifurcation 323
 18.3 Square-Wave Bursting 324
 18.4 Calcium-Activated Potassium Currents as Slow Variable 328
 18.5 Further Reading and Discussion 331
 Supplemental Problems 335
 Solutions 336
 Note 337

19 The Low-Threshold Calcium Spike 338
 19.1 Post-Inhibitory Rebound Bursting 338
 19.2 Fast/Slow Analysis of Post-Inhibitory Rebound Bursting 342
 19.3 Rhythmic Bursting in Response to Hyperpolarization 343
 19.4 Fast/Slow Analysis of Rhythmic Bursting 344
 19.5 Minimal Model of the Low-Threshold Calcium Spike 346
 19.6 Further Reading and Discussion 349
 Solutions 351
 Notes 351

20 Synaptic Currents 353
 20.1 Electrical Synapses 353
 20.2 Electrical Synapses and Synchrony 355
 20.3 Chemical Synapses 356
x CONTENTS

20.4 Phase Plane Analysis of Instantaneously Coupled Cells 357
20.5 Reciprocally Coupled Excitatory Neurons 362
20.6 Further Reading and Discussion 363
Supplemental Problems 365
Solutions 367
Note 367

Afterword 368
References 371
Index 380
Preface

Philosophy is written in this grand book – I mean universe – which stands continuously open to our gaze, but which cannot be understood unless one first learns to comprehend the language in which it is written. It is written in the language of mathematics, and its characters are triangles, circles and other geometric figures, without which it is humanly impossible to understand a single word of it; without these, one is wandering about in a dark labyrinth.

— Galileo Galilei (1564–1642)

Most students of life science accept Galileo’s statement that “triangles, circles and other geometric figures” are necessary to fully understand the cosmos. But many of these students – and perhaps also their professors – have significant doubts about the relevance of mathematics to the science of life on earth.

Admittedly, biology and mathematics sometimes appear immiscible. Like oil and water, the combination does not yield a homogenous mixture of liquids, but an emulsion. When biology and mathematics are viewed as two disparate subjects in an undergraduate education, attempts to forcefully stir one into the other result in something like well-shaken Italian salad dressing, the two dispersed liquid phases having a natural tendency to separate. Because we have no surfactant to stabilize the bio-math emulsion, we shake again. In the process, the students become agitated, too!

Love of science and fear of mathematics have led many to major in biology, psychology and neuroscience. There is no shame in acknowledging this fact. Within the life sciences there are many important research questions that can be asked and answered without mathematics. Many topics covered in biology, psychology and neuroscience courses can be explained and understood without mathematical language. There are numerous scientific and health- and education-related fields that do not require mathematical aptitude, but do need intelligent and resourceful young scientists and science majors.

On the other hand, many life sciences have theoretical foundations that were developed by quantitative scientists using mathematical language (e.g., population genetics). Other life sciences, such as molecular biology and genomics, have become so complex and data rich that most practitioners would appreciate more quantitative aptitude and perspective – if not for themselves, then at least for their trainees. Contemporary life scientists who are at ease with mathematics use quantitative reasoning in the study of life on every scale: molecules, membranes, cells, networks, organisms, behavior, evolution and ecology. Both pure and applied biomedical research is replete with open scientific questions (e.g., protein folding) and technical
challenges (e.g., rational drug design) whose solutions will be found by biological scientists who are comfortable with mathematics and computation.

In my opinion, mathematics is the language of all natural science, biology and neuroscience no less than astronomy, physics and chemistry. This extension of Galileo’s conviction to the realm of neuroscience is, admittedly, a philosophical statement that is open to discussion. I encourage you to think it over, talk to your peers and mentors, and decide for yourself.

Certainly, this book is a combination of biology (cellular biophysics) and mathematics (dynamical systems modeling) written from a Galilean perspective. Is it a homogenous mixture or emulsion? I cannot say. But it is a sweet mix.